
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2022-06

Applying group theory to the study of a

carbon trimer defect in hexagonal boron nitride

Aligholamioskooee, Omid

Aligholamioskooee, O. (2022). Applying group theory to the study of a carbon trimer defect in

hexagonal boron nitride (Master's thesis, University of Calgary, Calgary, Canada). Retrieved

from https://prism.ucalgary.ca.

http://hdl.handle.net/1880/114805

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Applying group theory to the study of a carbon trimer defect in hexagonal boron nitride

by

Omid Aligholamioskooee

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY

CALGARY, ALBERTA

JUNE, 2022

© Omid Aligholamioskooee 2022



Abstract

Hexagonal boron nitride (h-BN) is a promising platform for quantum information processing due to its

potential to host optically active defects with attractive optical and spin properties 1. Recent studies sug-

gest that carbon trimers might be the defect responsible for single-photon emission in the visible spectral

range in h-BN. In this theoretical study, we combine group theory together with density-functional the-

ory (DFT) calculations to predict the properties of the neutral C2CN carbon trimer defect. We find the

multi-electron states of this defect along with possible radiative and nonradiative transitions assisted by the

spin-orbit and the spin-spin interactions. We also investigate the Hamiltonian for external magnetic-field

and ground-state hyperfine interactions. Lastly, we use the results of our investigation in a Lindblad (or

Gorini–Kossakowski–Sudarshan–Lindblad) master-equation model to predict an optically detected magnetic

resonance signal and the g2(τ) correlation function. Our findings can have important outcomes in quantum

information applications such as quantum repeaters used in quantum networks and quantum sensing.

1In this thesis I have used materials from our latest paper [1] in several chapters, with the permission of all authors and the
journal.
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Chapter 1

Introduction

A quantum system, as opposed to a classical system, has some unique characteristics, including superposition

states, where a binary system can be in a superposition of state zero and state one at the same time, and

entanglement, where a group of particles are prepared in a way that the state of each of these particles,

even when separated by a large distance, cannot be described independently [5]. These properties give

an advantage to a quantum system for solving certain problems. For example, Shor’s algorithm potentially

allows a quantum computer to find the prime factors of an integer almost exponentially faster than a classical

computer [6].

These advantages have motivated researchers to explore different systems for implementing a quantum

information processing unit. There are some properties that these quantum systems should possess [7]. First,

decoherence causes a superposition state to collapse due to the interaction with its environment. Hence, it

is important to isolate the quantum system from its environment and increase the coherence time so that

a required process can be performed before decoherence happens. Second, any quantum system should

be scalable, correctable, and controllable in order to be useful for applications [8]. Scalability will allow

a quantum system to increase in size and number of qubits, or quantum bits, where the advantage of a

quantum algorithm is apparent. Additionally, a quantum system should be correctable because background

noise can cause errors in calculations, and these errors should be detected and corrected. Lastly, we should

be able to initialize, manipulate, and readout a qubit so that we can perform quantum gates and do quantum

calculations.

Some of the most promising and developed systems for quantum information processing and communica-

tion, based on the mentioned criteria, are atom-like spins in solids[9], superconducting circuits [10], ion traps

[11], and topological systems [12]. While they are still being developed, each of them has its own advantages
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and disadvantages. Superconducting qubits are one of the leading platforms for quantum computation,

where they use the robustness of superconductivity and the nonlinearity of Josephson junctions [13]. Their

performance has been improved by several orders of magnitude during the past two decades, making them

promising for building large-scale error-corrected quantum computers [14]. In a trapped ion system, charged

particles are confined in free space by electromagnetic waves [15]. Qubits stored in the electronic states of

ions have suitable coherence times, can be prepared and measured with close to 100% efficiency (overall

success probability), and are entangled with each other through the Coulomb interaction or remote photonic

interconnects [11]. Finally, while all other methods try to isolate a qubit from its environment to avoid de-

coherence, topological systems use a different approach. They use nonabelian phases of matter to store and

manipulate quantum information in a nonlocal manner, which protects them from errors and decoherence

from the interaction with the environment [12]. Several experiments have shown the existence of Majorana

Fermions [16], which are proposed to be used for topological quantum computation [17]. But there is still

more work needed to develop techniques to make, control, and manipulate these topological qubits.

We will discuss atom-like spins in more detail in the next sections. My research has been focused on

photonics quantum technology, with an emphasis on atom-like spins in solid-state materials and their role as

spin-photon interfaces for applications in quantum networks and communication. Quantum photonics, where

a quantum of light, or a photon, is used for quantum information processing, is one of the leading platforms

in quantum computation and is a natural choice for quantum communication and metrology because of its

unique properties, including the ability to transfer the quantum state at the speed of light and through optical

fibers with high coherence [18]. Consequently, we will focus on the role of photonics in the applications of

quantum technology, atom-like spins in solids, and spin-photon interfaces.

1.1 Applications of quantum information

The applications of quantum information can be categorized into the three main fields of computation, com-

munication, and sensing [19]. We will look at them individually and discuss their photonic implementations.

1.1.1 Quantum computation

A quantum processing unit will allow us to use the power of quantum mechanics for tasks such as factorizing

a number to its prime numbers by using Shor’s algorithm, searching databases by using Grover’s algorithm

[20], and simulating quantum systems to solve many-body physics problems [21]. In order to use photons

in quantum information applications, the quantum state should be encoded in degrees of freedom of a

photon, which includes polarization and temporal or spatial modes. As we will see, indistinguishable single

2



photons play a crucial role in some of the leading quantum systems for quantum computation with promising

scalability [22].

In the quantum circuit model, a quantum gate is an operator that acts on one or more qubits. Quantum

gates are usually classified based on the number of qubits they operate on, such as one-qubit, two-qubit,

and so on. In practice, it is easier to produce a small set of gates and use them to construct any given

unitary operator. Any set of gates that has this property is called a universal set of gates; for example,

the set of Toffoli and Hadamard gates is a universal set of gates, where the Toffoli gate is a three-qubit

controlled-controlled-NOT gate, and the Hadamard gate is a one-qubit gate that maps the basis states |0⟩

to |0⟩+|1⟩√
2

and |1⟩ to |0⟩−|1⟩√
2

[23]. Alternatively, a two-qubit CNOT (controlled-NOT) gate combined with

one-qubit gates construct another set of universal gates [21], which makes CNOT gates important for many

quantum information processing applications. A CNOT gate flips the state of the second qubit if the first

qubit, or the control qubit, is in state one, and it does nothing if the control qubit is in state zero. It

has been shown that a CNOT gate can be implemented using auxiliary single-photon sources and detectors

without the need for nonlinear optical elements [24]. Hence, they allow scalable quantum computation and

show the importance of single-photon emitters. However, there are different schemes for making a CNOT

gate without using single photons. But they have their challenges because of the need for a highly nonlinear

material [18].

Although the circuit-model-based quantum computation had great progress, it requires a significant

number of gates and high entanglement generation rates, which makes it hard to implement. Alternatively,

a measurement-based or a one-way quantum computer is mathematically equivalent to the circuit-based

model [25] but offers more promising advantages for implementing it physically [26]. A one-way quantum

computer uses an entangled state of multiple qubits, called a cluster-state, where single-photon sources

are vital for some optical schemes [27]. Thus, it shows the importance of single-photon sources for these

alternative methods.

1.1.2 Quantum communication

Transmitting quantum information between various nodes would provide unprecedented secure communica-

tions. The laws of quantum mechanics guarantee that an arbitrary unknown quantum state cannot be copied,

which is proven by the no-cloning theorem [28]. Additionally, the measurement of an unknown quantum

state, if it is not compatible with the measurement, will perturb the system. Therefore, by using quantum

systems, one can increase the security of communication and, in the case of an eavesdrop, potentially detect

it [29]. An essential part of secure communication is sharing secure keys between the nodes. In this regard,
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quantum key distribution (QKD) methods enable two nodes to share a secure key and use it to achieve a

highly-secure information transition [30].

One of the problems of a quantum communication channel where the signal consists of more than one

photon is that an eavesdropper can perform a photon number splitting attack by storing the additional

photons and later obtain full information about the shared key between the nodes [31]. Although there are

different ways to solve this problem, one of the solutions to prevent this attack is using single-photon sources

[32]. Hence, single-photon emitters are vital for some QKD applications, such as certain device-independent

QKD protocols [33].

1.1.3 Quantum sensing

Quantum sensing allows physical measurements with high precision, which means that the measurements

will have closer and less dispersed results compared to each other. Fundamentally, Heisenberg’s uncertainty

principle puts a limit on the precision of a measurement, but classical devices are far from this fundamental

precision. It has been shown that by using quantum characteristics such as squeezed and entangled states,

and single-photon sources, it is possible to beat the precision of classical measurements [34, 35]. Again, in

quantum sensing applications, single-photon sources are necessary [36]. Some quantum sensing systems use

interference to achieve high resolution [37], while others use properties of atom-like spins in solids to measure

the magnetic field, electric field, or temperature with high spatial resolution [38].

1.2 Quantum networks

In general, a network, based on Ref. [39], is defined as: “A network is a group of interacting parties, where

each of the members potentially wants to interact with any of the other members.” And a telecommunication

network consists of nodes that are connected through telecommunication links. Additionally, a quantum

network is a telecommunication network where the links allow transferring of quantum information. A large-

scale quantum network or the quantum internet [40], will not only be used for quantum communication

applications but also can be useful for distributed quantum computation [41], and quantum sensing [42, 43].

The nodes in these quantum networks can be photon emitters and detectors used, for example, for quantum

key distribution, or can be quantum computers, where distributed quantum computing will be possible [39].

However, other types of nodes, such as quantum repeaters, are also needed for large-scale networks. In a

quantum network, photon loss during transmission limits the size of the network. Although the no-cloning

theorem is an advantage for security, it prevents us from using amplifiers to strengthen a signal and send

it over longer distances. However, there are other solutions, such as quantum repeaters, where quantum
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entanglement is used to extend a quantum channel over longer distances [44]. In this approach, one splits

the distance between the two nodes into several nodes with smaller separations. Each of these nodes contains

quantum devices; for example, in some suggested schemes, they need a photon pair generator and a quantum

memory to store information [45]. In this scheme, each adjacent node produces a pair of photons, stores one

of them, and sends the other to a central beamsplitter. Detection of a single photon means the stored states

are entangled. Here, the use of single-photon sources significantly increases the entanglement distribution

rate [46].

1.2.1 Spin-photon interface

Each node in a quantum network mediated by entangled photons should fulfill three main requirements.

First, it needs an efficient interface between qubits and photons, where, for example, a high fraction of

photons are emitted into the zero-phonon line, in order to generate entangled photons at high rates. Second,

they need quantum memory to store information while generating and distributing entanglement. Third,

they need several quantum memories with the capability to perform high-fidelity gates between them, which

is needed for error correction and other multi-qubit operations [47].

There are several promising systems used as nodes of quantum networks, such as atomic-based qubits, in-

cluding atomic ensembles, single atomic ions [48], and single neutral atoms [49], and less studied superconducting-

based systems [50]. Further, atom-like color centers, such as defects in diamond, are among the leading

systems that fulfill all of these requirements, whereas compared to atoms or ions, they do not require trap-

ping. Their spin-photon interface, electronic structure, and spin selective optical transitions allow remote

entanglement between their spin state and a photonic state. This makes solid-state color centers even more

interesting for various applications. Additionally, that is why there are many theoretical and experimental

attempts to understand the structure and spin-photon interface of new centers, hopefully with better prop-

erties, in emerging materials by using group theory and density-functional theory (DFT) for the theory part

and electron paramagnetic resonance and optically detected magnetic resonance (ODMR) experiments for

the experiment part [51].

1.2.2 Atom-like spins in solids

As we discussed, single-photon emitters have a significant role in different quantum applications, and atom-

like spins, or artificial atoms, are among the most promising single-photon sources [52]. Furthermore, other

optical and spin characteristics of these artificial atoms, such as their spin-photon interface, give them

advantages in certain applications. Many atom-like spins with promising optical and spin properties have
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been found and studied in different platforms, including semiconductor quantum dots (QDs) and atomic color

centers. Self-assembled semiconductor QDs have shown promising performance in photon generation rates,

optical coherence, range of spectral tunability, and integration into nanostructures [53]. Additionally, high

spin-photon and spin-spin entanglement generation rates, quantum teleportation, quantum-state transfer,

quantum relays, and on-chip integration with polarization-demultiplexing waveguides have been realized

experimentally using indium arsenide QDs. Although some electron or hole spins in QDs have coherence times

of a few milliseconds, some solid-state color centers have much higher spin coherence times. Furthermore,

some solid-state color centers couple to nearby nuclear spins with high coherence times [54], making a

quantum register, where this cluster of ancillary qubits is hard to form in QD systems. Quantum registers

are required for many applications, such as quantum error correction or as a quantum memory for quantum

communication. Consequently, researchers have been interested in understanding and improving these color

centers.

