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I Abstract

Background: Chronic disease surveillance at the primary care level is becoming more feasible

with the increased use of electronic medical records (EMRs). However, the quality of surveillance

information is directly dependent on the quality of the case definitions that identify the conditions

of interest.

Purpose: To determine whether machine learning algorithms can produce chronic disease case

definitions comparable to committee created case definitions in a primary care EMR setting.

Methods: A chart review was conducted for the presence of hypertension, diabetes, osteoarthri-

tis, and depression in a cohort of 1920 patients from the Canadian Primary Care Sentinel Surveil-

lance Network database. The results of this chart review were used as training data. The C5.0,

Classification and Regression Tree, Chi-Squared Automated Interaction Detection decision trees,

Forward Stepwise logistic regression, Least Absolute Shrinkage and Selection Operator penalized

logistic regression were compared using 10-fold cross validation. Sensitivity, specificity, positive

predictive value and negative predictive value were estimated and compared for the four chronic

conditions of interest.

Results: Validity measures were similar across algorithms. For hypertension, sensitivity ranged

between 93.1-96.7%, while specificity ranged from 88.8-93.2%. For diabetes, sensitivities ranged

from 93.5-96.3% with specificities between 97.1-99.0%. For osteoarthritis, sensitivities ranged

from 82.0-84.4% with specificities between 92.7-94.0%. For depression, sensitivities went from

81.4-88.3%, and specificities ranged from 93.4-94.9%. Compared with the committee-created case

definitions, these metrics were equivalent or better using the machine learning method.

Conclusions: Machine learning algorithms produced accurate case definitions comparable to

committee-created case definitions. It is possible to use machine learning techniques to develop

high quality case definitions from EMR data.



II Preface

Chapter 2 is primarily a summary a machine learning algorithms that are commonly used for

classification problems in the published literature. Several of these algorithms are not implemented

in this project, but they are important to provide context for section 2.1, where we summarize the

studies that have used machine learning for similar purposes using electronic medical record data.

For readers that are experienced with machine learning, chapter 2 can be safely skipped.

Chapter 3.3 is a summary of previously published work by Williamson et. al in 2014. The

results of this study represent committee-created case definition development, which are to be

directly compared with the results in chapter 5. It is also important to report the committee-

created case definitions, to be compared with the machine learning case definitions in terms of

their complexity, and number of features included.

Chapter 5 has been submitted to the CMAJ Open and is currently under review.

Chapter 6 is a general discussion that expands upon the interpretation of Chapter 5.
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1 Background

1.1 Chronic Disease

Chronic diseases are especially taxing to the healthcare system and lives of Canadians, as they

afflict a large portion of the population for long periods of time. This adversely affects the well-

being of many, and constitutes a large portion of the cost to the healthcare system. It is estimated

that among Canadians aged 55 to 74, the prevalence of multi-morbidity (the presence of 2 or more

chronic conditions) is about 60% [1]. Other studies have reported that half of those suffering

from chronic conditions have more than one chronic condition [2]. Medical costs for patients with

chronic conditions are very high. A 2004 estimate suggests that the cost of chronic disease care in

Canada constitutes 42% of the direct healthcare costs. Furthermore, diseases often have indirect

costs as well, which are the costs incurred from loss of productivity [3]. Including cardiovascular

disease, these conditions are estimated to be associated with approximately three quarters of all

deaths in the country [4]. Additionally, those suffering from chronic diseases are more frequent

users of emergency departments, and tend to be hospitalized more often than those without chronic

conditions [5].

1.1.1 Chronic Disease Surveillance

Chronic disease surveillance is essential for understanding the burden of chronic disease in Canada,

supporting healthcare planning, resource allocation, identifying populations of interest for inter-

vention or research, and monitoring trends of disease over time [6]. High quality surveillance is

achieved only with a large volume of quality data, and quality tools for identifying patients. Tra-

ditionally, these data sources were primarily comprised of physician reimbursement records. The

emergence of the electronic medical record (EMR) has provided another source of data, and a

quality set of case definitions are the necessary tools for the job.

1.2 Administrative Data

Administrative data is health data that is routinely collected in administering the healthcare system.

This method of data collection is referred to as “passive” or “secondary”, as it is often collected

for another primary purpose [7]. This type of data is collected at all levels of healthcare [8].

They tend to be simple entries that summarize the care given. These summaries often use coding
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systems or ontologies to standardize the information, making it common across sites and regions.

There are many coding systems used throughout the world to succinctly detail the care received

by a patient. In many cases, these codes are submitted by a healthcare provider to a government

or health insurance company for reimbursement. This process has earned the coding system the

moniker “billing codes”. This is not an entirely accurate name for the coding systems though, as

many uses of these codes are not related to billing and reimbursement whatsoever.

One of the first studies to propose the use of administrative data as a source for research was

in 1973 [9]. This study compared hospital admission and utilization rates in various communities

in Vermont, depending on their proximity to hospitals. Since then, it has been highly debated

whether administrative health data, which is viewed as a secondary source of data, is appropriate

for research at the population level. It is considered secondary data since, when used for research

purposes, it is being used for a purpose secondary to it’s primary purpose. Here the administra-

tive data is collected for internal documentation and billing purposes, and research is a secondary

purpose. For this reason, some are skeptical of the merits of administrative data for population

surveillance [10]. Another source of concern is the lack of variables available, as some doubt the

accuracy or interpretation of billing and procedure codes [11, 12, 13]. Furthermore, using admin-

istrative data sources for surveillance has shown to be poor for conditions that are underdiagnosed,

such as depression [14]. Some conditions that are mainly treated at the primary care level have

also proven to be difficult to identify using administrative data.

On the other hand, administrative data is appealing to many others. Administrative data boasts

the kind of population coverage that primary data collection cannot attain. This type of coverage

allows for surveillance and study of cohorts with rare conditions with low prevalence that would

be difficult to identify using other methods. Other studies have shown that billing and procedural

codes are reliable and accurate [15, 16]. Administrative data can be accessed from many different

sites, and doesn’t require active enrollment of patients into studies. The time and cost-effective na-

ture of administrative data have led many to use it for research purposes [17]. Due to the simplicity

and similarity of administrative data sources, some success has been found by using administra-

tive data sources from both Canada and the United States in the same study [18]. This shows the

potential of administrative data for large-scale or even aggregated studies. Some organizations

are developing data models and software that allow for the sharing of codes and methods across
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research institutions and data sources [19].

1.2.1 Data in Inpatient Settings

The Discharge Abstracts Database (DAD) is a Canadian example of administrative data routinely

collected in an inpatient setting. This type of data and others similar to it have been used by

researchers to identify patients with certain conditions for quite some time [20]. When a patient

is discharged from the hospital, the paper chart is sent to be “coded” and an administrative data

entry is made corresponding to that visit. This is an invaluable tool for identifying patients that

suffer from acute conditions that typically result in a hospitalization, such as stroke [21]. The DAD

contains procedure codes and International Classification of Diseases (ICD) codes that summarize

a patient’s care and do not contain lab values, clinical notes, radiology/pathology reports, or clinical

measures [22].

It can be seen that inpatient administrative data sources are useful for the identification of

patients with conditions that are primarily treated in the inpatient setting. It is possible to identify

chronic conditions that are typically treated in outpatient settings, such as hypertension, in inpatient

administrative data with some degree of success [20]. This may not be true for all conditions

though, as some conditions tend to be treated solely in outpatient settings. A potentially more

thorough method of identifying chronic disease cases with administrative data is to use data from

primary care, where the bulk of the care for chronic conditions actually occurs.

1.2.2 Administrative Data in Primary Care Settings

Traditionally, administrative data from outpatient data sources such as ambulatory care and family

physician offices have been lacking. The bulk of the data that has come from the primary care

level has been physician claims data, or billing codes along with some prescription medication

information. In the primary care setting, patients come in for a wide variety of purposes and

receive care with varying amounts of documentation on the paper chart, and coding without the

assistance of trained “coders” in most cases. This has caused some to believe that traditional

primary care administrative data is incomplete and unreliable. It is difficult to ascertain the quality

of ambulatory billing records in terms of how they capture the wide array of unique interactions

with the healthcare system. These problems have been partially addressed by the emergence of the

electronic medical record (EMR).

3



1.3 Electronic Medical Records (EMR)

The electronic medical record (EMR) is an emerging tool for the collection of data from all levels

of healthcare. The EMR aims to provide a comprehensive record of the health care system that

can be accessed quickly and efficiently. This is a natural extension of the increased utilization of

technology in all aspects of society. There is evidence that shows EMRs are helpful in increasing

efficiency and reducing costs [23]. These findings are disputed elsewhere, where there are claims

that the use of EMRs may slow down workflows by as much as 48 minutes per clinic day [24].

EMRs are important tools in quantifying the resource expenditure in the healthcare system,

but they also increase the ability to share data. A computerized record can easily be accessed

and shared by a clinician to a patient, or to a researcher. This versatility also makes an EMR a

promising data source for surveillance and observational research purposes.

The EMR often contains administrative billing data, medications, encounter diagnoses, prob-

lem lists, laboratory values, demographics, and examination data. This differentiates the EMR

from some of the more traditional administrative data sources that primarily include ICD-9 billing

codes and CPT procedural codes. The EMR has the capacity to provide a much clearer picture of

the care provided in all settings of the healthcare system. Another advantage of the EMR is that it

relies less on the coding systems and ontologies that were so heavily used in other administrative

data sources. The EMR has opened up the door for clinician free-text to be used in conjunction

with coding systems to gain additional insight into a patient’s care and condition.

One of the central complications of the current EMR landscape is that there is a wide variety of

EMR systems in use throughout the Canadian healthcare system. Vendors sell EMR systems with

vastly different data collection instruments, data formats, and structure of backend databases. Sim-

ple EMR systems may not include laboratory or examination data, while more complex systems

may include a wide array of other information. This makes it challenging to provide population-

level surveillance across multiple EMR systems, but there are methods in current use (and more

being developed) that will standardize EMR data.

The effectiveness of EMR usage in various healthcare settings has been evaluated in some pub-

lications. Studies have been conducted to determine the economic benefit of EMR implementation,

showing an increase in productivity [25]. These studies showed that institutions benefited in terms

of resource management, cost control, and quality assessment. Also, a committee estimated that
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the time saved by using the EMR will enable half of physicians to add one patient visit per day

after two years of implementation [26].

In primary care settings, the implementation of EMR systems has shown mixed results. While

there have been claims that EMR systems would have a positive impact on the quality of care,

several quality indicator studies have been performed with mixed results. Ultimately, there is very

little evidence to suggest that the use of an EMR is associated with an improvement in the quality

of care [27, 28]. Another study has shown that EMRs can have a positive impact on record-keeping

of medication prescriptions, leading to more efficient dispensing of medications, and a decrease in

adverse drug events [29].

Some evidence has been shown that the benefit of an EMR system is also dependent on the

reimbursement system in which a clinic operates. The return on investment seems to be lower for

those in a fee-for-service setting and higher in capitation settings [30]. Fee-for-service is a payment

model in which a physician gets reimbursed for each treatment provided. The capitation system,

generally speaking, is when a physician is reimbursed a set amount for each patient assigned to

them [31].

Some concern has been raised that the use of an EMR system at the primary care level can

have an adverse impact on the patient-clinician relationship, but overall the benefits outweigh the

negatives [32].

