Acellular Pertussis Vaccine Effectiveness and Waning Immunity in Alberta, Canada: 2010-2015, a Canadian Immunization Research Network (CIRN) study

Christopher A. Bell, Margaret L. Russell, Steven J. Drews, Kimberley A. Simmonds, Lawrence W. Svenson, Kevin L. Schwartz, Jeffrey C. Kwong, Salaheddin M. Mahmud, Natasha S. Crowcroft.

a Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Medicine, 3280 Hospital Drive NW, Calgary, AB, Canada, T2N 3Z6.
b Diagnostic Virology, ProvLab Alberta, Alberta Health Services, 2B1.03 WMC, University of Alberta Hospital, 8440-112St, Edmonton AB, T6G 2J2, AB, Canada;
c Department of Laboratory Medicine and Pathology, 4B1.19 WMC University of Alberta Hospital, University of Alberta, 8440-112St University of Alberta, Edmonton, AB T6G 2J2
d Alberta Ministry of Health, 10025 Jasper Avenue, Edmonton, AB, Canada AB T5J 1S6
e Division of Preventive Medicine, Faculty of Medicine and Dentistry, University of Alberta, 5-22F University Terrace, 8303 112 ST NW, Edmonton, AB, Canada T6G 2T4
f School of Public Health, University of Alberta, 3-300 Edmonton Clinical Health Academy, 11405 87 AVE NE, Edmonton, Alberta, Canada, T6G 1C9
g Dalla Lana School of Public Health, University of Toronto, 155 College St., 6th floor, Toronto, Ontario, Canada M5T 3M7
h Public Health Ontario, 480 University Ave., Suite 300 Toronto, Ontario, Canada M5G 1V2
i ICES, 2075 Bayview Ave, Room G1-06, Toronto, Ontario, Canada M4N 3M5
j Department of Family and Community Medicine, University of Toronto, 500 University Avenue, 5th Floor, Toronto, ON, Canada M5G 1V7
k Vaccine and Drug Evaluation Centre, Faculty of Health Sciences, Room S113 - 750 Bannatyne Avenue University of Manitoba, Winnipeg, MB R3E 0W3
Corresponding author: Margaret L. Russell (mlrussel@ucalgary.ca).

This is the authors' post print version of the following paper:

ABSTRACT

Background. Pertussis is still frequently reported in Canada. In Alberta, pertussis incidence ranged from 1.8 to 20.5 cases per 100,000 persons for 2004-2015. Most cases occurred in those aged <15 years. In Alberta, acellular formulations replaced whole-cell in 1997. We investigated pertussis vaccine effectiveness (VE) using a test-negative design (TND) study.

Methods. We included all persons who had a real-time PCR laboratory test for *Bordetella pertussis* between January 1 2010 and August 31 2015, in the province of Alberta, Canada. Vaccination history was obtained from Alberta’s immunization repository. Vaccination status was classified as complete, incomplete, or unvaccinated, based on the province’s vaccination schedule. Persons who had received ≥ one dose of whole cell vaccine were excluded from analysis. Multivariable logistic regression models were used to estimate adjusted odds ratios (aOR) and 95% confidence intervals (95% CI) for pertussis infection by time since last vaccination. We adjusted for vaccination status, age, sex, neighbourhood income, urban/rural status, and the presence of a co-morbid condition. VE was calculated as [(1-aOR)*100].

Results. Of the 12,149 tests available, 936 (7.7%) were positive for *Bordetella pertussis*. Among the full cohort, VE was 90% (95% CI 87 to 92%) at 1 year, 81% (95% CI 77 to 85%) at 1 to 3 years, 76% (95% CI 68 to 82%) at 4 to 7 years, and 37% (95% CI 11 to 56%) at 8 or more years since a last dose of acellular pertussis vaccine.

Conclusions. Pertussis VE was highest in the first year after vaccination, then declined noticeably as years since a last vaccination increased. Our results suggest that a large number of adolescents and adults are susceptible to infection with *Bordetella pertussis*. Regular boosters throughout childhood, adolescence, and during pregnancy may be needed.
Highlights:

- Acellular vaccine provides moderate protection in the years following vaccination.
- Young children who follow the vaccine schedule are well protected from pertussis.
- The decrease in protection after 5 years is consistent with waning immunity.

Keywords: Acellular Pertussis Vaccine; Whooping Cough; Vaccine Effectiveness; Waning Immunity; Epidemiology; Canada;
Background

Pertussis (whooping cough) is a highly infectious respiratory disease that is transmitted through direct contact or inhalation of airborne droplets and is caused by the bacteria *Bordetella pertussis* [1]. Pertussis infection often presents first with cold-like symptoms and mild fever, followed by serious coughing episodes that may lead to difficulty breathing, choking, and vomiting. Infants are most susceptible to serious symptoms and complications that could lead to hospitalization and, in severe cases, death [2].