Color centers are optically active defects or impurities in a solid-state lattice. One of the most promising

and studied color centers is the nitrogen-vacancy (NV) center in diamond. This defect is constructed by

substituting a carbon in the diamond lattice with a nitrogen atom and removing another nearby carbon,

which results in a vacancy. The NV center in its negatively charged form has a multilevel electronic structure

with a triplet ground state, which has been used for initialization, control, and readout. Additionally, the

interaction of the electron spin with the nuclear spin of the nearby 13C impurities in the lattice or the nitrogen

atom allows the NV center to be a quantum register with impressive properties. In this respect, coherence

time exceeding 1 second at room temperature has been realized for individually addressable nuclear spins

[55]. Recent advances with NV centers include the realization of a three-node entanglement-based quantum

network [56], the realization of a two-node quantum network over a distance of 1.3 km [57], the realization

of a single electron spin coupled to a multi-qubit nuclear-spin [58], and quantum error correction on a

continuously encoded qubit by real-time feedback [59].

These achievements with NV center have triggered the exploration of other defects in solid-state systems

[60] in order to increase the fidelity and efficiency of the quantum gates and, eventually, the scalability of the

system, which includes other defects in diamond, such as silicon-vacancy [61] and germanium vacancy [62],

or defects in other solid-state materials such as silicon carbide [63], and van der Waals materials [64]. Each

of these defects and systems has some advantages over others. In particular, insulator or semiconductor van

der Waals materials with a large enough bandgap have gained more attention in recent years because of their

novel properties. Among them, the most promising 2-dimensional (2D) materials are hexagonal boron nitride

(h-BN) and transition metal dichalcogenides (TMDCs). Monolayer TMDC materials are atomically thin

MX2 type semiconductors, where a layer of transition metal atoms (M), such as molybdenum and tungsten,
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is placed between two layers of chalcogen atoms (X), such as sulfur, selenium, and tellurium. Some of

these monolayer TMDC materials, such as tungsten diselenide (WSe2) and molybdenum diselenide (MoSe2),

have a direct bandgap. Optically active defects in TMDCs have been reported by different experimentalists

[65, 66, 67], while more research is needed to understand the true nature of these defects.

1.3 Defects in h-BN

Similarly, ultrabright and polarized single-photon emission from color centers in two-dimensional (2D) hexag-

onal boron nitride (h-BN) has been recently observed at room temperature [68]. Hexagonal boron nitride

has attracted attention for several reasons. First, it has a relatively large bandgap of around 6 eV [69, 70, 71]

which allows it to host many defects [72, 73, 74, 75, 76]. Second, because of its 2D nature, it is promising

for heterogeneous assembly and on-chip integration into devices [77, 4]. Third, some defects in h-BN might

have high sensitivity to the environment because of their location at the surface, which is advantageous for

quantum sensing applications [78]. Finally, defects in h-BN are the only known solid-state sources that can

display Fourier transform limited lines at room temperature [79]. If the Fourier transform of an emitter’s

temporal profile matches its spectral lineshape, then the emitter resonance does not fluctuate during the

timescale of emission. This implies that quantum coherence is maintained so that the emitter can be used

for many quantum protocols.

Although there have been various measurements of single-photon emitters in h-BN, the true atomic

structure of most of these emitters remains unknown [80, 81]. Therefore, we have done theoretical calculations

to understand the electronic structure of one of the most promising defects in h-BN. Similar to previously

studied defects in solids, such as the NV center [3, 82, 83] and the silicon-vacancy center [84, 85] in diamond,

or the boron vacancy in h-BN [81], we have used a combination of group theory and DFT calculations,

which are strong tools to theoretically investigate new defects and help with identifying defects. DFT is one

of the most used ab initio, or first principles, approaches for studying properties of defects in solids, such

as electronic structure, energy levels, formation energy, different couplings, and radiative or nonradiative

transition rates [86]. Additionally, group theory uses the symmetries of the defect to simplify the matrix

elements and provides a good intuition of the electronic structure. Group theory is discussed in more detail

in Chapter 2.

It has been shown that visible range single-photon emitters in h-BN originate from carbon-related defects

[80]. Jara et al. [87] suggest that the neutral C2CN and C2CB carbon trimer defects might have zero-phonon

line (ZPL) energies of 1.62 and 1.65 eV, respectively, and a phonon sideband of around 160meV, which is

typically found in many experiments [80, 88]. However, a new study suggests that the C2CB defect might
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have a ZPL energy of 1.36 eV [89]. This energy is too far from the visible range, and so we focus only on the

C2CN defect where both studies agree on a ZPL energy of around 1.6 eV. However, more studies are needed

to understand the C2CB defect.

In this study, we explore the electronic structure of the C2CN defect in 2D h-BN and find the possible

radiative and nonradiative transitions to model the observed lines. To do so, we combine group theory

analysis with DFT calculations [90, 91]. We determine the symmetry-adapted molecular orbitals (MOs)

using group theory analysis. Then, we use DFT results to determine the relative energy ordering of these

orbitals [3]. Next, we obtain the total orbital and spin multi-electron states by filling the lowest energy MOs,

which gives us the ground state. Exciting electrons to the higher energy MOs gives us the excited states

[82]. We calculate the total energy of the electronic structures with DFT, and the difference between these

energies gives us the transition energies between defect states.

We then consider the spin-orbit, the spin-spin, and external magnetic-field interactions and find matrix

elements of the Hamiltonian, where group theory decreases the complexity by reducing the number of nonzero

elements. Furthermore, we look at the interaction between the defect and the electromagnetic field and find

nonvanishing matrix elements to derive the optical transitions. Combining this with the spin-orbit and the

spin-spin Hamiltonians gives us possible nonradiative transitions assisted by the spin-orbit and the spin-spin

interactions [81]. We also examine the hyperfine interaction of the ground state with a possible nearby

nuclear spin [83]. Finally, we look at the dynamics of this system and simulate the ODMR signal predicted

by the Lindblad (or Gorini–Kossakowski–Sudarshan–Lindblad) master equation [92].
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Chapter 2

Group theory

2.1 Introduction

As we discussed, the electronic structure of many of the defects in solids is unknown. However, there are

some tools that help us understand their electronic structure, such as group theory. Group theory is a

powerful tool used to simplify and give intuition about the energy levels and calculate the matrix elements

of different perturbations, such as spin-orbit or spin-spin couplings. In this section, we will see that the

Coulombic Hamiltonian is in the diagonal form in the symmetry-adapted basis. Additionally, we will be able

to find the zero matrix elements of various interactions only using group theory calculation, which hugely

decreases the number of calculations 1.

2.2 Definitions

First, let us briefly discuss the definitions of a group and a class of a group [93].

Definition 2.1. A group is a set of elements, G = {g1, g2, g3, ...}, together with a binary operator, called

group multiplication and denoted by “ · ” here, that associates a combination of two elements to an element,

denoted by g1 · g2. This multiplication must satisfy closure and associativity, and the group must include

the identity and inverse elements.

Definition 2.2. A class of a group, G, that contains element g1 is a set that contains all conjugates

of g1, where g1 is conjugate to g3 if there exists an element g2 in G such that g1 = g2 · g3 · g−1
2 , i. e.

Cl(g1) = {g2 · g1 · g−1
2 : g2 ∈ G}.

1The approach of this chapter is based on the “Group Theory and Quantum Mechanics” book [93].

9



2.3 Theory of group representations

A d-dimensional representation is a homomorphic map of a group G onto a group of nonsingular d × d

matrices Γ(g), with matrix multiplication as the group multiplication operator. That is, a d-dimensional

representation is a map ρ : G → Γ(g), such that for all g1 and g2 in G, one has Γ(g1 · g2) = Γ(g1)Γ(g2) [94].

2.3.1 Reducible and irreducible representations

A representation is called reducible if it is possible to reduce the matrices representing all the elements of the

group to block form with the same block structure by the same similarity transformation. Otherwise, the

representation is called irreducible. Also, it can be shown that the number of classes is equal to the number

of irreducible representations.

Now we can introduce one of the important theorems that is a basis for the group theoretical calculation

performed in this thesis.

Theorem 2.3. The great orthogonality theorem [93, p. 23]

“If we consider all the inequivalent, irreducible, unitary representations of a group, then

∑
R

Γ(i)(R)∗µνΓ
(j)(R)αβ =

h

li
δijδµαδνβ , (2.1)

where in the summation R runs over all group elements E, A2, ..., Ah and li is the dimensionality of Γ(i).”

We can think of each element of the irreducible representation i, Γ(i)(g)µν , as a vector in the vector space

of the group elements. Then, the great orthogonality theorem says that these vectors will be orthogonal to

each other.

2.3.2 The Character of a representation

If Γ(j) is a d-dimensional representation of a group G, then the character of a group element, g1, in this

representation is defined as

χ(j)(g1) = Tr(Γ(j)(g1)) =

lj∑
i=1

Γ(j)(g1)ii, (2.2)

where lj is the dimension of Γ(j). The character of all of the elements of a class of a group is equal since the

class elements are conjugates of each other.

In the Eq. (2.1), if we set µ = ν and α = β, and sum over µ and α, we will end up with the following
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equation for characters: ∑
g∈G

χ(i)(g)∗χ(j)(g) = hδij . (2.3)

2.4 Transformation operators

Since we are interested in symmetry groups, we need to first study the orthogonal transformation operators

on coordinates. These transformations can be written as

x′i =
∑
j

Rijxj , (2.4)

where R is a real orthogonal matrix. In quantum mechanical systems, we deal with wave functions; therefore,

it will be helpful to introduce a new isomorphic group, where the elements, PR, operate on functions instead

of coordinates. This transformation is defined as

PRf(Rx⃗) = f(x⃗), (2.5)

where we have used Wigner’s convention which means PR compensates the changes made by R. One can

prove that PR is isomorphic to R by showing that PRS = PRPS. Since R and PR are isomorphic, they will

have the same irreducible representations.

Let us consider a physical system with Hamiltonian H, where it is invariant under operator PR. This

means that the Hamiltonian and the operator commute. Now let us assume that ϕ
(n)
i is an eigenfunction

of H with eigenvalue En in a degenerate subspace of size li; thus it can easily be shown that applying

PR on this eigenfunction results in a function that is also an eigenfunction of H with the same eigenvalue:

H(PRϕ
(n)
i ) = PR(Hϕ

(n)
i ) = En(PRϕ

(n)
i ). Therefore, we can write PRϕ

(n)
i as a combination of all of the

eigenfunctions in the degenerate subspace, and by applying all the symmetry operators that commute with

H on a given eigenfunction, we can generate all of the eigenfunctions in the same degenerate subspace.

Consequently, we can represent the effect of these operators by matrices given by

PRϕ
(r)
j =

lr∑
i=1

ϕ
(r)
i Γ

(r)
ij (R), (2.6)

where we can say ϕri transforms as the ith row of the representation r. It can be shown that these matrices

form irreducible representations of the symmetry group of the Hamiltonian [93].

Now that we know these functions form a basis for the Hilbert space, we will study methods that help us

produce symmetry-adapted orbitals, which will be used later. We can multiply both sides of the equation
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above by Γ
(r′)
i′j′ (R)∗, sum over R, and use the great orthogonality theorem to get

∑
R

Γ
(r′)
i′j′ (R)∗PRϕ

(r)
j =

h

lr
ϕ
(r)
i′ δjj′δrr′ . (2.7)

Now, we can define the operator

P
(r)
ij =

lr
h

∑
R

Γ
(r)
ij (R)∗PR. (2.8)

One can see that applying P
(r)
ij on ϕ

(r)
j (R), gives ϕ

(r)
i (R), but applying it on any other basis functions of

the irreducible representations, will result in zero.

The projection operator

In Eq. (2.8), if we impose i = j and then sum over i, we will have the projection operator that projects

functions into the representation r. This operator is given by

P (r) =
lr
h

∑
R

χ(r)(R)∗PR. (2.9)

We will use this equation in Chapter 5 to find symmetry-adapted molecular orbitals.

2.5 Symmetry groups

So far, we have mostly discussed groups at the abstract level; however, one of the powerful uses of group

theory is when we look at the symmetry groups [95].

Definition 2.4. A symmetry group is a group including all the transformations that an object is invariant

under them, where the group multiplication is defined as function composition.

As we have discussed, we are interested in defects in solid-state lattices because of their promising

properties for quantum applications. Thus, we need to know the operators of the symmetry group in a

Bravais lattice. A Bravais lattice is an infinite array of points which are invariant under translation operators

described in 3-dimension by T⃗ = n1a⃗1 + n2a⃗2 + n3a⃗3, where ni are integers and a⃗i are the primitive vectors.