It has been shown that that EMR systems have high up-front costs, with an initial decrease

in productivity due to documentation and training, but that cost-savings are realized over time.

Once implemented, the electronic systems have shown to have process and structural benefits that

increase overall productivity [33]. Although the literature contains critiques of the implementation

of an EMR, it is clear that EMRs are here to stay.

Perhaps the biggest barrier to the efficacy of EMR systems is the lack of standardization. There

are a variety of different EMR vendors that offer systems with a great deal of disparity. The key

differences include the type and amount of data collected for each patient, the coding vocabulary,

and the consistency of data quality checks. Also, at the site level, differences in practice may lead

to a disparity in the quality of data. This makes it extremely difficult to provide chronic disease

surveillance in a population when it is often difficult to compare one EMR system to another.
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1.3.1 Differences between EMRs and Electronic Health Records (EHR)

There has been some ambiguity regarding the difference between the EMR and the electronic

health record (EHR), partially due to the infancy of the research and implementation of electronic

records in health. In some circles, these terms are used interchangeably. This is not appropriate

and an important distinction should be made here.

An EMR is essentially a clinical data repository, operated by the organization in which it is

implemented. This is where clinical, billing, demographic, medication and other data are stored,

primarily for use by the institution operating it.

An EHR is a patient-oriented record. An EHR typically is only functional if EMR systems

already exist, as it is comprised of data from multiple levels of healthcare. This is sometimes

referred to as cross-institutional [34]. In many cases, EHRs are owned by the patient (or other

stakeholder), and are used to describe the overall health of an individual patient, with data from

multiple sources. Often a patient can even append information to their EHR.

With these definitions, it is clear that there is a difference between an EMR and an EHR. An

EMR is primarily for use by the organization providing the care, and often contains information

from just one site, especially at the primary care level [35]. The EHR, on the other hand, is a

much broader entity, sometimes drawing from multiple levels of care and attempting to describe

the overall health of a patient [36].

This study does not deal with EHR data and will focus entirely on building case definitions

from extracted EMR data.

1.4 The Potential of the EMR for Surveillance

With the widespread adoption of the EMR in primary care in Canada, the opportunity for chronic

disease surveillance has increased dramatically. A 2014 study estimated that 56% of physicians

in Canada use an EMR [37]. Case identification before the advent of the EMR relied heavily on

billing codes. The EMR provides the opportunity for case definition development using a wider

array of information. Rather than simply using billing codes, case definitions can include physician

free text, medication prescriptions, problem list entries, laboratory values, and more. By having

access to more data, the case definitions used to identify those suffering from specific conditions

can be more accurate, thereby improving disease surveillance.
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There are many studies in which a case definition has been implemented in an EMR (in inpa-

tient and outpatient settings) and the validity estimated [38, 39, 40, 41]. In order to estimate the

validity of a case definition, a reference standard must first be established.

1.5 Case Definitions

A case definition is a set of criteria that defines a condition in a specific context. If a person’s record

meets that criteria, they are considered a case (for the condition of interest). Case definitions can

vary in complexity and can be implemented in different settings. For example, consider case

definitions for hypertension.

The Mayo Clinic definition for hypertension is “a common condition in which the long-term

force of the blood against your artery walls is high enough that it may eventually cause health

problems, such as heart disease”[42]. While that may be a comprehensive clinical definition, it

would be very difficult to implement at a population level. Perhaps a more relevant definition of

hypertension for identification would be a systolic blood pressure measurement over 140 mmHg,

or a diastolic blood pressure above 90 mmHg. Another case definition may require two or more

blood pressure measurements over 140 mmHg and 90 mmHg within 1 year. These specific and

measureable criteria are much better suited to population surveillance in a database containing

blood pressure measurements.

Case definitions have been applied to administrative data sources for many years and are pri-

marily built on ICD billing codes [20, 43, 44]. As with all classification procedures, case definitions

may not perfectly identify the intended patient group. Patients may not meet the case definition

even if they are true cases, or patients who do not actually have the disease may falsely be assumed

to be cases.

In the database setting, a case definition appears as a set of rules that result in a binary classi-

fication: disease positive or disease negative. Accordingly, the quality of any surveillance system

in a population is directly related to the accuracy of the case definition (or definitions) used to

identify the condition(s) of interest. A strong set of case definitions needs to be developed and

validated for use in each particular data source to ensure that we make the most of the data sources

available. The validation step requires the establishing of a reliable reference standard for a sample

that represents a population.
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1.6 Reference Standard

A reference standard is an indication of true disease status for a patient. A gold standard is a type

of reference standard that is regarded as absolutely true for a disease [45]. Unfortunately, in health

research reference standards are rarely considered as gold standards due to some ambiguity around

the true status of disease. Since we are not able to establish a “gold standard” for disease status,

we will have to rely on a reference standard that is perhaps the most common, the chart review.

A chart review is a reference standard used for administrative health data, including EMR data.

This is a manual review of a patient record by a trained abstractor to determine disease status.

These reviews are typically preceded by the development of a list of criteria in the chart that would

define the disease. In an EMR setting, it is common for a manual review of the EMR data to be

considered a chart review [46].

Another potential reference standard is the identification of a patient via some other administra-

tive data source, like the DAD. This method of establishing a reference standard is subject to some

scrutiny, as it uses an administrative data source to confirm another administrative data source.

Others have compared case definitions to other previously validated case definitions to determine

accuracy [47].

Yet another potential reference standard is the inclusion of a patient in a disease registry. For

some chronic conditions, registries are created to track individuals throughout the healthcare sys-

tem. Some have used the presence in a disease registry to confirm the diagnosis status of a case

definition in an EMR. The quality of the reference standard, in this case, is solely dependent on the

validity of the registry. Many registries have a low false positive rate, but it can be difficult to assess

the false negative rate. This is because it is rare for a non-case to be included in a registry, and it

can be quickly verified. False negatives, on the other hand, are much harder to identify in a reg-

istry, because it requires information about patients not included in the registry. Another popular

method is to get laboratory confirmation for certain characteristics (ie. blood sugar in patients with

diabetes) [48]. It should be emphasized that the decision on what to use as a reference standard is

typically based on costs and convenience.

Some studies have used a chart review as the reference standard diagnosis by which to evaluate

the validity of case definitions [49, 50, 41, 39, 51]. These include case definitions for rheumatoid

arthritis, bipolar disorder, stroke/TIA, and eight case definitions that will be discussed in Chapter 3.
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Others have compared the agreement in case identification methods between EMR data and more

classical sources of administrative data, with varying amounts of success [52]. Another study used

billing codes for a case definition, but used free-text as the reference standard [38].

1.7 Committee-Created Case Definitions

The traditional method of case definition development is via a committee of healthcare profes-

sionals. Essentially, a group of clinicians are brought together and through discussion and debate,

determine a set of criteria that distinguish between cases and non-cases. This is a process that

can take a long time to complete. Once a case definition is determined, it is evaluated against a

reference standard to get an estimate of the accuracy of the case definition.

This model of case definition development is summarized in two to three steps. The first is

the development of criteria using clinical knowledge, and creating a case definition. The second

step is to evaluate the validity of the case definition against a reference standard. A third step can

be incorporated, wherein adjustments are made to the case definition after reviewing the validity

results.

We propose a new method of case definition development, wherein we reverse the order of

procedure. Here we will start with the reference standard, which we will use as the labels for

a statistical learning approach. These methods create a set of rules that maximize accuracy and

can be interpreted as a case definition. Using this method, we can forego the tedious process of

committee-creation, and use an algorithm that will select the features that most accurately distin-

guish between cases and non-cases. These algorithms are often referred to as machine learning

algorithms.

1.8 Objectives

1. Determine if machine learning methods are capable of creating chronic disease case

definitions in a primary care EMR that are comparable in terms of simplicity and

validity measures with committee-created case definitions.

2. Compare different machine learning methods to establish which methods are best

suited for case definition development.
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2 Machine Learning

Machine learning is a system of statistical methods that are relatively new to the health research

community. A common definition for machine learning is that it is a process through which a

computer “learns” a model, without being explicitly programmed [53]. There is an important

distinction here between classical regression-based methods and machine learning methods.

In the classical regression-based predictive statistics, there is some outcome that is desired to be

predicted. Predictor variables are selected that may be able to aid in the prediction of the outcome

and a model is constructed, often through some hierarchical structure. Then a machine performs

calculations that give the regression coefficients or summary statistics based on this model. Ma-

chine learning does not simply crunch the numbers and spit out coefficients, rather, it makes de-

cisions about the actual structure of the model; the predictors or features selected, the interactions

between features, the complexity of the model and so on. This is a key distinction, as machine

learning methods are being implemented in large data settings, where the complexity and scale of

data and features are often too large for traditional regression methods.

Generally, machine learning models can be broadly categorized as two categories: supervised

and unsupervised methods. Supervised methods are used when there is a known outcome, and a

model is being trained to predict the outcome. This requires at least a sample of data that includes

the outcome, so a model can be trained to accurately predict. Unsupervised learning, on the other

hand, does not necessarily have an outcome. Often, unsupervised learning methods are used to

identify clusters in the features space, differentiating groups or clusters of observations based on a

number of features.

For this study, we are looking at binary classification; where a disease is either present or

absent. This is a supervised machine learning approach, and there are a variety of machine learn-

ing methods, ranging from the simple to the complex. In order to develop case definitions, the

interpretability of the case definitions is equally as important as the accuracy of the case definition.

Here we will briefly summarize the common machine learning methods that have been imple-

mented in the published literature, as well as the algorithms that will be used in this study. A reader

experienced in machine learning methods can safely skip this chapter.
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2.0.1 Naı̈ve Bayesian Classifier

The Naı̈ve Bayesian Classifier is a simple concept that compares the probabilities of being in a

given class given the values of various candidate features. It has been used extensively in text

categorization problems [54]. This algorithm implements Bayes’ Theorem [55], which is defined

as follows:

P(A|B) = P(B|A)P(A)
P(B)

=
P(A∩B)

P(B)
(1)

Where ∩ represents the intersection, or the joint operator. Essentially, the Naı̈ve Bayesian

Classifier computes the conditional probability, P(A|B), of each class (disease or no disease) based

on each covariate. It assumes independence of each covariate, and the estimated probability of

disease is defined as follows [56]:

ŷ = argmax
kε{1,...,K}

p(Ck)
n

∏
i=1

p(xi|Ck) (2)

Where C represents a target class, the xi represent the values of the predictor variables. The

predicted class is the class that maximizes the conditional probability. It is clear that this classifier

assumes conditional independence of all predictor variables [57], as the posterior probability is

simply the product of all individual conditional probabilities. It has been shown that the Naı̈ve

Bayesian Classifier and other discriminant methods are comparable to logistic regression in small

sample sizes, but the performance of logistic regression outperforms it with a larger sample size,

and has a smaller asymptotic error [58].

In terms of case definition development, the Naı̈ve Bayesian Classifier is not very useful. With

all of the data available in an EMR, and with the clinician free-text tokenized into individual

vectors, there is potential for hundreds and even thousands of variables to be considered. The

Naı̈ve Bayesian Classifier has no method of feature selection, so every variable is included in

the model. This makes it a poor option for case definition creation, even if the predictions are

reasonably accurate. The interpretability of the model is lacking, as each variable is still included.