A whole-cell pertussis vaccine was first developed in the 1930s, significantly decreasing pertussis incidence upon universal use [3]. Following concerns of high rates of adverse events following vaccination, a new acellular formulation of the vaccine was developed in the 1980s [4, 5]. In Alberta, acellular formulations replaced whole-cell in 1997 [6].

Pertussis is still a frequently reported disease in Canada. Since 2000, an average of almost 2,500 annual cases of pertussis have been reported in Canada, with many more likely unreported [7, 8]. In Alberta, pertussis incidence has ranged from 1.8 to 20.5 cases per 100,000 persons during 2004-2015, with the majority of cases reported in those aged <15 years [9]. Low and high periods of incidence have been observed to occur cyclically, with peaks in disease every few years [7, 9, 10].

Ongoing incidence of pertussis in Canada may be an indication of either low vaccination coverage or secondary vaccine failure. Nationally, 77% children have received all recommended pre-school doses of pertussis vaccines, which is below the target of 95% [11, 12] The purpose of this study was to estimate vaccine effectiveness (VE) and duration of protection of acellular pertussis vaccine in Alberta, Canada.
Methods

Population:
In this test-negative design (TND) study, we identified all individuals who had undergone a laboratory test for pertussis between January 1, 2010, and August 31, 2015, in the Canadian province of Alberta (population 4.18 million in 2015).

Exclusions included those too young to have their vaccination status classified (under 3 months of age), those with indeterminate or inconclusive laboratory results, those with missing data required for linkage to variables of interest, and those with a history of receipt of at least one dose of whole-cell vaccine [Figure 1].

The study was approved by the Conjoint Health Research Ethics Board of the University of Calgary (Ethics ID: REB15-0732) and funded by the Canadian Institutes of Health Research (grant # 137470; Canadian Immunization Research Network, sub grant PC01 AB03), and a research agreement between the Alberta Ministry of Health and the University of Calgary (RSO 1026380).

Data Sources:
Alberta has a publicly funded, universally available, health care insurance system that covers at least 99% of the provincial population. Registration with the Alberta Health Care Insurance Plan (AHCIP) is mandatory for all residents of the province. The registration system for the AHCIP (Alberta Central Stakeholder Registry) contains demographic information (age, sex, postal code, urban/rural residency) about registrants as well as a unique personal identifier (ULI) that can be used for deterministic linkage across multiple administrative databases. The postal code is further linked with Canadian census data (2011) to derive neighbourhood income levels.
In Alberta, pertussis is a notifiable disease [13]. Reports are captured in the provincial Communicable Disease Reporting System (CDRS), which contains records of all cases of communicable diseases notifiable by law in Alberta. Reporting is mandatory for all health care providers, including laboratories [14]. Only CDRS records with laboratory confirmation were used as cases in this study. All *B. pertussis* laboratory testing in Alberta has been performed by Alberta’s provincial laboratory (ProvLab) since 2004, using a real-time polymerase chain reaction (PCR) assay. A separate collection kit and swab must be requested specifically for *B. pertussis*, and testing was not performed as part of a regular panel of tests for respiratory agents. Specimens were reported as positive for *B. pertussis* if the amplification curve was of good quality and the crossing point was ≤ 35 cycles [15]. The final classification information for specimens (positive or negative) tested for *B. pertussis* was obtained from the Data Integration for Alberta Laboratories (DIAL) system [16]. Persons who were listed in CDRS and had a positive test result identified in DIAL were classified as cases for the purpose of this study. Persons who had undergone PCR testing and for whom the test result was negative were classified as controls. If an individual had more than one PCR test within a 90-day period, only one result date was used; this was the first positive PCR date or first PCR test date if all tests were negative.

Income quintiles (one being the lowest, and five being the highest) were assigned by using the individual’s postal code as of test date, and linking it with the Statistics Canada Postal Code Conversion File to obtain the 2011 Canadian National Household Survey neighbourhood income quintile based on the corresponding dissemination area [17].

 Alberta’s Immunization and Adverse Reaction to Immunization (Imm/ARI) repository was used to access individual vaccination records. Imm/ARI captures all vaccinations
administered through public health programs in the province and has strict guidelines that promote the submission of high-quality data [9, 18]. Business rules are also in place to reject and flag vaccination records that contain errors, so providers can investigate, correct, and resubmit. Pertussis-containing vaccines are administered almost exclusively by Public Health in Alberta. Imm/ARI has prospectively captured all provincial vaccination data since 2006 and has received historical data (retrospectively) from the majority of jurisdictions within the province back to 2000 or earlier. The study start year of 2010 therefore provided at least ten years of historical vaccination data for the province. Chronic disease conditions were identified through physician claims using codes from the International Classification of Disease, ninth revision (ICD-9), and through the hospital discharge database using codes from the International Classification of Disease, tenth edition, Canada (ICD-10-CA) [19, 20].