These translations are not necessarily the only operators covering the lattice. For example, there might be

rotational or reflective operators in the symmetry group.

Definition 2.5. A symmetry sub-group of a Bravais lattice that includes only elements that can be carried

out by fixing a point in the lattice is called a point group.
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The elements of the point group and the translation operators together construct the space group, which

includes all the transformation operators of the lattice. There are three fundamental operators constructing

the point groups, including rotations around an axis through the origin, reflections with respect to planes

containing the origin, and inversions with respect to the origin.

There is a standard notation, called the Schoenflies notation [96], to specify the symmetry elements and

point groups in three dimensions. There are many symmetry point groups, but we will only focus on the Cnv

group, which is relevant to our research. Other point groups can be found in textbooks. The Cnv symmetry

group has only one n-fold rotation axis with the addition of n vertical reflections (reflections with respect to

planes that include the principal symmetry axis). Therefore, its symmetry elements are the identity operator

(E), rotations through 2π/n (Cn), and n reflections in a vertical plane (σv).

2.6 Matrix elements and applications of group theory

In physical systems, group theory is a powerful tool for finding the matrix elements of the Hamiltonian of

the system. Here, we will discuss a theorem and its generalization that are used to find the vanishing matrix

elements [93]. They are essential for simplifying and calculating the matrix elements of the Hamiltonian,

particularly when the Hilbert space is big and it is time-consuming to calculate each matrix element.

Theorem 2.6. [93, p. 80]

“Matrix elements of an operator H which is invariant under all operations of a group vanish between functions

belonging to different irreducible representations or to different rows of the same unitary representation.”

If H was the Hamiltonian of a physical system, this theorem implies that the Hamiltonian is diagonals

in the basis functions that transform according to the ith row of the irreducible representation, ϕ
(r)
i . This is

a powerful tool for studying the energy levels of a physical system. One can use the projection operator, Eq.

(2.9), to find the projection of the electron wave functions into the functions that transform according to a

specific irreducible representation of the symmetry group, called the symmetry-adapted molecular orbitals,

where the Hamiltonian is diagonalized.

Additionally, by using this theorem, we can have a selection rule to eliminate many of the matrix elements

based on symmetry-related calculations. It is used when the operator H is not symmetric under all operators

of the symmetry group. For example, if there is a perturbation in the system and it reduces the symmetry of

the system. So, let us assume an operator, H ′, transforms according to the irreducible representation ΓH′ .

It can be shown that its matrix element ⟨ψ(r′)
i |H ′ |ϕ(r)j ⟩ is zero unless ΓH′ ×Γ(r) includes Γ(r′). Equivalently,

the matrix element is zero unless Γ(1) is found in Γ(r′) × Γ(H′) × Γ(r). This is a powerful tool that allows
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us to reduce the number of calculations by considering the symmetries of a defect and finding the vanishing

matrix elements of the Hamiltonian. Its proof can be found in group theory books.

As we have shown, group theory is a powerful tool to study point defects in solids, and we will use the

theorems from this chapter in Chapter 5 for the theoretical calculations.

14



Chapter 3

Open quantum systems

If a quantum system is interacting with the environment, the evolution of this system will not necessarily

be unitary 1. Therefore, we need to study the time evolution of the system in a general manner. A general

evolution is given by a map from the initial density matrix to a density matrix at an arbitrary time. In

this chapter, we will study the general form of these maps, where they preserve the properties of a density

matrix. Next, we will derive the Lindblad (or Gorini–Kossakowski–Sudarshan–Lindblad) master equation.

The Lindblad master equation is a differential equation of the density matrix, which allows us to numerically

calculate the time evolution of the density matrix in an open quantum system [92]. Understanding this

technique will be helpful later when predicting optical signals for a quantum system we studied.

3.1 Kraus operator

Now, let us find what should be the general form of a map that preserves the properties of the density

matrix. This map is called a quantum channel and is defined below [35].

Definition 3.1. A quantum channel is a map from density operators to density operators.

This means that quantum channels should satisfy the following axiomatic properties:

1. Linearity

2. Hermiticity preservation

3. Complete positivity

4. Trace preservation

1The approach of this chapter is taken from the “Quantum Computation” lecture notes of John Preskill [97].
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The following theorem, Kraus’ theorem, shows the general form of quantum channels [21]. We will use

this theorem for the remainder of this chapter.

Theorem 3.2. The Kraus representation theorem [98, p. 65]

“Any operator ρ→ E(ρ) in a space of dimensions N2 that obeys the properties of Linearity, Trace preserva-

tion, Hermiticity preservation, and complete positivity, can be written in the form:

E(ρ) =
K∑

k=1

MkρM
†
k , with

K∑
k=1

M†
kMk = I (3.1)

where K ≤ N2
s is the Kraus number (with Ns the dimension of the system).”

The quantum channel, E , is an operator that acts on operators, ρ. Hence, it is called a superopera-

tor. Also, it is good to note that there can be different sets of Kraus operators as long as they obey the

completeness relation. These sets of Kraus operators are related to each other with a unitary transformation.

3.2 Markovian evolution

When the evolution of the states is not unitary, there is no guarantee that calculating the infinitesimal

evolution of the density matrix and then integrating it over time will give us the correct evolution of the

density matrix over larger timescales. Because the system might have a memory; then, the state of the

system can depend on the state of the system from much earlier times. However, if the evolution of the

system is Markovian, which means that ρ(t + dt) only depends on ρ(t) and dt, then we can calculate a

differential equation of the density matrix and find ρ(t) at any given time.

Fortunately, in many cases, the Markovian approximation is valid for the systems [99]. This is when the

time that it takes for the environment to forget about the system is much shorter than the time scales of

the evolution that we are interested in. Therefore, we can have a quantum channel, as shown below, which

determines the density matrix at time t+ dt based on the density matrix at time t.

ρ(t+ dt) = E(ρ(t); dt) (3.2)
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3.3 Lindblad master equation

Now, we will derive the Lindblad master equation by assuming the Markovian approximation [100, 101]. We

start with writing the density matrix up to the first order of dt, where we have

ρ(t+ dt) = ρ(0)(t) + dt ρ(1)(t) +O(dt2). (3.3)

By using the Kraus’ theorem, Eq. (3.1), we can write

ρ(t+ dt) =
∑
k

Mk(dt)ρ(t)M
†
k(dt). (3.4)

The Eqs. (3.3) and (3.4) imply that the Kraus operators should be in the form of

Mk =M
(0)
k +

√
dtM

(1)
k + dtM

(2)
k +O(dt3/2). (3.5)

Since the Kraus operators are not unique, we can chose

M0 = I+ dtL0 +O(dt2), (3.6)

and

Mk =
√
dtLk +O(dt) (3.7)

for k > 0 without loss of generality. As shown below, it is possible to write any arbitrary operator as a sum

of a Hermitian and anti-Hermitian operator.

T =
(T + T †) + (T − T †)

2
= H +A, (3.8)

where H = (T+T †)
2 is a Hermitian operator and A = (T−T †)

2 is an anti-Hermitian operator. Thus, we can

write L0 = K − iH, where both K and H are Hermitian operators. By plugging these into Eq. (3.4), we

have

ρ(t+ dt) =M0(dt)ρ(t)M
†
0 (dt) +

∑
k>0

Mk(dt)ρ(t)Mk(dt)

= (I+ dt(−iH +K)) ρ(t) (I+ dt(iH +K)) + dt
∑
k>0

(
Lkρ(t)L

†
k

)
+O(dt2)

= ρ(t)− i dt[H, ρ(t)] + dt(Kρ(t) + ρ(t)K) + dt
∑
k>0

(
Lkρ(t)L

†
k

)
+O(dt2).

(3.9)
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Additionally, we can use the completeness relation,

∑
k

M†
kMk = I+ dt

(
2K +

∑
k>0

L†
kLk

)
= I, (3.10)

which gives K in terms of {Lk}:

K = −1

2

∑
k>0

L†
kLk. (3.11)

By replacing K from Eq. (3.11) into Eq. (3.9), rearranging the first term on the right hand side, and dividing

by dt, we will get

ρ̇ = L(ρ) = −i[H, ρ] +
∑
k>0

(
LkρL

†
k − 1

2
{L†

kLk, ρ}
)
, (3.12)

which is called the Lindblad (or Gorini–Kossakowski–Sudarshan–Lindblad) master equation. As it is clear

from this equation, the choice of L0 was necessary for separating the unitary evolution of the density matrix,

−i[H, ρ], from the rest of it. The second term in the right hand side of the Lindblad master equation describes

the interaction of the system with the environment. The operators Lk are called jump operators. As an

example, if there is an optically allowed transition in a two level system, we will need two jump operators

to describe the evolution of the system, one for absorbing a photon and exciting the system and one for

emitting a photon and decaying to the ground state.

Finally, we can solve this equation and find the density matrix at any arbitrary time [92], which is given

by

ρ(t) = eLtρ(0). (3.13)

All of the assumptions and conditions have not been covered in the derivation above [102]. In quantum

optics, the weak coupling limit derivation is mainly used, which includes three approximations called Born,

Markov, and rotating wave [103]. The Born approximation assumes that the system and environment

interact weakly [104], while the rotating-wave approximation allows neglecting fast-oscillating terms [92].

The Markov approximation has already been discussed.

We will use the master equation (Eq. (3.12)) and Eq. (3.13) in Section 5.11 in order to simulate the

optically detected magnetic resonance of the carbon trimer defect and will discuss more computational details

in the same chapter. The optically detected magnetic resonance is explained in the next chapter, which will

be useful for understanding our simulation in Section 5.11.
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Chapter 4

Optically detected magnetic resonance

Optically detected magnetic resonance (ODMR) is a double resonance spectroscopy technique which is a

special case of electron paramagnetic resonance technique [105]. Since the first ODMR experiment by

Schmidt and van der Waals in 1968, [106], it has been developed and used on many systems. In recent years,

ODMR has been used for studying the properties of the electron spin in defects in solid-state materials, such

as the negatively charged nitrogen-vacancy (NV−) center in diamond [107]. In this chapter, we will first

discuss the ODMR technique used on the well-studied NV− center to get familiar with this technique. Then,

we will briefly discuss an ODMR experiment performed on a defect in h-BN. In the next chapter, we will

discuss the methods and results of simulating the ODMR signal for the specific defect in the h-BN that we

have studied. It will be an important experimental test for our theoretical and computational calculations

of that defect.

4.1 Nitrogen vacancy center

The NV− color center in diamond is a well-known defect in a solid-state system with many applications in

quantum computation, communication, and sensing [108, 109]. This defect is a substitution of a nitrogen

atom instead of a carbon atom in a diamond lattice with an additional adjacent vacancy. Its electronic

structure is shown in Fig. 4.1(a) and includes a triplet ground state (3A2), an excited triplet state (3E),

and two singlet states (1E and 1A1) between the triplet states [82]. The transition between the ground and

excited triplet states is optically allowed. Thus, one can use resonant lasers to pump the electrons from

the ground state to the excited triplet state while conserving their spin. These excited electrons can decay

through the same optical transition by emitting a photon or through the intersystem crossing to the singlet

states, which is nonradiative. The decay from spin ±1 sublevels of the excited triplet state to the singlet
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Figure 4.1: (a) Electronic structure of the NV− color center in diamond. The 3A2 and 3E states are triplet
states while 1E and 1A1 are singlet states. The intersystem crossing from the spin 0 sublevel of the excited
triplet state to the singlet state is weaker compared to the intersystem crossing from the spin ±1 sublevels.
(b) Symmetry operators of the C3v symmetry group, including two three-fold rotations and three reflections,
which is the symmetry point group of the NV− color center.

state is stronger than the decay from the spin 0 sublevel. Therefore, most of the electrons in the spin 0

sublevel will decay optically, whereas electrons in the spin ±1 sublevels can decay nonradiatively with a 40%

probability. Therefore, a resonant laser will eventually populate the spin-zero sublevel [110].

Now, if there is an additional microwave maser in resonance with the ground state spin sublevels, it will

drive the transition between these sublevels and reduce the intensity of the fluorescence signal. This will

result in a dip in the measured photoluminescence spectrum. It is used in sensing applications since this

signal is affected by the external magnetic field and temperature.

In the case of the NV− color center, we can use the ODMR signal in applications because we know the

energy levels and structure of this defect. However, in our case, we will use this technique to predict results

that are based on the electronic structure of the defect that we have studied. This will test our theoretical

and computational calculations.

4.2 Room-temperature ODMR experiment with h-BN

There are several experiments measuring the ODMR signal from defects in h-BN, whereas the origin of many

of them is still unknown [111, 112].