This methodology may prove to be of some use in EMR classification though. As mentioned

earlier, the number of variables, especially when including tokenized free-text, is quite large, and

many computation-heavy algorithms will perform slowly with that many variables to consider. We
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can use the simple Bayes’ Theorem formula to calculate conditional probabilities for each variable,

and thus eliminate uninteresting variables by only including the variables that meet the following

criteria, where T is some threshold value.

|P( f eature|DISEASE)−P( f eature|NO DISEASE)|> T. (3)

This is a simple way to remove a portion of the variables that have no effect on predicting

disease status, in order to increase efficiency of the algorithm. This becomes important in cases

with large amounts of data, where complex computation problems may extend beyond the limits

of hardware. Others have used odds ratios, information gains (to be discussed in a later section),

exponentiated probability differences, and more for this same purpose [59].

Similar to the Naı̈ve Bayesian Classifier, Bayesian Networks that do not require the indepen-

dence of variables can be used. These methods are acceptable for prediction, but are typically not

interpretable as case definitions, and will not be used for the case definition development.

2.0.2 K-Nearest Neighbours

The K-Nearest Neighbours method is a simple, heuristic approach to a classification problem. New

cases are predicted by finding the most common class in the most similar K observations [60]. This

method is most useful in settings where predictors are measured, as it relies heavily on distance

measures. Additionally, weights can be added to observations or predictor variables to improve

prediction [61]. It can still be used in cases with binary predictors, but it acts very similar to the

Naı̈ve Bayesian Classifier in this setting.

The K-nearest neighbours method will not be used for case definition development, as the

resulting model is not interpretable, especially in a setting with many potential features. This

method does not reduce the feature space at all.

2.0.3 Logistic Regression

Regular logistic regression is not generally considered to be a machine learning algorithm. This

is a classical method, where a model is constructed a priori. However, there are machine learning

approaches that implement logistic regression models. Logistic regression is a generalized linear

model wherein the outcome variable is binary. Multinomial and proportional odds models are

available for categorical or ordinal outcomes but for our purposes, we will only look at the binary
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outcome (disease or no disease). Logistic regression models the logit function as a linear combi-

nation of the predictor variables [62]. The logit function is as follows, where π is the probability

of the outcome:

logit(π) = log(
π

1−π
) (4)

We use the logit function because it has favorable properties for regression in a binary response

setting. A regression model is typically constructed as the linear combination of some number

of predictor variables. By definition, this assumes that the outcome being modelled can truly

be modelled in a linear fashion. This is problematic in the case of a binary outcome when we

are modelling the probability, π , since π can only be defined on the interval [0,1]. If one tried

to model π using a linear combination of predictor variables, it is possible to produce estimated

probabilities that fall outside of the possible range for π . The odds, π

1−π
, are defined from [0,∞),

and are thus more favorable for modelling, but still have problems near 0. The natural logarithm

of the odds (also called the logit), log( π

1−π
), is defined from (−∞,∞) and is widely used because

of this property. Since the log-odds are defined for all possible values, we can construct a linear

model that does not have boundary-problems.

The regression equation is used as follows:

log(
π

1−π
) = β0 +β1X1 + ...+βnXn (5)

Which can be rewritten as:

π =
eβ0+β1X1+...+βnXn

1+ eβ0+β1X1+...+βnXn
(6)

Where the X’s are the values of the predictor variables. Logistic regression uses the principles

of maximum likelihood to estimate the β coefficients. This is done by maximizing the likelihood

function [63]:

L(β |y) =
N

∏
i=0

(
ni

yi

)
π

yi(1−π)ni−yi (7)

Here π is defined as the probability of “success” for an event, y refers to the number of suc-

cesses in n independent trials. This equation is maximized by differentiating with respect to β and
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finding the maxima. The prior equation (0.6) defines π using the β values. The result is a set of

β coefficients that are used to model the log of the odds, which can further be decomposed into

estimates of probabilities. Computers, however, do not calculate the coefficients in this manner.

Statistical software must use an iterative approach to approximate the maxima of the likelihood

function. These software use matrix calculations to calculate the maximum likelihood and regres-

sion coefficients.

It can be easily seen that logistic regression is a very useful tool in terms of classification, but

logistic regression alone is of very little use in automated case definition development. There are

no mechanisms for feature selection, and in the case of EMR data with tokenized free-text, the

sheer number of variables make logistic regression a poor choice. Logistic regression assigns a

coefficient to each predictor variable included in the model. The methods that will be used in this

analysis take into account thousands of candidate features. A vector of thousands of coefficients

is not particularly useful when trying to implement a case definition that makes intuitive sense for

clinical purposes.

One of the issues with logistic regression is multi-collinearity, wherein multiple predictor vari-

ables that are correlated are assigned weights that are not especially indicative of their individual

ability to detect disease status.

There are methods of using logistic regression for automated case definition development in

settings with many predictor variables. It is important to note that the results of a logistic regression

are not interpretable as a case definition without a few liberties being taken. The logistic regression

will produce linear combinations of the log of the odds. It is common practice to take these

log-odds estimates and finding optimal cut-points to determine the predicted class. In order to

convert these results into a case definition, however, simplifying assumptions will be required. For

example, one might consider positive coefficients to be inclusion criteria, and negative coefficients

to be exclusion criteria. This is the approach that was taken in this project. The two most common

methods of feature selection using a logistic regression method are forward stepwise or penalized

logistic regression.
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2.0.4 Forward Stepwise Logistic Regression

When there are a large number of variables to be considered in a logistic regression, some have

opted to use a method called stepwise logistic regression to aid in variable selection [64, 65]. It has

previously been used for case definition development [66]. Stepwise logistic regression is typically

used in one of two ways, forward or backward. In the forward approach, the model is built from

the empty model, and complexity is added step-by-step. The backwards approach assumes the

most complex model, and features are removed step by step. This study will solely use forward

stepwise logistic regression, as there are potentially thousands of features. This is where you start

with the base model, including only an intercept:

log(
π

1−π
) = β0 (8)

From this base model, we add variables one by one, maximizing some measure of model “quality”.

The most popular metric of this is called the Aikake Information Criterion (AIC), and is defined as

such:

AIC = 2k−2log(L) (9)

Another measure that is used is the Bayesian Information Criterion (BIC):

BIC =−2log(L)+ klog(n) (10)

Here k represents the number of features included in the model, n represents the number of

data points, and L represents maximum likelihood estimate[67, 68]. The model with the minimum

AIC is selected as the final model, and variables are chosen by the order of the magnitude of AIC

change. Using this method provides an automated way of selecting the features that will go into

the final model, thus selecting the features that will comprise the case definition for the desired

condition.

Stepwise methods have been widely criticized by statisticians. It has been shown that accuracy

measures (R2 values in particular) are biased in subset selection approaches [69]. Others have

shown evidence that predictions using forward stepwise methods fare no better than models that

include all candidate features [70].
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This does not mean that stepwise methods are invalid in the case of EMR case definition de-

velopment. Large data sources with many covariates require data mining techniques that almost

always run the risk of overfitting. Stepwise methods are no different. This method will be explored

in the case definition development.

2.0.5 LASSO Logistic Regression

Instead of using stepwise methods, another variable selection strategy is to use a penalty called

a LASSO (Least Absolute Shrinkage and Selection Operator). This method shrinks some coeffi-

cients, but more importantly, it sets coefficients to 0. It can be used as an automated way to exclude

extraneous variables from an otherwise massive logistic regression equation. Essentially, we are

applying the following constraint to a regular logistic regression.

log(
π

1−π
) = β0 +β1X1 + ...+βnXn SUBJECT TO ∑

j
|β j|< t (11)

Where t is a tuning parameter or constant. This tuning parameter forces the model to include

only the variables that contribute the most to the outcome in the sample. It is widely held that im-

posing such a limit introduces some amount of bias, but is useful in improving predictive accuracy

and simplicity.

Dr. Tibshirani is credited with the development of the LASSO regression, as well as the ridge

regression [71]. The ridge penalty is very similar to the LASSO penalty, and is defined as such:

∑
j

β
2
j < t (12)

The LASSO penalty is sometimes referred to as the L1 penalty and the ridge penalty is referred

to as the L2 penalty. Methods have been developed to blend these methods together using a tuning

parameter, and this method is often called Elastic-Net regression [72]. This method of penaliza-

tion has also been implemented in other modelling situations, such as time-to-event, or survival

analyses [73]. We will not be using ridge or Elastic-Net regression for variable selection in case

definition development, as we will restrict this study to LASSO logistic regression, as it is the

favorable method for removing features and creating concise feature lists, compared to the ridge

regression.
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It can be seen that the bounds of the L1 penalty are maximized when one of β1 or β2 are set

to 0. The limit of the ridge penalty, on the other hand, do not have this same property. The L1

penalty uses an absolute value to restrict the β coefficients whereas the L2 penalty uses the sum

of squares. For the purposes of variable selection, the L1 penalty is preferable to the L2 penalty,

as the L1 penalty favours the setting of β coefficients equal to zero. The L1 penalty achieves the

largest combined β coefficient estimates by setting the variables of lesser importance equal to zero.

Figure 1 shows this relationship.

Figure 1: Bounds of β coefficients when t=2. The black curve is the L1 penalty and the blue curve
is the L2 penalty.

When using the L1 penalty, the model is created at uniform cut-points of the t parameter. Typ-

ically, the final parameter value is selected as the value at which the accuracy is maximized in a

cross-validation setting (discussed in a later section).
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2.0.6 Decision Tree Algorithms

Another classification method that should be considered for chronic disease case definition devel-

opment is that of decision tree classifiers. There are several types of decision tree methodologies,

but they all share the same basic principles. A decision tree is a system of rules and conditions that

can be visualized as a “tree” [74]. See Figure 2 for an example of a decision tree.

Figure 2: An example of a decision tree to show the proportion of patients diagnosed with os-
teoarthritis. The top of the decision tree represents all the patients in the sample. Note that each
end-node of the tree indicates a conditional proportion, so the total sum of all nodes need not be 1.

In this example, of those that had the word “osteoarthritis” occur in their primary care problem

list, 96% truly had osteoarthritis. For the remaining patients, 86% of those that had the word

“osteoarthrosis” in their problem list truly had osteoarthritis, and 27% that had neither word in the

problem list truly had osteoarthritis.

A decision tree is composed of a set of splits (typically binary splits) on different variables.

The end-nodes, sometimes called leaf-nodes, are the endpoints where a class is specified. These

decision trees can be decomposed into a set of rules that can be interpreted as a case definition.

One of the main advantages of using a decision tree algorithm as opposed to a logistic regression

method of variable selection is that the decision tree algorithm is capable of accounting for the

association between variables very easily.

The case definitions developed by the aforementioned logistic regression methods result in

overly simplified definitions in some cases. The final case definition consists of a list of inclusion
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and exclusion criteria determining the disease status. Decision tree algorithms are different in that

they formulate binary splits based on a feature, and then make subsequent partitions based on the

previous splits. This allows for the combination of variables and exclusion criteria in the different

branches of the tree.