Vaccination status:

Vaccination status was classified as *complete*, *incomplete*, or *unvaccinated*, based on the number of age-appropriate doses within Alberta’s vaccination schedule, using a 30-day grace period for scheduled doses under 2 years of age. The grace period allows infants to be up to 30 days late on vaccination before they become classified as incomplete or unvaccinated. Complete status required 1 dose by 3 months of age, 2 doses by 5 months of age, 3 doses by 7 months of age, 4 doses by 19 months of age, 5 doses by 7 years of age, and 6 doses by 16 years of age. Those with incomplete status had a history of vaccination but did not meet the criteria for number of recommended doses for their age outlined above. Doses administered <14 days prior to a laboratory test were not considered as valid doses towards vaccination status.

Statistical Analysis:
Multivariable logistic regression models were used to estimate crude and adjusted odds ratios (ORs) for pertussis infection by time since last vaccination. Separate (stratified) models were run considering vaccination status (complete or incomplete), age (≤21 or >21 years), and calendar year (2010-2012 or 2013-2015). An additional sensitivity analysis was conducted on infants younger than three years of age. All models were adjusted for age at time of testing, sex, income quintile, urban/rural status, and the presence of a co-morbid condition. VE was calculated as [(1-OR)*100%].

A p-value of <0.05 was used to assess statistical significance, and 95% confidence intervals were provided for all parameter estimates. Data were analyzed using SAS 9.3 (SAS Institute Inc., Cary, NC 2011) and graphed in SigmaPlot 13.5 (Systat Software Inc.).

Results

There were 15,350 pertussis laboratory results available between January 1 2010 and August 31 2015 [Figure 1]. After excluding 356 with missing information, 7 inconclusive or indeterminate laboratory tests, 336 laboratory tests for individuals aged <91 days, 154 duplicate tests within 90 days, and 1,459 individuals with receipt of at least one dose of whole-cell vaccine, the final study sample consisted of 12,149 laboratory tests (from 11,877 individuals), with 936 (7.7%) testing positive for pertussis. None of the patients who tested positive for pertussis had another positive test >90 days apart.

Cases were younger (mean age of 15.9 vs. 18.9 years; p<0.001), more likely to live in rural areas (47.5% vs. 32.8%; p<0.001), and more likely to be in the lowest income quintile (32.6% vs. 23.7%; p<0.001) [Table 1]. Controls were more likely to be complete on their pertussis vaccinations than cases (43.6% vs. 24.8%; p<0.001), and more likely to have one or
more co-morbidities (20.2% vs. 17.0%; \(p=0.017\)). Figure 2 shows the number of pertussis tests and percent positivity per year in our study period.

Vaccine effectiveness was highest within the first year following vaccination [VE 90%; 95%CI (87 to 92%)], with a noticeable decline beginning at 6 years [Figure 3], and mild protection for those with 8 or more years since a last administered dose (VE 37%; 95%CI 11 to 56%) [Table 2].

Table 2 shows pertussis VE by years since last vaccination, stratified in three separate models by vaccination status, age cohort, and year of testing. VE declined by time since last vaccination in all three models. For all age groups combined, adjusted VE estimates in those with complete vaccination status was 91% (95%CI 88 to 94%) at 1 year, 85% (95%CI 81 to 89%) at 1 to 3 years, 80% (95%CI 72 to 85%) at 4 to 7 years, and 27% (95%CI -9 to 51%) at 8 years or more since the last administered dose of a pertussis-containing vaccine. A similar decline in pertussis VE was observed for those with incomplete vaccination status, with an adjusted VE of 84% (95%CI 74 to 90%) at 1 year, 71% (95%CI 59 to 80%) at 1 to 3 years, 67% (95%CI 49 to 79%) at 4 to 7 years, and 56% (95%CI 20 to 76%) at 8 years or more since a last administered dose. Vaccine effectiveness point estimates remained high in children under 4 years of age for each year that passed since a last pertussis dose.

4. Discussion

In this study, we measured acellular pertussis VE using over five years of PCR laboratory data in Alberta. Our results suggest a moderately high VE in the first few years following vaccination, with evidence of waning immunity beginning at six years since last vaccine dose received. The indications are that young children are well protected, which means that the program is achieving
its primary goal of protecting infants from the severe outcomes of pertussis, as well as aligning with the World Health Organizations position on pertussis vaccination [21]. Although we observed significant waning immunity, our analysis indicates the vaccine may still provide modest protection beyond eight years.