Here, we will discuss the work of Stern et al. [4], which will help us understand the experimental

setup of an ODMR spectroscopy experiment. In the model they proposed for the defect that the signal
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Figure 4.2: An example of an ODMR signal with a dip. There will a dip or peak corresponding to any
possible resonance in the energy levels.

originated from, there are two triplet states, similar to the NV− center, and one singlet state responsible for

the nonradiative intersystem crossing. The zero-field splitting of the triplet states was too small to detect

in their experiment; therefore, they have used an additional external magnetic field to split the sublevels

further. As a consequence, the contrast in the fluorescence signal as a function of the microwave frequency

(Fig. 4.2), which is the ODMR signal, will have a dip (or peak in some cases) when the microwave frequency

is in resonance with the splitting caused by the magnetic field.

The ODMR signal depends on the electronic structure and energy levels of the defect. Therefore, if it is

detectable, it is a good test for identifying a defect and comparing the theoretical model with the experiment

and is important for understanding the spin-photon interface of the defect. In the next chapter, we will come

back to the ODMR signal, where we simulate the ODMR signal for the carbon trimer defects that we have

studied.
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Chapter 5

Ab initio and group theoretical study

of properties of a carbon trimer defect

in hexagonal boron nitride

5.1 Introduction

The contents of this chapter and the appendices are copied from our latest paper and have been modified

slightly [1]. My contribution to this work are the group theory calculations, matrix element calculations

and the ODMR simulation parts, while all the DFT calculations have been performed by the second author,

Kenneth Sharman.

In this chapter we demonstrate our approach and calculations used for understanding the C2CN defect in

hexagonal boron nitride (h-BN). This chapter is organized as follows: In Sec. 5.2 we discuss the symmetry

of the C2CN defect and determine the symmetry-adapted molecular orbitals (MOs). Then we investigate

multi-electron states (Sec. 5.3), the spin-orbit interaction (Sec. 5.4), the spin-spin interaction (Sec. 5.5),

spin-orbit and spin-spin mediated transitions (Sec. 5.6), selection rules for the transitions (Sec. 5.7), external

magnetic-field effect (Sec. 5.8), and hyperfine interaction (Sec. 5.9). In Sec. 5.10 we found radiative and

some nonradiative transition rates, then in Sec. 5.11 we simulate the optically detected magnetic resonance

(ODMR) spectra and the g2(τ) second-order correlation function. Finally, we discuss computational methods

in Sec. 5.12. Matrix elements of all of the interactions and more configurations for the ODMR simulations

are given in the appendix.
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Figure 5.1: (a) Symmetry operators of C2v point group, apart from the identity operator (E), shown for a
carbon trimer defect. The first one is C2(z) which is a rotation by π around the z axis. The other two are
reflections through xz and yz planes, respectively, σv(xz) and σv(yz). Note that the three carbon atoms are
in the xz plane. (b) The atomic configuration of the C2CN defect in 2D h-BN sheet.

5.2 Molecular orbitals

The atomic configuration of the C2CN defect is shown in Fig. 5.1(b), where C2 denotes the CBCN carbon

dimer, and CN denotes a substitution of a nitrogen atom with a carbon atom. In order to find the symmetry

group of the defect, it is important to know if the defect is in- or out-of-plane, as some defects might be

distorted out of the plane [113]. A recent study suggests that distortion from the plane for the C2CN defect

is negligible and that it has a planar structure [89]. Thus, this defect has C2v symmetry, which is supported

by defect wave functions as in Fig. 5.2(a).

The ground-state configuration of carbon is 1s22s22p2. The planarity of the defect implies that carbon

atoms will have sp2 hybridization. In sp2 hybridization, the 2s orbital is mixed with only two of the three

available 2p orbitals. The third 2p orbital remains unhybridized and out of the plane and in the ŷ direction,

which is also confirmed by our DFT calculations shown in Fig. 5.2(a).

Each carbon atom of the C2CN defect shares three of its valence electrons with nearby atoms in the

lattice; therefore, they each have one unpaired electron. Thus, the dangling bonds of the defect are π bonds,

and they are denoted {π1, π2, π3}.

C2v E C2(z) σv(xz) σv(yz) Linear Quadratic Cubic

A1 1 1 1 1 z x2, y2, z2 z3, x2z, y2z

B2 1 -1 -1 1 y,Rx yz yz2, y3, x2y

B1 1 -1 1 -1 x,Ry xz xz2, x3, xy2

A2 1 1 -1 -1 Rz xy xyz

Table 5.1: Character table for C2v point group. E, C2(z), σv(xz), σv(yz) are symmetry operators. A1, B2,
B1, and A2 are irreducible representations of the point group.
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Now, we need to find the symmetry-adapted MOs of this defect, which can be found by either group

theory or DFT (DFT results are shown in Fig. 5.2(a)). Comparing both results provides us with their

symmetry and energy ordering, which are essential for our calculations. The MOs are eigenfunctions of the

Coulombic Hamiltonian. Therefore, we apply the projection operator,

ϕr = P (r)σi =
lr
h

∑
e

χ(r)
e Reπi, (5.1)

with a specific irreducible representation (IR) on our dangling bonds to find symmetrized MOs [93]. Here,

P (r) is the projection to the representation r, lr is the dimension of the representation r, h is the number of

symmetry group members, χ
(r)
e is the character of the operator e in the representation r, Re is the symmetry

operator, and πi is the dangling bond i. According to the character table of C2v point group (Table 5.1), b

and b′ MOs transform according to IR B2. They are defined as

b = απ2 +
β√
2
(π1 + π3), (5.2)

b′ = β∗π2 −
α∗
√
2
(π1 + π3), (5.3)

where α and β are overlap integrals and |α|2 + |β|2 = 1. There is another MO that transforms as IR A2,

defined as

a =
1√
2
{π1 − π3}. (5.4)

5.3 Multi-electron states

We use DFT to find the energy of each of the MOs discussed above and their energy ordering. The defect

wave functions in Fig. 5.2(a) obtained from the DFT calculations show that the MO with the lowest energy

transforms as IR B2, so it represents the b MO. This is because, according to the symmetry operators in

Fig. 5.1(a), this MO is antisymmetric under C2(z) and σv(xz), and symmetric under E and σv(yz). The

next MO with higher energy transforms as IR A2, because it is antisymmetric under σv(xz) and σv(yz), and

symmetric under E and C2(z). Therefore, it represents the a MO. Finally, the one with the highest energy

transforms as IR B2 similar to the first one, and thus it represents the b′ MO. Based on a previous study, the

MOs in the ground state and the first excited state lie inside the bandgap [87]. Our ab initio calculations

show that the MOs in the next two excited states are also in the bandgap.

Multi-electron states are composed by filling the MOs with three unpaired electrons of the defect, starting
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(a)

(b)

Figure 5.2: (a) Ground-state wave functions of the C2CN defect. The positive (negative) components of each
wave function are visualized by the yellow (blue) lobes. The corresponding symmetries are best represented

when the b and a orbitals are plotted here at an isosurface level of ±0.007 Å
−3

, and the b′ orbital at

±0.0002 Å
−3

. The orbital energies increase from the bottom to the top, i. e., Eb < Ea < Eb′ . Only the
atoms and contributions to the wave function which are close to the C2CN defect are shown for simplicity.
The carbon atoms are brown, boron atoms are green, and nitrogen atoms are grey. The diagrams were
produced using vesta [2]. (b) Defect levels of the ground state and single-configuration excited states in the
fundamental bandgap of h-BN. The occupied (unoccupied) levels are denoted by solid (empty) triangles.
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from the lowest energy bMO. The bMO will be fully occupied with two electrons in the ground state, and the

a MO will be half occupied. This configuration will form a spin doublet because the half occupied a MO can

be either spin up or down. So its spin multiplicity will be equal to two. This lowest multi-electron state has

the configuration [b]2[a]1[b′]0 which transforms as IR A2. Other excited multi-electron states are produced

by exciting each of these electrons to higher MOs. The [b]1[a]2[b′]0 and [b]2[a]0[b′]1 configurations are also

spin doublets, similar to the ground state, and transform according to IR B2. But the other excited state

[b]1[a]1[b′]1 needs careful consideration. Since it is the addition of three spin-1/2 orbitals, it will have three

irreducible spin representations, including one quartet state and two doublet states with multiplicities four,

two, and two, respectively. These states all transform as IR A2. The corresponding electronic configurations

of these states are given in Table 5.2 and the energy levels of the first four single-configuration states are

given in Fig. 5.2(b).

Configuration 2S+1Γ Clebsch-Gordan states Label

[b]2[a]1[b′]0 2A2 |bb̄a⟩, |bb̄ā⟩ A0,d
±1/2

[b]1[a]2[b′]0 2B2 |baā⟩, |b̄aā⟩ B1,d
±1/2

[b]2[a]0[b′]1 2B′
2 |bb̄b′⟩, |bb̄b̄′⟩ B2,d

±1/2

[b]1[a]1[b′]1 4A2 |bab′⟩, |b̄āb̄′⟩ A3,q
±3/2

1√
3
(|b̄ab′⟩+ |bāb′⟩+ |bab̄′⟩) A3,q

+1/2
1√
3
(|bāb̄′⟩+ |b̄ab̄′⟩+ |b̄āb′⟩) A3,q

−1/2

2A′
2

1√
6
(|b̄ab′⟩+ |bāb′⟩ − 2|bab̄′⟩) A3,d′

+1/2
1√
6
(|b̄ab̄′⟩+ |b̄āb′⟩ − 2|bāb̄′⟩) A3,d′

−1/2

2A′′
2

1√
2
(|bāb′⟩ − |b̄ab′⟩) A3,d′′

+1/2
1√
2
(|bāb̄′⟩ − |b̄ab̄′⟩) A3,d′′

−1/2

Table 5.2: Configuration of total wave functions. Some of these states are entangled states which need careful
consideration when calculating their energy using DFT. Spin-down electrons in an orbital are shown with
a line over them. In the label column, calligraphic letters A and B represent IRs A2 and B2, respectively.
Also, d and q in the superscript stand for doublet and quartet states, respectively. Prime and double prime
in IRs of each state is used just to distinguish them from other states with the same IR.

5.4 Spin-orbit interaction

The spin-orbit interaction is the sum of the Larmor and Thomas interaction energy which is given by

HSO =
∑
k

ℏ
2m2

ec
2
(∇kV × pk) ·

(sk
ℏ

)
=
∑
k

lk ·
(sk
ℏ

)
,

(5.5)
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where V is the electric potential energy of the nucleus, ℏ is the reduced Planck constant, me is the electron

rest mass, c is the speed of light in vacuum, sk is the spin of electron k, pk is the momentum of electron

k, and k sums over all electrons [82]. By utilizing group theory, we omit the vanishing components of the

matrix elements of lk. The elements ⟨ϕi|lk|ϕj⟩ are nonvanishing only if Γ(ϕi)⊗ Γ(lk)⊗ Γ(ϕj) ⊃ ΓA1 , where

Γ is the irreducible representation. Since l is proportional to r × p, it transforms as (B2, B1, A2). Based on

Table 5.3, only ly, which transforms as IR B1, will have nonzero values. Therefore,

HSO =
∑
k

l
(y)
k

(
s
(y)
k

ℏ

)
. (5.6)

Because of the symmetry of the system and according to Table 5.3, we know that only elements in the

form of ⟨B2|Hso|A2⟩ and their complex conjugate will be nonzero. Also, since we know sy = 1
2i (s+ − s−),

only the states whose spin are different by one will yield nonzero values. After considering these symmetry

constraints, we obtain the matrix elements provided in the appendix (Sec. A).

OA1 B2 A2

B2 × 0
A2 0 ×

OB2 B2 A2

B2 0 0
A2 0 0

OB1 B2 A2

B2 0 ×
A2 × 0

OA2 B2 A2

B2 0 0
A2 0 0

Table 5.3: Matrix elements of operators with specific symmetries in the {B2, A2} manifold where × indicates
a nonzero value.

5.5 Spin-spin interaction

The spin-spin interaction is described by

Hss =
µ0γ

2
eℏ2

4π

∑
i>j

1

r3ij
[si · sj − 3(si · r̂ij)(sj · r̂ij)]

=
µ0γ

2
eℏ2

4π

∑
i>j

[si · D̂ij · sj ]

=
µ0γ

2
eℏ2

4π

∑
i>j

[ŝ
(2)
ij ⊗ D̂

(2)
ij ](0),

(5.7)

where rij = ri− rj is the distance between electrons i and j, r̂ij is the unit vector from electron i to electron

j, si is the spin of nucleus i, µ0 is the vacuum permeability, and γe is the electron gyromagnetic ratio [114].
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ŝ
(2)
ij = ŝ

(1)
i ⊗ ŝ

(1)
j is a rank two spin tensor and D̂ij is a traceless second-rank tensor operator defined as,

D̂ij =
1

r5ij


r2ij − 3x2ij −3xijyij −3xijzij

−3xijyij r2ij − 3y2ij −3yijzij

−3xijzij −3yijzij r2ij − 3z2ij

 . (5.8)

Writing the interaction in this form simplifies the calculations of matrix elements.