As mentioned, there are several different algorithms for creating decision tree classifiers. The

main difference between each of these is the metric that is used as a “purity metric”. This is a

measure of how well a split in the data differentiates between those with and without the disease. In

each algorithm, all possible splits are considered, over every variable, and the one that maximizes

the purity index is chosen. This process is repeated until there are no more splits that improve the

purity index. Below is a description of three of these algorithms.

2.0.6.1 Classification and Regression Trees / Recursive Partitioning

One of the more popular decision tree algorithms is called Classification and Regression Trees

(CART), developed by Brieman, Friedman, and others [75]. These ideas were expounded upon

and renamed Recursive PARTitioning (RPART) by Therneau, Atkinson, and others [76, 77]. This

methodology is not only capable of building classification trees, but is also able to build regression

trees. Regression trees are required when the outcome is measured.

For classification purposes, the purity index that is typically used is called the Gini Index [78],

which is defined as such:

IG(p) = ∑
i

∑
j 6=i

pi p j = ∑
i

∑
j

pi p j−∑
i

p2
i = 1−∑

i
p2

i (13)

Where px is the probability of belonging to class x in a node of the decision tree. The Gini

index is calculated for every possible split in the predictor variables, and the one with the largest

improvement in purity (or the biggest decrease in the Gini index) is chosen. This is repeated until

there are no remaining splits that improve the index. This is where the pruning of the tree takes

place. There are several pruning algorithms that are used, the most popular of which is called cost

complexity pruning. This is done by finding the minimum of the following metric, for all possible

subtrees of the unpruned tree:
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f (t) =
err(prune(T, t),S)− err(T,S)
|leaves(T )|− |leaves(prune(T, t))|

(14)

Where err(T,S) is the error rate of the unpruned tree, prune(T,t) is the pruned decision tree,

and leaves(T) is the number of leaves in the unpruned tree. The tree that minimizes this value, up

to some threshold (sometimes called the complexity parameter) is selected as the new tree. This

process is repeated until there are no more pruning steps that fall under the specified complexity

parameter.

Figure 3: A comparison of the Information Gain and Gini impurity measures.

2.0.6.2 C4.5 and C5.0 Decision Trees

The C4.5 and C5.0 algorithms were developed by Ross Quinlan [79]. C5.0 is an updated

version of the C4.5 algorithm [80] [81]. Both of these algorithms develop trees using an impurity

index called information gain. This metric uses entropy theory and is calculated as such:

gain(A) =−
k

∑
j=1

pi× log2(pi) (15)

Where pi represents the proportion of cases for predictor i given a split on the predictor A.

Visual comparisons of the Gini Impurity index and Information Gain is seen in Figure 3. The C4.5
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and C5.0 algorithms take this calculation one step further and calculate the gain ratio, which is

defined as follows:

GainRatio(A) =
gain(A)
split(A)

(16)

Where split is defined as:

splitA(D) =−
v

∑
j=1

D j

D
× log2(

D j

D
) (17)

Where D refers to the number of observations at the various levels of the potential split. D j refers

to the number of observations at a level of the potential split and D is the total number of patients

pre-split. Using split-info in the calculation of the gain ratio takes into account the number and

size of each branch of the tree. Otherwise, there is a bias towards multi-valued attributes. It has

been shown that gain ratio is typically preferable to information gain alone [82].

The C5.0 algorithm also offers a variety of features that might be useful for the development

of case definitions. Most of these features were added on to the preexisting C5.0 algorithm.

Like the CART algorithm, a complexity parameter that limits the amount of pruning can be

used. This parameter is represented as a value between 0 and 1, where 0 represents no pruning,

and 1 represents the most pruning. The C5.0 algorithm also includes an option where one can

specify the minimum number of observations that can be in a node of the tree. This is a method of

avoiding overfitting.

The algorithm also includes an option to include a cost matrix, wherein one can specify the

penalty associated with misclassification of true positives and true negatives. This is a useful

tool in that it allows for the development of case definitions with higher sensitivity or specificity

respectively, and it is important when dealing with rare conditions.

Another feature that the C5.0 algorithm has implemented is a process called winnowing. Win-

nowing is another method used for feature selection that is useful in high-dimensional settings.

When there are a large number of predictors, it is often useful to perform a feature selection step

before creating a decision tree, often for computing efficiency purposes. This step is done using a

simple measure of a predictor’s relationship with the outcome. An example of this was seen earlier

with the following method:
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|P( f eature|DISEASE)−P( f eature|NO DISEASE)|> T. (18)

The winnowing applies a similar method to drop variables and decrease the computational load

required by the C5.0 algorithm. These methods have been shown to have a positive impact in some

cases and a negative impact in others.

2.0.6.3 CHAID Decision Tree

The Chi-squared Automatic Interaction Detector (CHAID) is another decision tree algorithm

that determines splits using the significance of a chi-squared test statistic. As opposed to CaRT

methods, CHAID is designed solely for classification problems and is not to be used for regres-

sion. CHAID is also designed for using categorical features exclusively. As part of the algorithm,

optimal collapsing of non-binary categorical features based on cross tabulations is done to ensure

binary splits.

The decision to split in CHAID is based on the p-value of the χ2 test [83, 84]. The split with

the lowest p-value when cross tabulated with the outcome is selected at each node. A threshold α

value is specified to limit the number of splits to only those that have a p-value less than α .

Note that it is possible to create a split in a CHAID decision tree that does not indicate a differ-

ence in outcome category. For example, it is possible to have a binary split in which both end-nodes

of the tree indicate the same disease status. This is because the χ2 test detects a difference between

proportions and does not require those proportions to be on opposite sides of the proportion 0.5.

Both the CaRT and C5.0 methodologies (Gini index and information criterion) will also include

these redundancies but these algorithms contain pruning steps that will generally remove them.

2.0.7 Random Forest Classifier

An extension to the decision tree classifiers is the random forest algorithm [53, 85]. This is a

popular method that is used often in classification problems. A random forest model is called an

ensemble tree method. This means that multiple trees are constructed and the predicted class is

decided by the majority vote from each of the trees.

There are several methods that can be used to construct an ensemble of decision trees. For

example, the bagging method is when random samples of the training data are taken without re-
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placement, and a decision tree developed for each sample [86]. Another example is that of random

split selection, wherein the split is selected at random from the K best possible splits [87]. The

most common method involves creating random subsets of variables and training multiple trees

with different subsets of candidate features [88]. This ensures that the classification is not being

dominated by a few features. This method has been shown to improve predictive accuracy in many

cases, when compared to a single decision tree. It has been suggested that due to the Law of Large

Numbers, random forest models do not over-fit the training data [89].

Another ensemble tree method is called boosting. There are various decision tree boosting

approaches, but they follow the same blueprint. A common method is called AdaBoost, which

generates an ensemble of trees. The first decision tree is generated, and those cases that are mis-

classified by the first tree in the training set are given a higher weight in the subsequent tree [90].

The resulting ensemble of trees is then used to predict the outcome class. This method has been

shown to improve predictions in some cases [91].

The problem with the random forest and other ensemble tree approaches in the context of case

definition development is that there is no way to interpret these methods into human readable case

definitions. It is common to create 500+ individual trees in a random forest approach, and there is

no way to decompose those into rule sets, given that the classification is based on majority vote. We

will not use the random forest method for case definition development, but it will be an important

area of future research to quantify the differences in accuracy between these complex methods of

classification and the interpretable methods.

2.0.8 Support Vector Machines

A powerful machine learning tool that has been used in many settings is the Support Vector Ma-

chine (SVM) [92]. Visually, this method attempts to draw a line in the feature space that best

separates cases from non-cases [93]. Rather than doing this using parametric assumptions of lin-

earity or polynomial regressions, it uses various “kernel” functions. Different implementations

of SVMs use different functions, some of the simpler implementations acting similar to a Loess

smoother or a moving average algorithm. Others, like figure 4, use a non-linear kernel to generate

a linear combination of features that geometrically distinguish between class A and class B.

SVM’s, like the random forest models are considered “black-box” algorithms, meaning they
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Figure 4: A two-dimensional support vector machine illustration

are not directly interpretable. This is because the coefficients may have a linear representation,

similar to a logistic regression, but the linear coefficients need to be transformed through the kernel

function. This makes it a poor choice for case definition development as a set of rules cannot be

derived from the model, and therefore will not be implemented in this project.

2.0.9 Artificial Neural Networks

Artificial Neural Networks (ANN) are generally considered to be the most complicated [94]. These

models were inspired by the cells and networks that naturally occur in the brain. In the classifi-

cation setting, the algorithm generates a number of “nodes”, where a classification algorithm or

prediction method is implemented on a transformation of the data. Some implementations of an

ANN are as simple as a parallel series of logistic regressions, each including a different polyno-

mial transformation of the features and outcome. Deep Learning is an implementation of neural

networks, and is very popular in today’s machine learning landscape [95].

The most important step of the ANN is called back propagation. This is a method that re-

cursively assigns weights in an automated fashion to each of the nodes that were developed for

classification. Those nodes that predict best are assigned higher weights, and nodes that provide

little predictive benefit are assigned low weights.

This method, although often regarded as the most accurate and flexible, does not offer a human

interpretable case definition, and will not be used for this project.
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2.0.10 Tuning Parameters

It should be noted that each machine learning algorithm has a number of tuning parameters that

need to be set. These parameters allows users to customize the model as they see fit. Common

tuning parameters include a loss matrix, allowing for a preference structure to exist. This means

a model can be trained that will focus on achieving a higher sensitivity, at the cost of specificity,

or vice versa. This is of particular importance in rare disease cases, where the algorithm may

tend to favour specificity much more than sensitivity. Other parameters control the amount of

complexity in the models, or the number of features. Decisions on tuning parameter selection

must be supported by some level of evidence, requiring a method of comparing different tuning

parameter values for model fitting.

The machine learning algorithms that will be implemented in this study will be the C5.0 de-

cision tree, the CaRT/rPart decision tree, the CHAID decision tree, LASSO-penalized logistic

regression, and Forward stepwise logistic regression.

2.1 Application of Machine Learning Methods in EMRs and EHRs

Thus far, the implementation of machine learning in the EMR space is confined primarily to out-

comes prediction, clinical decision support, or an attempt to synthesize clinical free-text [96].

These methods are not generally used for disease surveillance, rather, they are typically used to

identify high risk patients for which a clinical intervention can be implemented. The ideal ma-

chine learning algorithms selected for different studies are determined mainly by the purpose of

the study. When predictive accuracy is the most important factor, and interpretation is of lesser

import, more complicated “black box” algorithms can be used. When the desired product is an

interpretable model, a set of rules, or an attempt to expose features and relationships between vari-

ables that contribute to prediction, the more concise and interpretable methods are much preferred

over the “black box” algorithms. Here we will discuss the problems for which machine learning

algorithms have been implemented in EMR and EHR systems.

2.1.1 Outcomes Prediction

As stated earlier, a large portion of the published studies that adopt machine learning for EMR data

analysis focuses on outcomes prediction or forecasting. Mani et al. used Naı̈ve Bayes, logistic
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regression, K-nearest neighbours, CaRT decision trees, random forest, and SVMs to forecast type

2 diabetes in a non-diabetic population using electronic medical record data [97]. The primary

measure of model accuracy compared here was the Area Under the Receiver Operating Curve

(AUROC). In this implementation, the random forest algorithm achieved the best AUROC.