Despite the availability of a vaccine, pertussis remains a prevalent disease in Canada and elsewhere [7, 10, 11]. In our province, pertussis rates change over the calendar year and follow secular trends [22, 23]. Previous work has indicated that pertussis outbreaks can impact sub-provincial regions for reasons that are still unexplained [24]. Some prior work suggests that increases in pertussis may result from incomplete historical coverage with an effective vaccine or changes in the actual disease agent [25-27].

The higher proportion of rural cases has been a consistent finding in Alberta over the past decade, likely influenced by lower vaccination coverage compared to large urban centres [8]. Cases were also more likely to be in the lowest income quintile compared to controls, suggesting that socioeconomic factors may play a role in the distribution of pertussis in the population. Previous studies in Canada have demonstrated an association between lower income and decreased vaccination uptake, which may have contributed to the greater number of cases in the lowest income quintile we observed [28]. These findings deserve further exploration by social scientists in order to fully understand how social determinants are influencing the risk of pertussis.

The vaccine effectiveness estimate of 91% for those with complete vaccination within one year of a vaccination was higher than the VE of 80% observed in a recent, similarly designed test-negative study in Canada [29]. Both studies saw significant waning of protection over time. In our study, waning of immunity began to accelerate after 6 years since last vaccination, with
only modest protection after 8 years. Other recent observational studies in North America have shown evidence that early waning of vaccine induced immunity is occurring [30-32]. Booster dose schedules should consider this rapid waning, as longer gaps between doses could leave a period of time where protection is low or non-existent.

Canada’s pertussis vaccination coverage and disease reduction targets have a strong emphasis on infants, as the majority of hospitalizations and deaths occur in those under 1 year of age, with three pertussis vaccination doses scheduled (2, 4, 6 months) during this period for all jurisdictions [33, 34]. We found the vaccine to be highly effective in preventing pertussis cases in those younger than 4 years of age, prior to the 4- to 6-year recommended booster in Canadian jurisdictions. The waning immunity observed is primarily a concern in the older age groups, as the gap between scheduled doses is greater than the younger age cohorts we analyzed. The pertussis dose scheduled at 4 to 6 years of age is vital for preventing significant vaccine waning in early school-aged children, as the next scheduled booster in the majority of jurisdictions in Canada does not occur until teenage years in schools [33].

Infants younger than two months of age, who are at greatest risk for severe outcomes from pertussis infection, must rely on maternal antibodies and herd immunity for protection. Pregnant women with more than 7 years since a last vaccination may not be able to pass on sufficient passive immunity to their babies, as they themselves are unlikely to be protected against pertussis infection if relying on immunity from immunization during their own childhood. The National Advisory Committee on Immunization (NACI) recommended in March 2018 that pregnant women be immunized with a combined tetanus-diphtheria-acellular pertussis vaccine (Tdap) during every pregnancy, regardless of vaccination history [35]. In light of this
recommendation, further study should be undertaken to determine the impact on VE after infant
doses.

4.5 Limitations

Vaccination data completeness in Edmonton (an area containing ~25% of the provincial
population), is considered to be inferior to the rest of the province prior to the year 2006. With
our study period beginning in 2010, it is possible some Edmonton residents may have been
missing vaccination data as early as 4 years prior to a pertussis test. This misclassification may
have impacted our VE estimates.

Although the misclassification of cases as controls is possible, the likelihood was low as
we used PCR for the whole duration of the study, which would detect infection for a longer
period of time than traditional testing [36].

In the >21 years age group, very few pertussis cases were vaccinated with acellular
vaccine, leading to unstable estimates and the inability to provide a VE point estimate in the 8 or
more years since a last dose strata. This was a result of excluding whole-cell vaccine recipients,
who were over-represented in the older age group.

The test-negative design using routinely submitted specimens without a case definition
has not been validated for pertussis. Further investigation by comparing results from pertussis
VE studies using different methodologies is required.

4.7 Conclusion

We have observed that the pertussis vaccine affords moderately high protection to those within
the first six years of an administered dose. However, significant waning of protection began
thereafter, with mild to no protection beyond 8 years since a last vaccination. Regular boosters throughout childhood, adolescence, and during pregnancy may be needed.
Funding: This work was supported by the Canadian Institutes of Health Research (grant # 137470; Canadian immunization Research Network, sub grant PC01 AB03), and a research agreement between the Alberta Ministry of Health and the University of Calgary (RSO 1026380).

List of tables

Table 1. Characteristics of those with a positive (case) or negative (control) *Bordetella pertussis* test.

Table 2. Pertussis VE by vaccination status and years since last vaccination in all age groups

List of figures

Figure 1. Flow diagram of tests that met inclusion/exclusion criteria for analytic dataset

Figure 2. Number of pertussis tests (Grey bars, left axis) and % positive (black dotted line, right axis), by year of test.

Figure 3. Pertussis vaccine effectiveness by years since last dose

All authors attest they meet the ICMJE criteria for authorship.
References