For spherically symmetric states, traceless D̂ij means all three diagonal elements vanish. However, due to

the lack of spherical symmetry of this defect, we should consider these elements in this magnetic dipole-dipole

interaction. More details and matrix elements of the spin-spin Hamiltonian are provided in the appendix

Sec. A.2.

5.6 Spin-orbit and spin-spin induced transitions

For the spin-orbit interaction, as we discussed before, only the matrix elements in the form of ⟨B2|Hso|A2⟩

and their complex conjugate will be nonzero. This indicates that there are no matrix elements in degenerate

manifolds of {A0,d,B1,d,B2,d,A3,q}. Therefore, there is no mixing due to the spin-orbit coupling. However,

we have possible spin-orbit induced transitions between the states in these manifolds, which are B1,d ↔

A0,d,B2,d ↔ A0,d,B1,d ↔ A3,q, and B2,d ↔ A3,q. A transition is called nonradiative, when the energy

difference is gained or dissipated as thermal energy, for example, as lattice vibrations or phonons in solid-

state materials [115]. Therefore, as discussed in Refs. [116, 117], these nonradiative transitions can happen

in two steps. First, spin-orbit assisted transition occurs for example from B2,d to a vibrational excited state

of A3,q. This is followed by a relaxation to the vibrational ground-state, for example, via the emission of

one or more phonons caused by the interaction between phonons. Such a process will be possible if there is

an overlap between the initial vibrational level of B2,d and the excited vibrational level of A3,q. A transition

between two energy levels, however, is said to be radiative when it is carried out by absorbing or emitting a

photon, which we will discuss in the next section.

Similarly and based on the findings of the previous section, the spin-spin interaction has no matrix

element in the degenerate manifold of {A0,d,B1,d,B2,d}. However, there are nonzero matrix elements of

the spin-spin interaction in the quartet state manifold. D0 is the diagonal, and E3 is the off-diagonal term.

Hence, spin-spin interaction breaks the degenerate quartet states into two states and separates them by 2D0.

Also, the nondiagonal terms in the same manifold mix these two states. There are also possible spin-spin

induced transitions between the states in these manifolds, which are A0,d ↔ A3,q,B1,d ↔ A3,q,B2,d ↔ A3,q.
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Figure 5.3: (a) The electronic structure of the C2CN defect and possible radiative and nonradiative transi-
tions. Red lines shows the possible electric-dipole transitions. While dashed lines indicate possible phonon-

assisted transitions. Yellow arrows show mixing between A
(3,q)
±1/2 and A

(3,q)
±3/2 due to the spin-spin coupling.

The spin-spin coupling splits 4A2 states by 2D0 if we assume that E3 is much smaller than D0. The relative
energy spacings of these states were obtained by our DFT calculations, which considers the Coulomb inter-
action and the HSE06 exchange-correlation functional. In this figure, we have assumed the quartet state
is further detuned from the doublets than the spin-orbit coefficient. Usually the spin-orbit coefficient is on
the order of GHz [3] and here the closest doublet to the quartet is separated by 0.1 eV corresponding to
24THz. (b) The quartet-state anticrossing, which shows an anticrossing between the |Φ1⟩ and |Φ2⟩ states
near B̃y/ℏ = 0.7GHz. Here, we have assumed that D̃0 and Ẽ3 are equal to 1GHz. The dashed lines show
the behavior of states with ms = 3/2 and ms = −1/2 in the presence of a magnetic field.

5.7 Selection rules

Here we look at the dominant transition allowed by the interaction of the electron with the electromagnetic

field, which is the electric dipole transition. The electric dipole interaction is defined as

Hdipole = E · d =
∑
k

eE · rk, (5.9)

where E is the electric field, d is the electric dipole moment, rk is the position of k electron with respect

to the nucleus, and e is the elementary electric charge. The position r in the C2v group transforms like

(B1, B2, A1). Thus, according to Table 5.3, the allowed transitions are induced by either eExx or eEzz and

the dipole moment lies completely in the plane. The dipole allowed transitions and the matrix elements are

given in the appendix (Sec. A.3). These results are summarized in Fig. 5.3(a), which shows radiative and

nonradiative transitions along with the energy levels of the states.
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5.8 External magnetic field

In the presence of an external magnetic field, there will be another term for the Zeeman interaction of the

magnetic field with spin and orbital angular momentum [3]. This interaction is given by

HB =
e

2me

∑
k

(lk + gesk) ·B, (5.10)

where ge is the electron-spin g factor, s is the electron spin, l is electron orbital angular momentum, B is the

external magnetic field, and k sums over all electrons. But since lz transforms as IR A2 and lx transforms as

IR B2, according to Table 5.3, they do not contribute to the Hamiltonian. Therefore, the Zeeman interaction

will be simplified to HB = e
2me

∑
k (Bxgesx,k +By(ly,k + gesy,k) +Bzgesz,k). The matrix elements of the

Hamiltonian above are given in Appendix.

5.8.1 Quartet state anticrossing

As we discussed previously, the spin-spin interaction splits and mixes the quartet-state eigenvalues and the

spin-orbit interaction does not affect them. Adding a magnetic field perpendicular to the h-BN sheet (ŷ),

modifies the energy eigenvalues of the quartet state. We add the matrix elements of the interactions for the

quartet state from preceding sections and find its eigensystem. The energy eigenvalues are given by

E1 = B̃y − κ1, (5.11)

E2 = B̃y + κ1,

E3 = −B̃y − κ1,

E4 = −B̃y + κ1,
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and eigenvectors are given by

|Φ1⟩ = µ1 |A3,q
−1/2⟩+ iµ1 |A3,q

+1/2⟩ (5.12)

+i |A3,q
−3/2⟩+ |A3,q

+3/2⟩ ,

|Φ2⟩ = −µ2 |A3,q
−1/2⟩ − iµ2 |A3,q

+1/2⟩

+i |A3,q
−3/2⟩+ |A3,q

+3/2⟩ ,

|Φ3⟩ = −ν1 |A3,q
−1/2⟩+ iν1 |A3,q

+1/2⟩

−i |A3,q
−3/2⟩+ |A3,q

+3/2⟩ ,

|Φ4⟩ = −ν2 |A3,q
−1/2⟩+ iν2 |A3,q

+1/2⟩

−i |A3,q
−3/2⟩+ |A3,q

+3/2⟩ ,

where the coefficients are defined as

κ1 =

√
4B̃2

y + D̃2
0 + Ẽ2

3 − 2B̃y

(
D̃0 +

√
3Ẽ3
)
, (5.13)

κ2 =

√
4B̃2

y + D̃2
0 + Ẽ2

3 + 2B̃y

(
D̃0 +

√
3Ẽ3
)
,

µ1 =

(√
3B̃y + Ẽ3

)(
κ1 − B̃y + D̃0

)
3B̃2

y − Ẽ2
3

,

µ2 =

(√
3B̃y + Ẽ3

)(
κ1 + B̃y − D̃0

)
3B̃2

y − Ẽ2
3

,

ν1 =

(√
3B̃y − Ẽ3

)(
κ2 + B̃y + D̃0

)
3B̃2

y − Ẽ2
3

,

ν2 =

(
Ẽ3 −

√
3B̃y

)(
−κ2 + B̃y + D̃0

)
Ẽ2
3 − 3B̃2

y

.

The variables with tildes are defined below to simplify the equations.

B̃y =
γeℏ
2
By (5.14)

D̃0 =
µ0γ

2
eℏ2

16π
D0

Ẽ3 =
µ0γ

2
eℏ2

16π
E3

Based on these results and as shown in Fig. 5.3(b), an anticrossing happens between |Φ1⟩ and |Φ2⟩ when

the magnetic field compensates the spin-spin splitting at B̃y near (D̃2
0 + Ẽ2

3 )
1/2
/
2. The |Φ3⟩ state remains
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unmixed as it is diverging from other states. The |Φ4⟩ state is not mixed too, despite the fact that the |Φ2⟩

state passes it at B̃y near (D̃2
0 + Ẽ2

3 )
1/2.

5.9 Ground-state hyperfine interaction

Nuclear spins in solids are a promising candidate for storing information and using them as quantum mem-

ories due to their long coherence time [118]. Nuclear-spin quantum memories have been demonstrated

experimentally for the orbital ground state of the negatively-charged nitrogen-vacancy center in diamond

[119, 120]. In this section, we investigate the effect of the presence of a carbon-13 nuclear spin in the defect,

which is given by ˆ̃H = Ĥ13C + V̂mhf + V̂ehf. The first term is the Zeeman interaction of the nuclear spin with

an external magnetic field, which is given by Ĥ13C = −γ13CB · Î, where Î is the nuclear spin and γ13C is

the nuclear-spin gyromagnetic ratio of 13C. The second (third) term is the electric (magnetic) component

of the hyperfine interaction of the ground electronic state of the defect with the 13C nuclear spin [121, 83].

We only have to look at the magnetic component since 13C has a nuclear spin of I = 1/2, and the electric

component is due to the quadrupole moment of nuclei with spin I ≥ 1 [122]. Also, we ignored the nuclear

spin-spin interactions in this paper.

The magnetic hyperfine Hamiltonian accounts for the interaction between the nuclear spin and the

electronic orbital magnetic moment in addition to the dipole-dipole interaction between the nuclear spin and

the electron spin. The component of the hyperfine interaction that is related to the orbital angular momentum

is given by 2gIµNµB
µ0ℏ
4π

∑
i

1
r3iC

I ·L, where µN is the nuclear magneton, µB is the Bohr magneton, gI is the

nuclear g-factor, and riC is the distance between 13C and electron i. This component is zero based on Table

5.3, since our ground states transform as IR B2 and do not have orbital angular momentum. Hence, we only

need to consider the dipole-dipole interaction between the electron spin and the nuclear spin. The magnetic

part of the hyperfine Hamiltonian, with these considerations, is given by

V̂mhf = Cmhf

∑
i

{(
8π

3
δ(r̂iC)−

1

r3iC

)
ŝi · Î

+
3(ŝi · r̂iC)(Î · r̂iC)

r5iC

}

= −Cmhf

∑
i

ŝi · Â(2)
i · Î

= −Cmhf

∑
i

[Ĵ
(2)
i ⊗ Â

(2)
i ](0),

(5.15)
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where Cmhf = gIµNgeµB
µ0ℏ2

4π , and Â
(2)
i is a second rank tensor. The Fermi contact term contributes to the

energy of orbitals with nonzero value of the wave function at the position of the nucleus. However, based on

our DFT calculations [Fig. 5.2(a)], the wave functions are zero at the position of the carbon nuclei and we

can ignore the Dirac delta term. Consequently, the second-order tensor Â
(2)
i is given by

Â
(2)
i =

1

r5iC


r2iC − 3x2iC −3xiCyiC −3xiCziC

−3xiCyiC r2iC − 3y2iC −3yiCziC

−3xiCziC −3yiCziC r2iC − 3z2iC

 . (5.16)

For simplifying further calculations, we define Ĵ
(2)
j = ŝi⊗ Î and write the interaction in the compound tensor

form.

According to Table 5.3, for the ground states |A0,d
±1/2⟩, only the operators of the form OA1 contributes to

the hyperfine interaction. Thus, only the diagonal terms of Â
(2)
i in Eq. (5.16) transform as IR A1 contribute

to the hyperfine interaction of the ground state, and the off-diagonal terms do not contribute. We write the

basis of the ground state of the defect coupled to a 13C nuclear spin as

|Ψg
1; 1,+1⟩ = |A0,d

+1/2⟩ |+⟩I ,

|Ψg
2; 1, 0⟩ =

1√
2
(|A0,d

+1/2⟩ |−⟩I + |A0,d
−1/2⟩ |+⟩I),

|Ψg
3; 1,−1⟩ = |A0,d

−1/2⟩ |−⟩I ,

|Ψg
4; 0, 0⟩ =

1√
2
(|A0,d

+1/2⟩ |−⟩I − |A0,d
−1/2⟩ |+⟩I).

(5.17)

Based on the symmetry of the system, there can only be nonzero hyperfine matrix elements for states that

have ∆S ∈ {0,±2}. The results of the calculations for matrix elements are shown in the appendix [Sec. C].

5.10 Transition rates

Here we show our results for the radiative and the electron-phonon induced nonradiative transition rates

between the {2A2,
2B2,

2B′
2} doublet states. The results of the calculations are presented in the following

sections.