Another study from Cooper et al, published in 1997, used logistic regression, K-nearest neigh-

bours, decision tree algorithms, Bayesian Networks including Naı̈ve Bayes, and ANNs to predict

mortality in pneumonia patients [98]. This study showed very little differences between algorithms

in predictive accuracy, and concluded that when predictive accuracy is similar, the simplicity of

the final model should be used to select the optimal algorithm.

Similarly, Wolfe et al. used logistic regression, classification trees, and ANNs to predict a

composite outcome of mortality and intensive care unit admission following traumatic events [99].

This attempt was unsuccessful, as they were unable to meet pre-specified benchmarks for predic-

tive accuracy in this implementation.

A 2014 study published by Mani et al. used SVMs, Naı̈ve Bayes, Tree-Augmented Naı̈ve

Bayes, K-Nearest Neighbours, CaRT decision trees, random forest, logistic regression, and Lazy

Bayesian classifiers in an attempt to detect the late-onset of neonatal sepsis in infants for whom

a blood culture test has been ordered on suspicion of sepsis [100]. Here the SVM-based feature

selection methods contributed most to predictive accuracy. The final reported accuracy achieved

was an AUROC of 0.78.

Palaniappan et al. implemented various decision trees, Naı̈ve Bayesian, and ANN algorithms to

predict the diagnosis of heart disease obtained from the Cleveland Heart Disease database [101].

Here the Naı̈ve Bayesian algorithm was labelled as the method that fit the desired criteria best,

although a consideration was taken for the decision tree algorithm, as it is the most interpretable

outcome.

A much earlier study, published in 1997, from Shankle et al. used CaRT and stepwise logistic

regression methods to detect early stages of dementia, using mostly survey data [102]. The inter-

esting finding from this study is that a single feature was determined to be the most predictive, and

the only feature included in the final models. This shows how machine learning algorithms can, in

some settings, massively simplify prediction problems.

Kawaler et al. used Naı̈ve Bayes, K-Nearest Neighbours, SVMs, the C4.5 decision tree, and
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random forest algorithms to predict patients with a venothromboembolism event in the 90 days

following a hospitalization [103]. The conclusion of this study was that the Naı̈ve Bayesian, ran-

dom forest, and SVM methods achieved the best predictive accuracy, measured with a balance of

sensitivity and positive predictive value.

A study published in 2014 documented the use of SVMs to aid in the prediction of survival

probabilities at 6 months, 1 year, and 2 years following cancer diagnosis, taking into account the

type of cancer diagnosis [104]. These methods showed a large improvement in predictive accuracy

at 6 months compared with a clinician panel (AUROC of 0.87 to 0.79, respectively). However, this

difference was not observed for the two-year survival time (AUROC of 0.76 vs 0.75, respectively).

2.1.2 Phenotyping and Case Definitions

Another common use of machine learning methods in the EMR space is phenotyping. Phenotypes

are remarkably similar to case definitions, as they often aim to distinguish between those that

have a condition and those that do not have a condition. However, phenotypes do not need to be

directly interpretable as rule sets and can therefore use “black-box” machine learning methods.

Case definitions, on the other hand, need to be interpretable.

In 1990, a study from Baxt et al. was published that used an ANN to phenotype acute myocar-

dial infarction in patients presenting into the emergency department [105]. This method achieved

a sensitivity of 92%, and a specificity of 96%. This was deemed to be “substantially better” than

the performance of case definitions developed by a committee of physicians and other analytical

approaches. Similarly, Pakhomov et al. used a Naı̈ve Bayesian algorithm with a bag-of-words

approach to identify patients with heart failure from the clinical text in an EMR [106].

In 2012, Carroll et al. published a study that used a LASSO logistic regression method to create

a phenotype for rheumatoid arthritis [38]. The reference standard used to define true cases was the

presence of an ICD-9 code. This model was trained separately across 3 different EMR systems

and showed portability across systems.

It is commonly desired to have a phenotype or case definition for the smoking status of a

patient. Many EMR systems have a classification system that attempts to capture this information,

but this is often captured in free-text entries. Thus, natural language processing efforts have been

made to classify free text as indicative of current smokers, past smokers, and non-smokers. An
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organization called Informatics for Ingegrating Biology and the Bedside (i2b2) has established data

models, software, and methods for large-scale surveillance. A challenge was put out in an i2b2

workshop that led to several groups attempting the smoking status classification problem [107].

Savova et al. used SVMs along with a simple bag-of-words approach, along with a consideration

of negatory terms to classify smoking status. The final reported F1-score values was 85.57 [108].

Clark et al. used SVM’s and achieved scores between 85 and 90 [109]. Aramaki et al. used K-

Nearest Neighbours combined with a natural language tagging algorithm to achive an F1-Score

of 0.88 [110]. Carrero et al. used boosted decision trees to achieve a score of 0.75 [111]. Other

methods included ANNs, C4.5, and Naı̈ve Bayesian Classifiers.

Another i2b2 challenge workshop was published by Uzuner et al. in 2010 where natural lan-

guage processing and machine learning techniques were used to extract important medication in-

formation from free-text entries. This included medication names, dosages, route of administra-

tion, duration, and more [112].

Wang et al. used advanced Natural Language Processing algorithms to detect coronary an-

giogram results and ovarian cancer diagnoses in the General Practice Research Database [113].

The strongest submission had an overall F1-score of 85.7.

Chen et al. published a phenotyping study in 2013 where SVMs were used to identify patients

with rheumatoid arthritis, colorectal cancer, and venous thromboembolism [114]. The data used

here was “annotated” cohorts, where presence or absence of disease was already established via

chart review. They also incorporated a semi-supervised machine learning technique called active

learning. The active learning models performed better than the traditional passive learning algo-

rithms. AUC values were strong for rheumatoid arthritis, boasting values between 0.82 and 0.9.

The predictions for colorectal cancer were also strong with values ranging between 0.81 and 0.93.

Venous thromboembolism, on the other hand, resulted in very poor predictions with values ranging

between 0.27 and 0.44

Another large phenotyping study was published in 2013 by Srimani et al., where a comparison

was made between boosted decision trees, logistic regression, random forest, Naı̈ve Bayesian,

and more to create phenotypes for various conditions in multiple datasets [115]. The interesting

conclusion of this study is that in some EMR systems and conditions, complicated “ensemble”

machine learning methods are not needed, and simpler, more interpretable case definitions are
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preferred. Liang et al. used Deep Learning, SVMs, and decision tree methods for phenotyping

several conditions in 2014 [116]. The main result of this study was showing that there are some

conditions and settings where a Deep Learning algorithm can provide higher accuracy than the

“shallower” methods like decision trees and SVMs.

A 2014 study from Peissig et al. used machine learning algorithms to create phenotypes for

acute myocardial infarction, acute liver injury, atrial fibrillation, cataracts, congestive heart failure,

dementia, type 2 diabetes, diabetic retinopathy, and deep vein thrombosis [117]. The algorithms

used here are from the WEKA suite of machine learning algorithms [118]. Here a branch of

algorithms called inductive logic programming outperformed the selected decision tree algorithms.

Lin et al. used ridge logistic regression to develop a phenotype to identify patients with rheuma-

toid arthritis along with methotrexate-induced liver transaminase abnormalities [119]. The result-

ing model achieved statistically significant improvements in predictive accuracy from the baseline

system.

2.1.3 Other Application of Machine Learning to EMRs

A handful of other studies have been published that implement machine learning methods to EMR

data for purposes that cannot be classified as outcome prediction or phenotyping/case definition

development.

A 2011 study from Boxwala et al. used logistic regression and SVMs to detect “suspicious ac-

cess” to EMR data [120]. Zhang et al. published a study in the same year using a Naı̈ve Bayesian

approach to identify the roles of users as they access EMR data [121]. By implementing these

methods, suspicious access can be flagged and brought to the attention of the appropriate stake-

holders. These are important areas, as they show how machine learning can be used to monitor

EMR data access and improve data security.

Another important usage of machine learning methods in an EMR setting is in the deidenti-

fication process. When administrative data is used for research or other purposes, it needs to be

stripped of all identifiable features, to protect the identity of the individuals represented in the data.

The advent of the EMR, and especially the inclusion of clinician free-text, allowed further oppor-

tunity for identifiable features to be available in the data. A 2007 study from Szarvas et al. used the

C4.5 decision tree algorithm to extract identifiable features from an EMR dataset, for the purpose
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of meeting the guidelines of the Health Information Portability and Accountability Act [122]. Two

very similar studies from Neamatullah et al. and Patric et al. were published in 2008 and 2010

used SVMs and other natural language methods to extract identifiers [123, 124].

Other implementations use machine learning to parse the clinician texts to improve the inter-

pretability of the text itself. A strong example of that is a 2012 study that used Naı̈ve Bayes, C4.5,

and SVMs to identify sentences and fragments of text that are negatory or speculative [125]. For

example, it is important to note that the text “not hypertension” or “maybe hypertension” are not

necessarily the same as “hypertension” without that qualifier. Another study, published in 2011,

used SVMs to detect abbreviations and shorthand in clinician free text [126]. This is an important

consideration, as the medical community uses a variety of shorthand’s that could blur the meaning

of certain phrases or words across different physicians or areas. Yet another study, published in

2009 by Uzuner et al. used advanced natural language and machine learning methods to identify

free-text diagnoses as present, absent, uncertain, or misassigned [127].

Pakhomov et al. used a Naı̈ve Bayesian classifier and bag-of-words to assign billing codes to

free-text diagnoses in 2006 [128]. A similar study from the same author was published in 2008

and SVMs to summarize the findings of foot examinations in clinician free-text [129].

An intriguing implementation of unsupervised machine learning methods in EMR data was

published in 2013 by Lasko et al. Here, they used clustering methods to identify subgroups of

patients with longitudinal serum uric acid measurements [130]. Interestingly, this unlabeled cluster

method was able to achieve an AUC of 0.97 in distinguishing between uric acid signatures of

patients with gout vs patients with acute leukemia.

2.1.4 Gaps in the Machine Learning Literature

The use of machine learning algorithms for disease phenotyping is not a new concept. There are a

handful of studies that have done this in the past. What makes this study unique is that we will be

using only interpretable machine learning methods. As mentioned earlier, there are several studies

that have generated disease phenotypes using ANNs, SVMs, and random forest algorithms. While

these methods have shown promising results in distinguishing between cases and non-cases, human

readable methods are not commonly used. This is a necessary step to bridge the gap between the

classic method of case definition development and the automated methods that could be used in the
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future. Furthermore, it has been shown in these previous studies that phenotypes, case definitions,

and prediction models may be portable across EMR systems, but that accuracy is maximized when

models are trained in each setting. Therefore, it is necessary to create case definitions that are

specific to Canadian datasets.

Here we will implement machine learning algorithms to create case definitions for chronic

diseases. In order to compare the committee method of case definition development with the

machine learning method, these methods must be implemented in an EMR system that has had

previous case definition work performed. There are a few large EMR networks in Canada that are

viable candidates.
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3 The Canadian Primary Care EMR Landscape

3.1 CPCSSN

The Canadian Primary Care Sentinel Surveillance Network (CPCSSN) is an organization that

collects EMR data for the purposes of chronic disease surveillance and clinical research, prac-

tice audit and feedback, and health services and policy research in Canada. It currently includes

11 different regional EMR networks across Canada, including over 1180 sentinels (primary care

physicians) covering more than 1.7 million Canadian patients across 8 provinces/territories [136].