5.10.1 Radiative rates

The radiative transitions occur at a rate given by
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Γrad =
1

τrad
=
nE3

ZPLµ
2

3πϵ0c3ℏ4
, (5.18)

where n is the refractive index of h-BN, EZPL is the zero-phonon transition energy, µ is the transition dipole

moment, and ϵ0 is the vacuum permittivity [123, 124]. The refractive index of h-BN is taken to be n = 2.1

[125]. Equation (5.18) was evaluated for the 2B2 → 2A2 and 2B′
2 → 2A2 transitions, which amounts to

calculating the corresponding transition dipole moments. The wfck2r.x module in quantum espresso

was used to produce the spin-polarized, real-space wave functions, from which the transition dipole moments

were directly computed. Table 5.4 summarizes the results.

Transition µ µ [eÅ] EZPL [eV] τrad [ns] Γrad [MHz]

2B2 → 2A2 ⟨a↓|er|b↓⟩ 0.68 1.6 64.5 15.5

2B′
2 → 2A2 ⟨b′↑|er|a↑⟩ 0.11 4.2 144.4 6.9

Table 5.4: Lifetimes, τrad, and rates, Γrad, of the radiative transitions used in our ODMR simulation.

5.10.2 Nonradiative rates

The nonradiative rates due to electron-phonon coupling can be calculated within the static coupling and

one-dimensional effective phonon approximations [126, 127]. The nonradiative transition rate between an

initial electron state i and a final electron state f is given by

Γnr =
1

τnr
=

2π

ℏ
g|Wif |2Xif , (5.19)

where g is the degeneracy of the final state. Equation (5.19) includes contributions from a phonon term,

Xif , and an electronic term, Wif . The phonon term is given by

Xif =
∑
n,m

pin| ⟨χfm|Q−Q0|χin⟩ |2δ(EZPL +mℏΩf − nℏΩi), (5.20)

where Q is the generalized coordinate defined in Ref. [126], and Q0 is taken to be the relaxed atomic

coordinates of the final electronic state (R0). Here, pin is the thermal occupation of the phonon state n in

the electronic state i, |χjk⟩ is the phonon wave function of the phonon state k in the electronic state j, and

ℏΩ{i,f} are the effective phonon energies of the initial and final states. The phonon overlap can be calculated
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directly using the quantum harmonic-oscillator wave functions. The electronic term is given by

Wif = ⟨ψi(r,R)|∂H
∂Q

|ψf (r,R)⟩ |R=R0 , (5.21)

which can be calculated numerically by finite differences using the DFT single-particle wave functions at the

Γ-point [126, 128]. The nonradiative rates for the 2B2 → 2A2 and 2B′
2 → 2A2 transitions were computed

by modifying the open-source Nonrad code [128]. The results are summarized in Table 5.5, which shows

that the nonradiative rates are negligible compared with the radiative rates. The nonradiative 2B′
2 → 2B2

transition is a second-order two-phonon process, and as such, it should occur at a much slower rate than the

already negligible nonradiative rates.

Transition
EZPL

[eV]

∆Q

[amu1/2Å]

ℏωi

[meV]

ℏωf

[meV]
Sf

Xif

[amu Å2 eV−1]

Wif

[eV amu−1/2 Å−1]

τnr

[ms]

Γnr

[kHz]

2B2 → 2A2 1.6 0.36 95.7 95.4 1.49 3.66× 10−11 5.40× 10−2 0.5 2

2B′
2 → 2A2 4.2 0.21 91.8 94.9 0.52 2.31× 10−20 3.55× 10−1 > 103 < 10−3

Table 5.5: Nonradiative recombination properties within the static coupling and one-dimensional effective
phonon approximations, evaluated at 300 K. The relaxed atomic coordinates of the ground state are set to
Q0 = 0, from which the excited-state equilibrium coordinates are offset by ∆Q. For completeness, we have
included the ground-state Huang-Rhys factor which quantifies the strength of the electron-phonon coupling,
as computed in the one-dimensional approximation, Sf = (∆Q)2Ωf/2ℏ.

An approach to calculate the intersystem crossing rate was developed by Smart et al. [129], which

requires the spin-orbit coupling strength and the phonon overlap, but calculating the nonradiative rates for

the intersystem crossing transitions is beyond the scope of this paper.

5.11 ODMR signal

There have been reports of ODMR signals for defects in h-BN. One of them is known to originate from the

V −
B defect [111], while the origins of the other observed ODMR signals are not established yet [112, 4]. Here,

we present our results for the ODMR simulation using the model in Fig. 5.4 for the C2CN defect. We used

the Lindblad master equation to derive the second-order correlation function g(2) and the ODMR contrast.

The Lindblad master equation is defined as

d

dt
ρ = Lρ

≡ −i[H, ρ] +
∑
k

Γk

(
LkρL

†
k − 1

2
{LkL

†
k, ρ}

)
,

(5.22)
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where L is the Liouvillian superoperator [92]. The first term of L gives the unitary time evolution of the

density matrix, ρ, and the other terms are responsible for the transitions of the system. The operators Lk

are called jump operators, and the constants Γk are the transition rates. We have used three types of jump

operators in our simulation, including operators for optical, nonradiative, and spin transitions.

| ۧ5 , | ۧ6

| ۧ3 , | ۧ4

| ۧ1 , | ۧ2

| ۧ7 , | ۧ8

| ۧ9 , | ۧ10

𝜔op2

𝜔op1

𝜔g

𝜔e

𝜔e2

𝑘51, 𝑘62

𝑘31, 𝑘42

𝑘57, 𝑘68

𝑘74, 𝑘83

𝑘510, 𝑘69

𝑘93, 𝑘104

Figure 5.4: Our model for ODMR simulation. In this model, the energy spacing between levels, denoted by
ωop1 and ωop2, and optical rates, denoted by the red arrows, are based on DFT calculations and nonradiative
rates to and from the metastable states, denoted by blue dashed lines, are approximated by rates from other
studies on defects in h-BN. There are also spin splittings due to the external magnetic field, which are
denoted by ωg, ωe, and ωe2. According to the matrix elements of the spin-orbit and spin-spin interactions of
this defect, the dashed lines are spin-dependent transitions which are vital for observing an ODMR signal.

We simulate a coherent laser pulse to excite the ground doublet state {|1⟩ , |2⟩} to one of the two excited

doublet states {|3⟩ , |4⟩} or {|5⟩ , |6⟩}. All of these electronic states are spin 1/2 states, and their spin states

are split due to an external magnetic field. We also simulate a coherent microwave pulse to probe the ODMR

signal by changing its energy around the spin-splitting energy.

If the quartet dark states {|7⟩ , |8⟩ , |9⟩ , |10⟩} do not overlap with the phonon sideband of the first excited

states {|3⟩ , |4⟩}, they can act as a metastable manifold during the decay of the second excited states {|5⟩ , |6⟩}.

Since we predict that the quartet energy of around 4.1 eV is far above the 1.6 eV of the first excited doublet, it

is unlikely that there is an overlap with the phonon sideband, which is typically smaller than about 500meV

for defects in h-BN [80]. In addition, the decay to the quartet state and from the quartet state to the first

excited state can depend on the spin, and hence the system could produce an ODMR signal. To see this

signal, one should excite the ground-state levels to the second excited state doublet {|5⟩ , |6⟩}, after which a

spin-dependent nonradiative transition can occur into the quartet manifold.

The 2B′
2 state is the most promising candidate for photoexcitation because its energy is very close to

the quartet state, and most likely, it will overlap with its phonon sideband, allowing for fast nonradiative
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transitions to the metastable state. Thus, we restricted the model to the 2B′
2 level and ignored 2A′

2 and

2A′′
2 levels because of their high energy. We also ignored nonradiative transitions related to 2B′

2 ↔ 2A2,

2B2 ↔2 A2, and
4A2 ↔2 A2 because the energy difference between them is large and it is more likely that the

radiative and intersystem crossing transitions will be dominant. Consequently, we need an ultraviolet (UV)

laser pulse to excite the ground doublet state to the second excited doublet state. Finally, we detect photons

emitted due to the decay of electrons from the second doublet excited state, {|5⟩ , |6⟩}, to the ground state,

{|1⟩ , |2⟩}. UV lasers and detectors will be required to verify our predictions. The equipment and techniques

used in ion trap systems could be helpful since some of the ions used in the ion trap systems have a transition

in the UV regime, for example, Be+ (3.96 eV) or Mg+ (4.43 eV) [130, 131, 132].

parameter value parameter value
ωop2 4.20 eV ωop1 1.60 eV
Ωop 7MHz ΩMW 13MHz
k51 6.9MHz k62 6.9MHz
k31 15.5MHz k42 15.5MHz
k57 0.1MHz k68 1MHz
k74 2MHz k83 1MHz
k510 0.95MHz k69 0.045MHz
k93 1.1MHz k104 0.11MHz
ωg 700MHz ωe2 697MHz
ωe 703MHz γspin 0.06MHz

Table 5.6: Parameters used in the ODMR simulation. Ωop is the coherent optical driving Rabi frequency,
ΩMW is the coherent microwave driving Rabi frequency, γspin is the spin relaxation rate, and other parameters
are shown in Fig. 5.4.

The results obtained by exciting the ground-state levels directly to the second excited state and then

detecting photon emissions from the same state to the ground state are given in Fig. 5.5. We have used the

optical decay rates from our DFT calculation presented in the previous section. The intersystem crossing

rates, metastable decay rates, and spin-relaxation rates for which we see ODMR signal are on the order of

magnitude of the rates seen in other defects [133, 134], but more calculations are needed to verify if the rates

are in the proper range for the C2CN defect. In our simulation, we chose the optical Rabi frequency close to

the saturation point so that it is not in the resonance regime (Fig. 5.6). Additionally, the microwave Rabi

frequency was chosen such that the ODMR signal had the highest value (Fig. 5.7). All the parameters used

to predict this ODMR signal are given in Table 5.6.

Some of the parameters used for this simulation were not calculated by ab initio calculations. Hence, we

probe a bigger space of possible values, keeping the rates close to the rates seen for other defects in h-BN,

in order to see how the ODMR signal would change. Varying the parameters used for this model shows that

the difference between k74 and k83 is essential for having an ODMR signal. Based on our calculations for the

spin-orbit and the spin-spin interactions, the matrix elements responsible for these transitions are different
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Figure 5.5: Results of exciting photons to the second excited doublet state and detecting photon emissions
from the same state to the ground state. (a) Optical signal versus coherent Rabi frequency, which shows
saturation near 20MHz. The grid line shows the Rabi frequency that we used for the ODMR signal and the
g2 function. This is the frequency where the optical signal is near 80 % of the saturation point. (b) The
ODMR signal, which shows 3.5 % contrast at 700MHz MW frequency. (c) The second-order correlation
function, which shows significant bunching at microsecond timescales due to the metastable quartet state,
and antibunching pattern at τ = 0. Inset shows the same g2 function for smaller timescales.

for the spin up and down. The transition amplitudes are proportional to these matrix elements, allowing

the defect to have spin-dependent decay rates from and to the quartet state. The effect of changing k74 and

k83 on the ODMR signal and g2 correlation function is shown in Fig. 5.8. Based on the matrix elements

of the spin-orbit and spin-spin interactions, the k74 and k83 rates are related to the k93 and k104 rates. So

changing each of them will affect the other two. More figures are provided in the appendix Sec. E. These

results show that even for the bigger space of possible transition rates, the ODMR signal of a few percent is

viable.

The calculated linewidth of the ODMR signal is due only to the natural or lifetime broadening since

we have not included other broadening mechanisms such as the hyperfine interaction in our simulation.

However, the most abundant isotopes of nitrogen and boron have nuclear spins of 1 and 3/2, respectively.
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Ωop = 7, ΩMW = 13 Ωop = 15, ΩMW = 20

Ωop = 2, ΩMW = 13

Figure 5.6: The effect of changing Ωop on the optical signal, ODMR contrast, and the second-order correlation
function. All the variables are in MHz. When the optical Rabi frequency is in the saturation region, e. g.
Ωop = 15MHz, there are oscillations in the g2(τ) function. This might be related to the oscillations seen by
Stern et al. [4].

It has been shown that the hyperfine interaction of the surrounding nuclear spins has a considerable effect

on the ODMR linewidth broadening of defects in h-BN (51MHz for the C2CN defect) [89]. As it can be

seen in Fig. 5.8, the linewidth of the ODMR signal due to the natural broadening changes significantly for

different nonradiative transition rates, which are still unknown. Therefore, after finding the correct value of

the transition rates, it will be crucial to consider hyperfine broadening, because the linewidth of the ODMR

signal is another parameter that helps identify defects found by the experiment.