CPCSSN has received funding for the surveillance of eight chronic diseases: hypertension, di-

abetes, osteoarthritis, depression, dementia, COPD, epilepsy, and Parkinson’s Disease from the

Public Health Agency of Canada.

CPCSSN collects de-identified data from each of the 11 networks pertaining to each of the eight

previously specified conditions, at regular intervals. These data are then cleaned and stored in a

standard data model. The need for cleaning arises from some of the issues with the raw EMR data.

These include, but are not limited to: identifiable features, misspellings, missing data, inconsistent

data, and standardization issues [137].

A common problem with many data sources is that those who generate and record the data

often do not directly benefit from their efforts. CPCSSN provides quarterly reports and statistics to

the physicians, thus allowing the creators of the data to also be end-users of the data. Also, some

work has been done to improve quality improvement projects in the CPCSSN network [138]. This

feedback system also provides an incentive to have more rigorous data discipline. This means that

the data collected is more reliable and accurate, as those who are producing the data actually use

the results of their work. By improving data discipline, we reduce the amount of data cleaning that

needs to be done.

Several studies have been performed using CPCSSN data including quantifying obesity rates

[139], representativeness assessments of the CPCSSN population [140], hypertension management

and prevalence [141], and more. These are all examples of EMR data being leveraged to provide

surveillance across EMR systems, thanks to the common data model CPCSSN developed.

The cleaned CPCSSN data is stored in a relational database, with a unique, anonymized patient

ID attached to it. Each entry also contains a field for the site and network ID, signifying which
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clinic and which EMR system that entry fell under. Table 1 shows the basic structure of the

CPCSSN data.

Table Description

Allergy Intolerance Allergies or reactions to substances, and resultant medications

Billing ICD-9 codes submitted for reimbursement

Encounter Each primary care visit, including reason for visit

Encounter Diagnosis An entry for each diagnosis for each encounter

Exam Measurements including height, weight, blood pressure, etc.

Family History Family history of notable conditions

Health Condition Listing of conditions the clinician saw fit to include in the problem list

Lab Laboratory results for various tests (eg. HbA1c, Fasting Glucose, etc.)

Medication ATC codes and other information describing therapies

Network Description of each of the 11 EMR Networks

Patient Unique ID for each patient, including sex, birth year and birth month

Patient Demographic Patient information including ethnicity, language, etc.

Referral Referrals to specialty clinics

Risk Factor Listing of risk factors (e.g. alcohol, smoking, etc.)

Site Description of Sites

Vaccine List of Vaccinations received

Table 1: Brief description of each of the CPCSSN tables.

The result is a standardized set of EMR data from multiple networks that represents a large

number of Canadian’s primary care information. This is a good setting for the implementation and

testing of case definitions for chronic disease.

Case definitions for each of the eight key conditions have been developed and validated using

samples from CPCSSN data [41, 142, 143].
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3.2 Validation of the Current CPCSSN Case Definitions

In 2014, a study by Williamson et al was published that estimated accuracy measures for commitee-

created case definitions. [41]. This study established a reference standard for a large sample of

patients, determining the presence or absence of eight conditions. After a thorough deliberation

process by a team of physicians and clinical professionals, the case definitions were created. The

validation sample and reference standard derived from this study will be used as the training obser-

vations for the machine learning methods. By comparing validity estimates of committee-created

case definitions with machine learning developed case definitions on the exact same sample, we

can make a fair assessment of the quality of the new case definitions.

An age-stratified random sample of 1920 patients was taken such that 85% of the population

was over the age of 60. This was done to ensure that there were large enough number of cases for

each condition. Note that this will have an effect on our estimates of predictive value and accuracy,

as the sample prevalence of these conditions has been falsely inflated. However, this was deemed a

necessary step, as chart reviews are costly. The true disease status of these patients was determined

by a chart review by a trained abstractor. Table 2 has the validation results.

Disease Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Hypertension 84.9 (82.6-87.1) 93.5 (92.0-95.1) 92.9 (91.2-94.6) 86.0 (83.9-88.2)

Diabetes 95.6 (93.4-97.9) 97.1 (96.3-97.9) 87.0 (83.5-90.5) 99.1 (98.6-99.6)

Depression 81.1 (77.2-85.0) 94.8 (93.7-95.9) 79.6 (75.7-83.6) 95.2 (94.1-96.3)

COPD 82.1 (76.0-88.2) 97.3 (96.5-98.0) 72.1 (65.4-78.8) 98.4 (97.9-99.0)

Osteoarthritis 77.8 (74.5-81.1) 94.9 (93.8-96.1) 87.7 (84.9-90.5) 90.2 (88.7-91.8)

Dementia 96.8 (93.3-100.0) 98.1 (97.5-98.7) 72.8 (65.0-80.6) 99.8 (99.6-100.0)

Epilepsy 98.6 (96.6-100.0) 98.7 (98.2-99.2) 85.6 (80.2-91.1) 99.9 (99.7-100.0)

Parkinsonism 98.8 (96.4-100.0) 99.0 (98.6-99.5) 82.0 (74.5-89.5) 99.9 (99.8-100.0)

Table 2: Validity estimates for the 8 CPCSSN case definitions including 95% confidence intervals.

These committee-created case definitions achieved very strong validity results. This statement

was made regarding the expectations of validity:
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Because acceptable limits for individual metrics need to be suited

to the question of interest, we considered all measures above 70%

acceptable, with any falling into the 70% to 80% range meriting

additional investigation. (Williamson et al 2014)

The case definitions themselves are somewhat complicated, including long lists of medications,

some exclusion criteria. Table 3 through 10 contain the committee-created case definitions. Table

9 contains the case definition for Parkinson’s disease, which is primarily identified through the

ICD-9 code 332, but also includes a list of four medications. However, an exclusion statement

states that if a patient is only identified via the medications, they are to be excluded. It can be seen

that this makes the medication criteria completely unnecessary in the case definition, as there are

no situations in which the medication criteria determine disease status.

It is clear that these case definitions met the criteria for the acceptable limits, and these case

definitions have since been used throughout the CPCSSN network.
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Billing Problem List Medication Lab Result

Two occurrences of
the following code
within two years:

250 - Diabetes, mellitus

Any occurrence of
the following code:

250 - Diabetes, mellitus

ATC Code
A10BF01, A10BB01,
A10BB09, A10BB12,
A10AB01, A10AC01,
A10AD01, A10AE01,
A10AB05, A10AD05,
A10AE05, A10AE04,
A10AB04, A10AD04,
A10BA02, A10BD03,
A10BH01, A10BB03,

A10AC03

The following diagnoses, if met,
make the medication criteria alone insufficient:

256.4 - Polycystic Ovarian Syndrome
648.8 - Gestational Diabetes

249 - Secondary (chemical induced) diabetes
790.29 - Hyperglycemia NOS

775.1 - Neonatal diabetes mellitus

1) Any HbA1c ≥ 7
2) Two occurrences within

one year of: Fasting Glucose ≥ 7

Table 3: The current CPCSSN diabetes case definition. A patient is considered diabetic if they meet the criteria from any of the columns.
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Billing Problem List Medication

Minimum two occurrences
of the following codes within

two years:

1) 401 - Essential hypertension
2) 402 - Hypertensive heart disease

3) 403 - Hypertensive chronic
kidney disease

4) 404 - Hypertensive heart and
chronic kidney disease

5) 405 - Secondary hypertension

Any occurrence of
the following codes:

1) 401 - Essential hypertension
2) 402 - Hypertensive heart disease

3) 403 - Hypertensive chronic
kidney disease

4) 404 - Hypertensive heart and
chronic kidney disease

5) 405 - Secondary hypertension

ATC Code
C07AB04, C09XA02, C03DB01 C08CA01, C07AB03, C07CB03
C09AA07, C09AA01, C07AG02 C03BA04, C09AA08, C09AA02
C09BA02, C09CA02, C09DA02 C08CA02, C09DA02, C08CA02
C09AA09, C03AA03, C03EA01 C03BA11, C09CA04, C09DA04
C09AA03, C09BA03, C09DA01 C02LB01, C03BA08, C09CA07

C07AA06, C09AA10, C03DB02 C09CA03, C08DA01

The following diagnoses, if met, make the medication
criteria alone insufficient:

346 - Migraines
428 - CHF

410 - Myocardial Infarction
412 - Myocardial Infarction

250 - Diabetes
427 - Cardiac Arrhythmia

333.1 - Tremor
456.0 - Esophageal Varices
456.1 - Esophageal Varices

Table 4: The current CPCSSN hypertension case definition. A patient is considered hypertensive if they meet the criteria from any of
the columns.
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Billing Problem List Medication
Age ≥ 35 for any of the below criteria

Any occurrence of the following codes:
1) 491.2 - Chronic bronchitis

2) 492 - Emphysema
3)496 - Chronic airway obstruction

not elsewhere classified

Any occurrence of the following codes:
1) 491.2 - Chronic bronchitis

2) 492 - Emphysema
3)496 - Chronic airway obstruction not

elsewhere classified

ATC Code
R03BB04
R01AX03
R03BB01
R03AK04

The following diagnoses, if met,
make the medication criteria

alone insufficient:
493 - Asthma

Table 5: The current CPCSSN COPD case definition. A patient is considered COPD case positive if they meet the criteria from any of
the columns.
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Billing Problem List Medication

Any occurrence of the following codes:
1) 296 - Episodic mood disorders

2) 311 - Depressive disorder not elsewhere
classified

Any occurrence of the following codes:
1) 296 - Episodic mood disorders

2) 311 - Depressive disorder not elsewhere
classified

ATC Code
N06CA01
N06AB04
N06AB10
N06AB03
N06AB08
N06AX11
N06AG02
N06AB06
N06AF04

The following diagnoses, if met,
make the medication criteria alone

insufficient:
300 - Anxiety disorders

Table 6: The current CPCSSN depression case definition. A patient is considered a depression case if they meet the criteria from any of
the columns.
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Billing Problem List
Any occurrence of the following codes:

1) 715 - Osteoarthritis and allied disorders
2) 721 - Spondylosis and allied disorders

Any occurrence of the following codes:
1) 715 - Osteoarthritis and allied disorders
2) 721 - Spondylosis and allied disorders

Table 7: The current CPCSSN osteoarthritis case definition. A patient is considered an osteoarthritis case if they meet the criteria from
any of the columns.
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Billing Problem List Medication Encounter Diagnosis
Include:

345.* - Epilepsy and recurrent
seizures 780.3 - Convulsions

Exclude:
345.2 - Petit mal status

(without AED)
345.3 - Grand mal status

(without AED)
780.3 - Convulsions (without

AED)
* AED = Antiepileptic drug

Include:
345.* - Epilepsy and recurrent
seizures 780.3 - Convulsions

Exclude:
345.2 - Petit mal status

(without AED)
345.3 - Grand mal status

(without AED)
780.3 - Convulsions (without

AED)
* AED = Antiepileptic drug

ATC Code
N03AF01, N05BA09, N03AE01
N03AX12, N03AX09, N03AX14
N03AF02, N03AA02, N03AB02
N03AX16, N03AA03, N03AX11
N03AG01, N03AG04, N03AX18
N03AD01, N03AX10, N03AF03

Exclusion:
Exclude any case identified only

through medication criteria

Include:
345.* - Epilepsy and recurrent
seizures 780.3 - Convulsions

Exclude:
345.2 - Petit mal status

(without AED)
345.3 - Grand mal status

(without AED)
780.3 - Convulsions (without

AED)
* AED = Antiepileptic drug

Table 8: The current CPCSSN epilepsy case definition. A patient is considered an epilepsy case if they meet the criteria from any of the
columns.
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Billing Problem List Medication Encounter Diagnosis

Include:
332.* - Parkinson’s disease

Include:
332.* - Parkinson’s disease

ATC Code
N04BD02
N04BD01
N04BA01
N04BA03
Exclusion:

Exclude any case identified only
through medication criteria

Include:
332.* - Parkinson’s disease

Table 9: The current CPCSSN Parkinson’s disease case definition. A patient is considered a Parkinson’s case if they meet the criteria
from any of the columns.
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Billing Problem List Medication Encounter Diagnosis
Include:

290.* - Dementias psychosis
331.* - Other cerebral degenerations

294.1 - Dementia in conditions classified
294.8 - Other persistent mental disorders

797.* - Senility without mention of psychosis
438.* - Late effects of cerebrovascular disease

Then Exclude:
797.* (without med)
438.*(without med)

290.8 - Other specified senile psychotic conditions
290.9 - Unspecified senile psychotic condition

331.3 - Communicating hydrocephalus
331.4 - Obstructive hydrocephalus
331.5 - Idiopathic normal pressure

hydrocephalus (INPH)
331.81 - Reye’s syndrome

Include:
290.*
331.*
294.1
294.8
797.*
438.*

Then Exclude:
797.*
438.*
290.8
290.9
331.3
331.4
331.5

331.81

ATC Code
N06DX01
N06DA03
N06DA04
N06DA02

Include:
290.*
331.*
294.1
294.8
797.*
438.*

Then Exclude:
797.*
438.*
290.8
290.9
331.3
331.4
331.5

331.81

Table 10: The current CPCSSN dementia case definition. A patient is considered a dementia case if they meet the criteria from any of
the columns.
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4 Methodology

Here we will outline the new method of case definition development, which should be considered

a candidate to replace or supplement the committee-created case definition process. This method

involves 5 steps:

1. Obtaining the data and chart review

2. Generating model features

3. Selecting the optimal tuning parameters (Bootstrap Phase)

4. 10-fold cross validation

5. Final case definition interpretation

4.1 Obtaining Data and Chart Review

In order to create case definitions using machine learning methods, a sample with a reliable refer-

ence standard must be established. It is important that the sample contains both cases and non-cases

of the disease, and that the prevalence of the condition in the sample is generalizable to the popu-

lation. The reference standard that will be used in this study is a manual chart review of the EMR

by trained abstractors.

In order to assess the validity of a case definition against an EMR, we must calculate a few

metrics.

4.1.1 Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, and Accuracy

In the binary case of disease-status, where both the case definition and the reference standard

result in a positive or negative indication of disease status, we can form a 2x2 table to represent the

agreement and disagreement of the two measures. An example of this is table 11.

Here we use the symbols TP, FP, FN, and TN to represent the counts for each category in the

table. TP stands for the “true positives”. The true positives are those patients that were correctly

classified as having the disease, as per the gold standard and the case definition. FP represents the

“false positives”, which are those whom the case definition classified as having the disease, but in

truth do not have the disease. FN represents the “false negatives”, which are those whom the case
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Reference Standard + Reference Standard -
Test + TP FP
Test - FN TN

Table 11: A 2x2 classification table.

definition classified as not having the disease, but do in fact have the disease. TN represents the

“true negatives”, or those that were correctly classified as not having the condition or disease. In

most cases, these four values are used to estimate four different measures of accuracy: sensitivity,

specificity, positive predictive value, and negative predictive value.

Sensitivity is defined as the proportion of those that do in fact have the disease that are properly

classified [144]. Sensitivity is sometimes referred to as recall when used outside of epidemiology

and medicine. If the sensitivity of a case definition is 90% then we would expect about 90 out

of every 100 patients with the disease to be correctly classified as having the disease by the case

definition. Sensitivity is represented as follows.

Sensitivity =
T P

T P+FN
(19)

Specificity is defined as the proportion of those that do not have the disease that are correctly

classified. If the specificity of a case definition is 95%, we would expect about 95 out of every

100 patients without the disease to be correctly classified as not having the disease by the case

definition. Specificity is represented as follows:

Specificity =
T N

T N +FP
(20)

Positive predictive value (PPV) is defined as the proportion of those classified as having the disease

that do in fact have the disease [145]. PPV is sometimes referred to as precision. If the PPV of a

case definition were 80%, we would expect about 80 out of every 100 patients who were classified

as having the disease to be correctly classified as having the disease. PPV is represented as follows:

PPV =
T P

T P+FP
(21)

Negative predictive value (NPV) is defined as the proportion of those classified as not having the
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disease that truly do not have the disease. If the NPV of a case definition is 85%, we would expect

about 85 out of every 100 patients who were classified as not having the disease to be correctly

classified as not having the disease. NPV is represented as follows:

NPV =
T N

T N +FN
(22)

Finally, accuracy is simply defined as the proportion of classifications that were correct:

Accuracy =
T P+T N

T P+FP+T N +FN
(23)

Some will refer to the complement of accuracy (1-Accuracy) as the misclassification rate.

4.1.2 F1-Score

The F1-score is the harmonic average of sensitivity and PPV [145]. This is defined as:

F1 =
Sensitivity∗PPV
Sensitivity+PPV

(24)

Here the sensitivity is a measure of accuracy for those that are true cases, but the positive

predictive value includes non-cases as well. This measure is often better suited for conditions with

low prevalence compared with the misclassification rate.

4.1.3 G-Mean

The G-mean, similar to the F1-score is a function of the sensitivity and the PPV. Rather than the

harmonic mean, the G-mean is the geometric mean:

F1 =
√

Sensitivity∗PPV (25)

It can be seen that these two measures are very similar in definition, and often result in the same

set of tuning parameters and case definitions.

4.1.4 Naı̈ve Mean

This is a little-used metric that has gone by different names. It will be called the Naı̈ve mean in

this study. This is the arithmetic mean of the sensitivity and specificity.

Naı̈ve Mean =
sensitivity+ specificity

2
(26)
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This weighs sensitivity and specificity equally, regardless of prevalence. The downside of this

metric is that it has no incentive to yield strong predictive values.

4.1.5 Prevalence and Validity

It is important to consider how prevalence can influence the validity measures of a case definition.

Prevalence, as discussed earlier, is the proportion of a population with a disease at a specific point

in time or over some period of time. When we reexamine the definitions of PPV and NPV, it

can be shown that they are dependent on disease prevalence. PPV uses both the true positive and

false positive counts. The true positives are those with the disease and the false positives are those

without. By using both values in the calculation of PPV, it is clear that both PPV and NPV are

directly dependent on the prevalence of the condition [146]. This dependence can also be seen by

rearranging the PPV and NPV formula as such:

PPV =
sensitivity∗d

sensitivity∗d +(1− speci f icity)(1−d)
(27)

NPV =
speci f icity∗ (1−d)

speci f icity∗ (1−d)+(1− sensitivity)∗d
(28)

Where d is equal to the disease prevalence [147]. It is widely held that as prevalence increases so

does the PPV, and NPV decreases [148].

Sensitivity is calculated with the true positives and the false negatives, both of which truly do

have the disease. Specificity is calculated with the true negatives and the false positives, both of

which do not have the disease. This has led to the common stance that sensitivity and specificity

are more or less invariant to prevalence [149].

The issue of prevalence becomes important when evaluating the accuracy of a case definition.

If the sample has an artificially high or low prevalence (due to some type of bias or mechanism in

the selection process) the validity estimates may be inaccurate in the real-world application of the

case definition. Therefore, it is important to validate case definitions in settings that resemble the

true population. It has been shown that many administrative data validation studies have reported

PPV and NPV inappropriately, as the prevalence of the validation cohort did not represent the true

population [150].
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4.2 Generating the Model Features

In order to create a classification model, one must create the data frame that holds each of the

candidate features. There is a false sentiment with machine learning that the algorithms do all the

work. This is not true; the user must specify the candidate features and perform data manipulation

and transformation in order to fit a machine learning model.

For simplicity, we have created binary features only. This data frame is comprised of a single

row for each unique patient in the sample. The features are added as columns to this data frame.

They are set to 0 if a patient does not meet the criteria and 1 if they do.

4.2.1 ICD Codes

In the CPCSSN data model, ICD codes can be found in the Billing, Encounter Diagnosis, and

Health Condition tables. The codes from the Billing table are the classic administrative data offer-

ings, being the codes that were submitted for reimbursement. The Encounter Diagnosis and Health

Condition ICD codes are assigned via CPCSSN’s cleaning algorithms. This is in an attempt to

summarize the free-text that is put in the encounter diagnosis and problem list tables into a more

familiar format and language. Not every entry in the Encounter Diagnosis and Problem List tables

are assigned an ICD code, as there is sometimes ambiguity in the text. However, the free-text is

also available, and is included in the analysis.

Every unique ICD code that appeared in the sample was used as a feature. This includes trun-

cated codes, such that there are unique features for ICD code “250.*” and “250.0”. In this example,

the “250.*” feature includes the “250.0” cases as well. This method allows for the distinction be-

tween whole-number codes, and specific decimal indications.

Furthermore, separate features identifying any instance of a code, two instances within one

year, and two instances within two years were selected. Temporal cosiderations have been included

case definitions in the past, so it is included here. The features were also stratified by which table

they come from, so there is a feature for ICD code 401 in the billing record and an independent

record for code 401 in the encounter diagnosis table.

Note that this method of feature generation requires no clinical knowledge or specialization to

the condition of interest. Every unique ICD code is included.
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4.2.2 ATC Codes

The feature generation of the ATC codes is similar to the billing codes. The Medication table is the

only source of such information. Quantity, dose strength, and route were not included as features,

as there is not a standard or consistent notation for these fields in the CPCSSN data model.

Every unique ATC code was included as a unique feature, including temporal stratification of

two occurrences within one year and two occurrences within two years. Truncation of the ATC

codes were conducted such that families and classes of drugs were also captured, and not just the

active ingredient.

4.2.3 Laboratory Values

CPCSSN collects lab data for the test and measurements seen in table 12.

Glucose Tolerance

Fasting Glucose

Hemoglobin

Total Cholesterol

Triglycerides

Serum Creatinine

Thyroid Stimulating Hormone

Albumin Creatinine Ratio

HDL

HbA1c

LDL

Microalbumin

eGFR/GFR

International Normalized Ratio

Table 12: The laboratory information that is recorded in the CPCSSN database

Features were created for each of the above tests. A range of plausible values was determined.

For example, for the HbA1c test, the result is stored as a percentage. Plausible values are in the

3-11% range, so a systematic number of cut-points were calculated. A feature for an HbA1c score
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greater than 7.0, 7.1, 7.2, etc. was generated, including features for two occurrences within one

year, and two occurrences within two years.