5.12 Computational details

The DFT calculations and post-processing were performed using the quantum espresso open-source soft-

ware package [135]. The calculations utilized a plane-wave basis set with a kinetic-energy cutoff of 350 eV

and projector augmented-wave pseudopotentials [136]. All relaxation calculations were performed with a

force convergence threshold of 10−4 eV/Å. Experimental investigations of point defects in h-BN typically

consider multilayer samples; however, it has been shown that DFT calculations result in negligible differ-

ences between the electronic structure of defects in single- and multilayer systems [68]. Our supercell consists
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Figure 5.7: The effect of changing ΩMW on the optical signal, ODMR contrast, and the second-order cor-
relation function. All the variables are in MHz. It is important to choose ΩMW in a way that the ODMR
signal is maximum.

of 98 atoms and a vacuum separation of 15 Å between layers, corresponding to 7× 7 unit cells of mono-layer

h-BN. The atomic positions and in-plane lattice constant for the pristine h-BN structure were relaxed using

the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [137]. An in-plane lattice constant of

a = 2.5 Å was obtained, consistent with previous findings [138]. The Heyd-Scuseria-Ernzerhof (HSE) hybrid

functional [139] was then used to optimize the direct bandgap at the K high-symmetry point [140] to the

bulk value of ≈ 6 eV [81]. A bandgap of 5.98 eV was obtained by setting the mixing parameter to 0.32 and

fine-tuning the screening parameter to 0.086 Å−1.

The C2CN defect was then added to the hexagonal lattice, the atomic positions were relaxed in-plane,

and the ground-state wave functions of the single-particle defect levels were calculated. Next, the single-

configuration excited states (2A2,
2B2,

2B′
2, and

4A2) were created using the ∆SCF method [141], and the

atomic positions of each excited-state electronic configuration were relaxed in-plane. The transition energies

between defect states were calculated by considering the difference in total energies of the structures, obtained

via spin-polarized calculations performed within the Γ-point approximation. The HSE06 functional has been

shown to provide accurate results for defects in h-BN which exhibit low correlation and charge transfer, and

as such, it is expected that the error in the DFT calculations of the single-configuration states is on the
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Figure 5.8: The effect of changing k83 and k74 on the optical signal, ODMR contrast, and the second-order
correlation function. All the variables are in MHz.

order of 0.1 eV [142, 87]. The remaining states of interest (2A′
2 and 2A′′

2) are multiconfiguration states

which cannot be modeled in the DFT calculations using the ∆SCF method. Rough estimates for the

corresponding transitions energies were obtained following the method of Ref. [143, 123], making use of

the single-configuration states |bab′⟩, |bab′⟩, and |bab′⟩ which were created within the ∆SCF procedure (see

appendix Sec. D for detailed calculations).

Reference [144] investigates the C2CN defect. A difference between this work and Ref. [144] can be

seen in the positioning of the single-electron states with respect to the conduction and valence bands. The

electronic calculations of Ref. [144] were performed within the GW approximation, which can impact both

the position and size of the bandgap. We note, however, that relative spacing and positions of the defect

state energies found in our work are consistent with the findings of both Refs. [87] and [89].
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Chapter 6

Conclusion and outlook

We have used group theory and DFT calculations to find the electronic structure and transitions of the

C2CN defect in 2D h-BN. The results are summarized in Fig. 5.3(a), which shows that there are several

radiative transitions together with spin-orbit and spin-spin-assisted nonradiative transitions. Also, the spin-

spin interaction causes a splitting between quartet states 4A2. We studied the effect of an external magnetic

field and found that, in the presence of an external magnetic field perpendicular to the plane, there is

an anticrossing between the states of the quartet manifold. We also looked at the ground-state hyperfine

interactions, which can be helpful in future studies. Additionally, we calculated the radiative rates and some

of the nonradiative rates using DFT. Finally, we simulated the system using the Lindblad master equation.

Although our results indicate that it is unlikely for the C2CN defect to be responsible for the ODMR signals

that have been reported so far, we show that it could be possible to see an ODMR signal contrast of ≈ 3.5%

for the configuration discussed in the text. Some of the nonradiative rates of the C2CN are unknown. Hence,

we looked at the ODMR signal in a subspace of the possible rates where these variables are close to the

reported values from other defects in h-BN and show that an ODMR signal of a few percent is still viable.

Besides the ODMR signal contrast, the ODMR linewidth would also help identify this defect in experimental

data. Thus, in future research, it will be essential to determine both the unknown nonradiative rates and

the hyperfine broadening, which has a significant effect. In conclusion, the properties of the defect that we

considered are essential for future applications, e.g., for quantum networks and quantum sensing.

6.1 Future work

Recently, Stern et al. have reported an ODMR signal from a carbon-related defect in h-BN [4]. They

observe positive and negative ODMR signals, indicating highly tunable internal rates. Additionally, their
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below-saturation ODMR lineshape measurements and spin model simulation reveal that defects exhibit

an angle-dependent doublet resonance, consistent with a S > 1/2 system with modest zero-field splitting.

However, the ODMR lineshape shows that the results are well described by the S = 1 model. Their results

show that the optical rates are one order of magnitude bigger than the radiative rates of the C2CN defect,

indicating a bigger dipole moment for the defect.

They have measured 27 defects with a bright ODMR signal with a mean ZPL energy of around 590 nm

(2.10 eV). According to M. Maciaszek et al. [145], the star defects, CN(CB)3 and CB(CN)3, are carbon-

related, have energies in the correct range and more importantly are spin 1 defects. The former has a higher

density which means it forms more frequently in the h-BN lattice. So, it might be reasonable to start with

this defect. But this doesn’t exclude the CB(CN)3 defect.

The combination of group theory and DFT is a powerful tool for understanding the electronic structure

of any interesting defect. Further, the addition of the ODMR simulation, if there is any, allows us to compare

the theory and experiment better and identify defects responsible for different measurements. One can use

the methods and tools presented in this thesis to study the star defects or any other promising defect in h-BN

or other solid-state color centers, which will help identify the defect or defects responsible for the measured

signals.

Finally, our work can be extended to understand the C2CN carbon trimer defect better. For example,

more group theory and DFT calculations can be performed to understand the effect of strain and phononic

modes of this defect. Also, the hyperfine coupling effect can be included in the ODMR simulation to have a

more accurate comparison between theory and experiment.
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Appendix A

Matrix elements of the Hamiltonian

In this chapter, we provide the matrix elements of the interactions discussed in the main text.

A.1 Spin-orbit interaction

The matrix elements of the spin-orbit interaction are given below, where the variables λ, and λ′ are defined

as

λ = ⟨a|l(y)|b⟩, λ′ = ⟨b′|l(y)|a⟩. (A.1)
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Hso =
i

2
× (A.2)

A0,d
+1/2 A

0,d
−1/2 B1,d

+1/2 B1,d
−1/2 B2,d

+1/2 B2,d
−1/2 A3,q

+1/2 A
3,q
−1/2 A

3,q
+3/2 A

3,q
−3/2 A

3,d′

+1/2 A
3,d′

−1/2 A
3,d′′

+1/2 A
3,d′′

−1/2



A0,d
+1/2 0

A0,d
−1/2 0 0

B1,d
+1/2 0 −λ 0

B1,d
−1/2 λ 0 0 0

B2,d
+1/2 0 −λ′ 0 0 0

B2,d
−1/2 λ′ 0 0 0 0 0

A3,q
+1/2 0 0 0 − λ′

√
3

0 − λ√
3

0

A3,q
−1/2 0 0 − λ′

√
3

0 − λ√
3

0 0 0

A3,q
+3/2 0 0 −λ′ 0 −λ 0 0 0 0

A3,q
−3/2 0 0 0 −λ′ 0 −λ 0 0 0 0

A3,d′

+1/2 0 0 0 − λ′

2
√
3

0 λ√
3

0 0 0 0 0

A3,d′

−1/2 0 0 − λ′

2
√
3

0 λ√
3

0 0 0 0 0 0 0

A3,d′′

+1/2 0 0 0 λ′

2 0 0 0 0 0 0 0 0 0

A3,d′′

−1/2 0 0 λ′

2 0 0 0 0 0 0 0 0 0 0 0

A.2 Spin-spin interaction

We can see from Table 5.3 that only elements of D that transform as IRs A1 and B1 would yield nonzero

values. These are D̂A1 = {D̂xx, D̂yy, D̂zz} and D̂B1 = (D̂xz + D̂zx)/2. In this interaction, we have the

product of two rank-two tensors (see Table A.1). This product can be reduced to a sum of rank four, three,

two, one, and zero irreducible tensor operators. Nevertheless, here we need a compound tensor operator of

rank zero. This tensor product is given by the equation below [114]:

[ŝ(2) ⊗ D̂(2)]
(0)
0 =

1√
5

+2∑
q=−2

(−1)2−qŝ
(2)
−qD̂

(2)
q . (A.3)

To use Eq. (A.3), we need the spherical components of D̂. Spherical and Cartesian components of D̂

are related by the equations below.
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Compound tensor q Spherical component

{ŝ(1)i ⊗ ŝ
(1)
j }(2)q +2 ŝ

(1)
i,+1ŝ

(1)
j,+1

+1 (ŝ
(1)
i,+1ŝ

(1)
j,0 + ŝ

(1)
i,0 ŝ

(1)
j,+1)/

√
2

0 1√
6
(ŝ

(1)
i,−1ŝ

(1)
j,+1 + 2ŝ

(1)
i,0 ŝ

(1)
j,0 + ŝ

(1)
i,+1ŝ

(1)
j,−1)

-1 (ŝ
(1)
i,−1ŝ

(1)
j,0 + ŝ

(1)
i,0 ŝ

(1)
j,−1)/

√
2

-2 ŝ
(1)
i,−1ŝ

(1)
j,−1

Table A.1: Second-rank spin tensor.

D̂
(2)
±2 = (D̂(2)

xx − D̂(2)
yy ± 2iD̂(2)

xy )/
√
2

D̂
(2)
±1 = ∓(D̂(2)

xz ± iD̂(2)
yz )

D̂
(2)
0 = (2D̂(2)

zz − D̂(2)
xx − D̂(2)

yy )/
√
6

(A.4)

The components of ŝ(1) in the notation of spherical tensor operators are given by

ŝ
(1)
+1 = − 1√

2
(ŝx + iŝy), (A.5)

ŝ
(1)
0 = ŝz,

ŝ
(1)
−1 =

1√
2
(ŝx − iŝy),

ŝ
(1)
+1| −

1

2
⟩ = − 1√

2
|+ 1

2
⟩,

ŝ
(1)
−1|+

1

2
⟩ =

1√
2
| − 1

2
⟩.

Now that we have all the preliminary tools, we will derive the matrix elements. For the elements in the

form of ⟨A|Hss|A′⟩ and ⟨B|Hss|B′⟩, according to Table 5.3, only the parts of Hss that transform as IR A1

would yield nonzero values. |A⟩ and |A′⟩ can be any of states in Table 5.2 that transform as IR A2 and

similarly |B⟩ and |B′⟩ can be any of states in Table 5.2 that transform as IR B2. {D̂xx, D̂yy, D̂zz} are the

only components of D̂ that transform as IR A1. In the spherical tensor form, D̂0 transforms as IR A1 and

first two components of D̂±2 also transform as IR A1. Therefore, just D̂0, and D̂±2 contribute to nonzero

values. At last, according to Eq. (A.3), ∆S ∈ {0,±2}. Similarly, for ⟨A|Hss|B⟩ according to Table 5.3, only

the parts of Hss that transform as IR B1 would yield nonzero values. {D̂xz, D̂zx} are the only components of

D̂ that transform as IR B1. Therefore, just D̂±1 contributes to nonzero values. For these matrix elements,

according to Eq. (A.3), we have ∆S ∈ {±1}.
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⟨A|Hss|A′⟩

⟨B|Hss|B′⟩

 −→ A1 −→ D̂0, D̂±2 −→ ∆S ∈ {0,±2}

⟨A|Hss|B⟩ −→ B1 −→ D̂±1 −→ ∆S ∈ {±1}

(A.6)

After doing all the calculations, we get the matrix elements for the spin-spin interaction, shown below.

Hss =
µ0γ

2
eℏ2

16π
× (A.7)

A0,d
+1/2 A

0,d
−1/2 B1,d

+1/2 B1,d
−1/2 B2,d

+1/2 B2,d
−1/2 A3,q

+1/2 A3,q
−1/2 A3,q

+3/2 A
3,q
−3/2 A

3,d′

+1/2 A
3,d′

−1/2 A
3,d′′

+1/2 A
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−1/2
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A0,d
+1/2 0

A0,d
−1/2 0 0

B1,d
+1/2 0 0 0

B1,d
−1/2 0 0 0 0

B2,d
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B2,d
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A3,q
+1/2 E1 0 0 −F1 0 F2 −D0

A3,q
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3
F1 0 1√
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F2 0 0 E3 D0

A3,q
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3
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3
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A3,d′
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A3,d′′

+1/2 0 0 0 0 0 0 I 0 0 L∗ J 0 0

A3,d′′

−1/2 0 0 0 0 0 0 0 I L∗ 0 0 J 0 0
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The matrix elements used above are defined as

D0 =
1

2
√
5

(
⟨bb′ − b′b|D̂(2)

zz |bb′ − b′b⟩ (A.8)

+⟨ba− ab|D̂(2)
zz |ba− ab⟩

+⟨ab′ − b′a|D̂(2)
zz |ab′ − b′a⟩

)
,
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1√
30
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)
,

F1 =

√
3

2
√
5
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1√
30
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xz |ba− ab⟩, (A.9)
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√
3

2
√
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+⟨ab′ − b′a|D̂(2)
zz |ab′ − b′a⟩},

J = − 1

2
√
15

⟨ab′ − b′a|D̂(2)
zz |ab′ − b′a⟩,

K =
1

2
√
15

{+⟨ab′ − b′a|(D̂(2)
xx − D̂(2)

yy )|ab′ − b′a⟩

+⟨bb′ − b′b|(D̂(2)
xx − D̂(2)

yy )|bb′ − b′b⟩

−2⟨ba− ab|(D̂(2)
xx − D̂(2)

yy )|ba− ab⟩},

L =
1

2
√
5
{−⟨ab′ − b′a|(D̂(2)

xx − D̂(2)
yy )|ab′ − b′a⟩

+⟨bb′ − b′b|(D̂(2)
xx − D̂(2)

yy )|bb′ − b′b⟩}.
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A.3 Dipole transitions

The dipole allowed transition rates would be proportional to the values defined below.

µx = eEx⟨a|x|b⟩ (A.10)

µ′
x = eEx⟨a|x|b′⟩

µz,0 = eEz{⟨b|z|b⟩+ ⟨a|z|a⟩+ ⟨b′|z|b′⟩}

µz,1 = eEz{2⟨b|z|b⟩+ ⟨a|z|a⟩}

µz,2 = eEz{⟨b|z|b⟩+ 2⟨a|z|a⟩}

µz,3 = eEz{2⟨b|z|b⟩+ ⟨b′|z|b′⟩}

µ′
z = eEz⟨b|z|b′⟩

Furthermore, the matrix elements are as shown below.

Hdipole = (A.11)

A0,d
+1/2 A0,d

−1/2 B1,d
+1/2 B1,d

−1/2 B2,d
+1/2 B2,d

−1/2 A3,q
+1/2 A

3,q
−1/2 A

3,q
+3/2 A

3,q
−3/2 A

3,d′

+1/2 A
3,d′

−1/2 A
3,d′′

+1/2 A
3,d′′

−1/2



A0,d
+1/2 µz,1

A0,d
−1/2 0 µz,1

B1,d
+1/2 −µx 0 µz,2

B1,d
−1/2 0 µx 0 µz,2

B2,d
+1/2 µ′∗

x 0 0 0 µz,3

B2,d
−1/2 0 µ′∗

x 0 0 0 µz,3

A3,q
+1/2 0 0 0 0 0 0 µz,0

A3,q
−1/2 0 0 0 0 0 0 0 µz,0

A3,q
+3/2 0 0 0 0 0 0 0 0 µz,0

A3,q
−3/2 0 0 0 0 0 0 0 0 0 µz,0

A3,d′

+1/2
3µ′∗

z√
6

0 − 3µ′∗
x√
6

0 0 0 0 0 0 0 0

A3,d′

−1/2 0
3µ′∗

z√
6

0 − 3µ′∗
x√
6

0 0 0 0 0 0 0 0

A3,d′′

+1/2 −µ′∗
z√
2

0 −µ′∗
x√
2

0
2µ′

x√
2

0 0 0 0 0 0 0 0

A3,d′′

−1/2 0 −µ′∗
z√
2

0 −µ′∗
x√
2

0
2µ′

x√
2

0 0 0 0 0 0 0 0
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Appendix B

Magnetic interaction

We define the following values for single molecular orbitals.

η = ⟨a|ly|b⟩

η′ = ⟨a|ly|b′⟩
(B.1)

HB =
γeℏ
2

× (B.2)

A0,d
+1/2

A0,d
−1/2

B1,d
+1/2

B1,d
−1/2

B2,d
+1/2

B2,d
−1/2

A3,q
+1/2

A3,q
−1/2

A3,q
+3/2

A3,q
−3/2



A0,d
+1/2

Bz

A0,d
−1/2

(Bx + iBy) −Bz

B1,d
+1/2

2By
ge

η 0 Bz

B1,d
−1/2

0
2By
ge

η (Bx + iBy) −Bz

B2,d
+1/2

2By
ge

η′∗ 0 0 0 Bz

B2,d
−1/2

0
2By
ge

η′∗ 0 0 (Bx + iBy) −Bz

A3,q
+1/2

0 0 0 0 0 0 Bz

A3,q
−1/2

0 0 0 0 0 0 2(Bx + iBy) −Bz

A3,q
+3/2

0 0 0 0 0 0
√
3(Bx − iBy) 0 3Bz

A3,q
−3/2

0 0 0 0 0 0 0
√
3(Bx + iBy) 0 −3Bz
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Appendix C

Hyperfine interaction

We can write the hyperfine interaction in the form of spherical components as below.

V̂mhf = −Cmhf

∑
i

[Ĵ
(2)
i ⊗ Â

(2)
i ](0)

= −Cmhf√
5

∑
i

q=+2∑
q=−2

(−1)2−qJ
(2)
i,−qA

(2)
i,+q

(C.1)

After doing the calculations, we end up with the following Hamiltonian for the ground state (cf. Table C.1).

Vmhf = − Cmhf

12
√
5

Ψ1 Ψ2 Ψ3 Ψ4


Ψ1 G0

Ψ2 0 −2G0

Ψ3 −3
√
2G1 0 G0

Ψ4 0 −G0 0 0

, (C.2)

where

G0 = ⟨a|(2A(2)
zz −A(2)

xx −A(2)
yy )|a⟩,

G1 = ⟨a|(A(2)
xx −A(2)

yy )|a⟩.
(C.3)
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Hyperfine interaction
Eigenvalues Eigenstates Eigenstates in primary basis

−(1 +
√
2)G0 (1 +

√
2)Ψ2 +Ψ4 (1 +

√
2)|bb̄a−⟩+ |bb̄ā+⟩

−(1−
√
2)G0 (1−

√
2)Ψ2 +Ψ4 −|bb̄a−⟩+ (1 +

√
2)|bb̄ā+⟩

G0 − 3
√
2G1 Ψ1 +Ψ3 |bb̄a+⟩+ |bb̄ā−⟩

G0 + 3
√
2G1 −Ψ1 +Ψ3 −|bb̄a+⟩+ |bb̄ā−⟩

Table C.1: Eigensystem of the hyperfine interaction for the ground state in Eq. (C.2). Eigenvalues should
be multiplied by −Cmhf

12
√
5
.
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Appendix D

Calculations of the multiconfiguration

states

Here, we use the single-configuration states to estimate the energies of the corresponding multiconfiguration

states. We only look at the spin-up quartet and doublet states, but the spin-down calculations are similar.

We start with quartet and doublet superposition states.

|Ψq⟩ =
1√
3
|βαα+ αβα+ ααβ⟩

|Ψd′⟩ = 1√
6
|βαα+ αβα− 2ααβ⟩

|Ψd′′⟩ = 1√
2
| − βαα+ αβα⟩

(D.1)

state energy
|ααβ⟩ 4.7 eV
|βαα⟩ 5.4 eV
|αβα⟩ 5.5 eV

Table D.1: Electron-spin configurations corresponding to |bab′⟩ and their energies obtained from DFT. α (β)
represents spin up (down).

Since |ααα⟩ is also a quartet state, we have Eq ≡ E[|Ψq⟩] = E[|ααα⟩]. By using the equation

1√
3
(|Ψq⟩ −

√
2|Ψd′⟩) = |ααβ⟩, (D.2)

we have E[|ααβ⟩] = 1
3 (Eq + 2E[|Ψd′⟩]). Thus, Ed′ ≡ E[|Ψd′⟩] = (3E[|ααβ⟩] − Eq)/2. Based on our DFT
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calculations in Table D.1, E[|ααβ⟩] = 4.7 eV and Eq = 4.1 eV, which implies that Ed′ = (3×4.7−4.1)/2 = 5

eV. Next, we define auxiliary state ϕ:

|ϕ⟩ ≡ 1

2
√
3
(
√
3|Ψd′⟩+ 3|Ψd′′⟩)

=
1

2
√
6
| − 2βαα+ 4αβα− 2ααβ⟩

=
1√
6
| − βαα+ 2αβα− ααβ⟩.

(D.3)

By using this auxiliary state, we show that

1√
3
(|Ψq⟩+

√
2|ϕ⟩) = |αβα⟩. (D.4)

Similar to previous calculation, we can show that

E[|αβα⟩] = 1

3
(Eq + 2Eϕ)

=
1

3

{
Eq +

1

6
(3Ed′ + 9Ed′′ + 3

√
3⟨Ψd′ |H|Ψd′′⟩

+ 3
√
3⟨Ψd′′ |H|Ψd′⟩)

}

=
1

6
{2Eq + Ed′ + 3Ed′′} .

(D.5)

Therefore, we can calculate Ed′′ as below.

Ed′′ =
1

3
{6E[|αβα⟩]− 2Eq − Ed′}

=
1

3
(6× 5.5− 2× 4.1− 5) = 6.6 eV

(D.6)
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Appendix E

ODMR signal

In this chapter, we study the effect of changing parameters used for ODMR signal in Table 5.6 other than

those discussed in the main text. In each of the following figures, we change only one or two parameters to

see their effect on our model. Figure E.1, shows that for different values of transition rates k57 and k68 we

can see an ODMR signal. In Fig. E.2, we checked the effect of changing the first and the second excited

state spin splittings ωe and ωe2. The result shows that although changing them would affect the magnitude

of the ODMR signal, there is only one resonance in the ODMR signal, which suggests that the signals are

not narrow enough to distinguish the peaks of ωe and ωe2. Lastly, Fig. E.3 shows that the spin relaxation

times in the range of 0.06 MHz do not have a significant impact on the ODMR signal. Only very large spin

relaxation times, which are very unlikely, decrease the ODMR signal.

72



0 5 10 15 20
0

50

100

150

200

250

Coherent Rabi freq. Ωop (MHz)

O
pt
ic
al
si
gn
al

(1
04
cp
s)

(a)

0.60 0.65 0.70 0.75 0.80
0

1

2

3

4

MW freq. (GHz)

O
D
M
R
si
gn
al
co
nt
ra
st
%

(b)

-10 -5 0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Delay, τ (μs)

C
W
st
ea
dy

-
st
at
e
g
(2
) (
τ)

(c)

k57 = 0.1, k68 = 1, k510 = 0.95, k69 = 0.045, Ωop = 7, ΩMW = 13

k57 = 0.02, k68 = 1, k510 = 1.2, k69 = 0.17, Ωop = 7, ΩMW = 13

k57 = 0.5, k68 = 1, k510 = 0.56, k69 = 0.057, Ωop = 7, ΩMW = 13

k57 = 0.1, k68 = 0.2, k510 = 0.11, k69 = 0.011, Ωop = 7, ΩMW = 13

k57 = 0.1, k68 = 5, k510 = 5.8, k69 = 0.86, Ωop = 4, ΩMW = 15

k57 = 1, k68 = 0.2, k510 = 0.0037, k69 = 0.80, Ωop = 7, ΩMW = 13

Figure E.1: The effect of changing k57 and k68 on the optical signal, ODMR contrast, and the second-order

correlation function. All the variables are in MHz. Based on the matrix elements of the spin-orbit and

spin-spin interactions, the k57 and k68 rates are related to the k510 and k69 rates. So changing each of them

will affect the other two.
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ωe = 703, ωe2 = 690, Ωop = 10, ΩMW = 15

Figure E.2: The effect of changing ωe and ωe2 on the optical signal, ODMR contrast, and the second-order

correlation function. All the variables are in MHz.
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Figure E.3: The effect of changing γspin on the optical signal, ODMR contrast, and the second-order corre-

lation function. All the variables are in MHz.
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Appendix F

Copyright permissions

In this thesis, I have used a paper where I am the first author [1]. Below, I have provided permission from

all co-authors via email to include this paper in my thesis (Figs. F.1, F.2, F.3, F.4, F.5, F.6, and F.7). Also,

Physical Review B grants the permission to authors to use the materials in their paper as long as proper

citation is provided (Fig. F.8).
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Figure F.1: Permission from Christoph Simon.

Figure F.2: Permission from Kenneth Sharman.
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Figure F.3: Permission from Roohollah Ghobadi.

Figure F.4: Permission from Stephen C. Wein.
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Figure F.5: Permission from Hadi Zadeh-Haghighi.
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Figure F.6: Permission from Claudia Gomes da Rocha.

Figure F.7: Permission from Dennis R. Salahub.
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