4.2.4 Referrals

Referral information in CPCSSN is primarily stored as a SNOMED CT code. For example, the

code “183519002” refers to a referral to a cardiology service. A feature was generated for each

unique referral code. There are many referrals that were not given a SNOMED CT code, but

clinician text was assigned. The information from the text was also be used.

4.2.5 Free Text

Another asset that the EMR brings is the inclusion of physician free-text. Invaluable information

that was previously unavailable in administrative data sources is now readily available. This also

brings complications though. Automated recognition and handling of free text is a field of study

commonly referred to as Natural Language Processing (NLP). It is being widely used in combi-

nation with machine learning for all sorts of classification and prediction purposes [151]. This

is a broad area of study, but for this analysis, a tokenization or “bag-of-words” approach will be

implemented.

Tokenization is a very simple concept: partition a sentence into individual words. Rather than

the computer storing the entry as, “Essential Hypertension - r/o secondary causes,” we can store

the sentence as “Essential,” “Hypertension,” “r/o,” “secondary,” and “causes.” This tokenization

will allow a computer to see that the word hypertension appears in the entries of the patients with

a reference standard indication of hypertension. Sometimes this process is referred to as “bag of

words” because the structure of the sentence is not preserved, just the words within it [152].

In terms of our classification problem wherein we hope to estimate y ε{0,1}with x ε{x1,x2, ...,xn},

this means creating a binary or count variable for each word that appears in the physician free-text.

Most text is case-sensitive, so a common practice in NLP methods is to convert all characters into

lower case, remove all symbols, and sometimes remove all numbers as well. This is a simple way

of standardizing the text.

Basic tokenization methods fail to take into account negative indication terms that indicate the

absence of a disease. An important distinction should be made for terms that include a negative

descriptive statement; for example, “no diabetes” or “borderline hypertension”. Clearly, we do
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not want to include these statements as indications of disease, but the basic tokenization or bag of

words method is unable to properly classify the statement.

The common way to deal with this problem is to expand the bag-of-words method to include

two or three-word combinations. This will allow us to observe the cases in which a negative

indication term is applied to a condition. Obviously, using this approach is more computationally

expensive, as we have now increased the number of tokenization’s since we will still include each

word on its own as well. In large datasets, this can lead to a large number of variables being

created. Some classifiers with limited feature selection tools may be unable to sift through that

many variables.

One solution to this problem is to only look for negative indication terms around certain key

words. If you are creating a case definition for osteoarthritis, you can specify that the tokenization

include the word “osteoarthritis” by itself as a variable, with the word preceding it as another

variable (e.g. “no osteoarthritis” or “query osteoarthritis”), or even with two words preceding it

as another variable (e.g. “query for osteoarthritis”). This method is instrumental in dealing with

negative indication terms. A similar method is to create a list of potentially negative indication

terms (e.g. “no”, “query”, “maybe”, etc.) and discount the words following it.

For this study, free-text features were generated using a bag-of-words approach. Free text was

obtained from the fields shown in table 13.

CPCSSN Table Field

Encounter reason orig

Encounter Diagnosis
diagnosistext orig

diagnosistext calc

Health Condition
diagnosistext orig

diagnosistext calc

Medication
name orig

name calc

Referral
name orig

name calc

Table 13: The tables and fields from which text was used in feature generation
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This generates a feature for each unique word that appears in these fields. Each of these fields is

treated separately, so there can be differentiation between the source of the text. This is important

as there may be a significant difference between the words appearing in some fields compared to

others. For example, it may be more indicative of true disease status to have the word “hyperten-

sion” appear in the problem list as opposed to the encounter diagnosis field.

Further text feature generation was performed using wildcard searches for keywords, phrases,

and truncations. For example, the wildcard search for “hypert*” indicates a feature that includes the

text “hypertension” and “hypertensive”, words that would not be deemed the same by the bag-of-

words approach. Similarly, groupings of words can be put together to improve the prediction of a

feature. For example, when trying to distinguish between type 1 and type 2 diabetes, we generated

a feature that combines “type 1”, “t1dm”, and “insulin dependent diabetes”. Also, features were

generated for keywords across all text fields.

4.3 Validation Methods

When a machine learning algorithm is implemented, there are steps that should be taken to maxi-

mize accuracy and get fair estimates of validity. The two most common methods for these steps are

called bootstraps [153] and cross-validation. Both of these methods are used to split the available

data into training and test frames. The training frame is set of observations used to train the model,

and the test frame is an independent set of observations where the trained model can be evaluated

in terms of its predictive accuracy.

4.3.1 Bootstrap Validation

The bootstrap takes a random sampling approach to the splitting of the available data [154, 155]. If

there are N observations in a sample, the bootstrap will randomly sample some number X of those

observations with replacement. The most common value of X is equal to N. For example, if we

have 1000 observations, the bootstrap would randomly select 1000 observations with replacement,

meaning a single observation can be included multiple times. This constitutes the training data.

The test data is comprised of those observations that were not selected for the training data.

It is important to note that by randomly sampling observations with replacement for the train-

ing set, we are using repeated observations. It is common for observations to be included in the
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training set several times over. The test set, on the other hand, does not contain any duplicate obser-

vations. This means that although we are training our model on a set containing duplicated entries,

the models are evaluated using a set completely unique from the training set, with no duplicates.

Simulations have shown that using these methods provides reasonable estimates of the sampling

distribution of statistics [156].

The model is then trained on the training set, and evaluated on the test set. It is generally

suggested that the process should be repeated between 1000 and 2000 times [157] These steps

are repeated many times over, in order to get estimates of validity and variability for the method.

This method is commonly used in model assessment, as well as getting estimates of variance for

non-parametric or small sample statistics [158].

4.3.2 K-fold Cross Validation

K-fold cross validation takes a different approach than the bootstrapping method. Rather than

taking random samples with replacement, this method generates K “folds” of the data [159]. The

most common value of K is 10, which has been shown through simulations to have desirable

properties [160].

With 10-fold cross validation, the available observations are randomly distributed into 10

equally-sized parts, or folds. Nine of these folds are used for training, and the remaining fold

is used for testing. This process is repeated 10 times, such that each fold has been tested on once,

and trained on nine times. The result is 10 different estimates of validity, allowing for an assess-

ment of the variability of the estimates.

4.3.3 Bootstrap vs Cross Validation

In this study, the bootstrapping method will be used for selecting optimal tuning parameters, and

10-fold cross validation will be used for determining the final estimates of sensitivity, specificity,

positive predictive value, negative predictive value, and accuracy.

The bootstrapping method is ideal for setting the tuning parameters because they allow the

algorithm to train on the exact sample size that is observed. If there are N observations in a

sample, the bootstrapped method trains on N observations each time. This is important when it

comes to selecting parameters that shape the complexity or size of the final case definition. Also,

the bootstrap allows for more than 10 iterations of the algorithm. The more iterations at this
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step, the better, as it allows for the differentiation of tuning parameters with more clarity and less

variation.

The 10-fold cross validation approach will be used for the final assessments of accuracy be-

cause it gives a more accurate estimate of confidence intervals than the bootstrap method. It is

widely held that the cross-fold method yields estimates with less bias, but more variability than the

bootstrap method [161]. It is vital that the final estimates be conducted on N observations. More

than N observations will give more narrow confidence intervals than we have the sample size to

estimate. The 10-fold cross validation is well suited to this problem, as we test on each observation

once, and once alone. The bootstrap does not ensure that we are testing on each observation.

4.4 Loss Functions

Every algorithm or model is fit to minimize or maximize some loss function. For example, linear

regression minimizes the sum of the squared residuals. Logistic regression maximizes the likeli-

hood function. For the machine learning algorithms being used, there are several candidate metrics

that can be minimized or maximized depending on the goals of the case definition. For example,

a condition with high prevalence may be well suited by minimizing the misclassification rate. On

the other hand, a rare condition with a low prevalence may benefit from maximizing the positive

predictive value, to ensure that those identified are true cases, or maximize the F1-score, to ensure

a higher rate of sensitivity.

4.4.1 Selecting Optimal Tuning Parameters

The first step in selecting optimal tuning parameters is to select the metric that should be mini-

mized/maximized. Here we have minimized the misclassification rate, as the conditions consid-

ered were not rare. This means that we will ultimately generate one case definitions per algorithm

for each condition.

A bootstrapped validation method was implemented to select the tuning parameters for each of

the aforementioned metrics. Random sampling with replacement of the available observations was

performed to form the training set. The remaining observations were used as the test set. For each

combination of tuning parameters, the bootstrap was performed 30 times. Once all the iterations

were performed, the values were plotted using a Loess smoother, and the maximum/minimum
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value was selected as the optimal tuning parameters for that particular metric. Here we will discuss

the various tuning parameters for each of the algorithms.

4.4.1.1 Tuning Parameters - C5.0 Decision Tree

The C5.0 decision tree has a number of potential tuning parameters. The most important is the

ability to input a loss matrix, allowing the user to create decision trees that specialize in sensitivity

or specificity, regardless of the prevalence of the disease. The matrix specifies a ratio between the

weight of a false positive versus a false negative. Ratios from 1:10 thru 10:1 are included as tuning

parameters.

The C5.0 decision tree also has a parameter called “CF”, standing for confidence factor. This is

a value between 0 and 1, which determines the required amount of “confidence”, or a measure of

the required change in information gain to make a split. Essentially, this is a continuous measure of

how complex, or how many splits the decision tree should have. Values closer to 0 will be larger,

more inclusive trees, whereas the values closer to 1 will be smaller trees, with fewer splits. We will

iterate through values 0.01 through 0.8 in the bootstrapping phase.

There are a few other parameters that might be of use as tuning parameters. Winnowing is

a feature available to the C5.0 algorithm that “winnows” out features that provide no predictive

value. This feature often makes no difference in the final decision tree but is useful in reducing

compute time when there are many features. C5.0 also includes a feature that decomposes the

decision tree into a set of rules. This is useful for determining the final case definition, but makes

little difference in the splits. Another feature is called “minCases”, which specifies the minimum

required number of observations at a node in the decision tree for a further split to be made. If this

parameter is set too low, overfitting and unnecessary splitting may occur. This value will be set at

10, and remain unchanged.

4.4.1.2 Tuning Parameters - CaRT/rPart

Similar to the C5.0 algorithm, the Recursive PARTitioning (RPART) implementation of the

CaRT algorithm includes the input of a loss matrix, and ratios 1:10 thru 10:1 were implemented. It

also has parameter called “cp”, which stands for complexity parameter, which functions the same
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as the “CF” parameter in the C5.0 algorithm. CaRT also includes an analog to the “minCases”

feature. An additional feature that is included here is called “maxdepth” which limits the total

height of the tree. This will not be limited in the CaRT iterations. Note that the CHAID algorithm

has a similar feature.

4.4.1.3 Tuning Parameters - Loss Matrices

The C5.0 and CaRT implementations both include a feature that allows a user to specify the

weights of false positives and false negatives. This is a critical feature, as it allows these algorithms

to be very versatile when attempting to minimize or maximize different metrics.

Take, for example, a condition with a prevalence of 10%. A machine learning algorithm min-

imizing the misclassification rate will favor algorithms with high specificity, but will not have an

incentive to have high sensitivity. In this sample, if we were to assume that no patients had the

condition, we would be 90% correct, with a misclassification rate of 10%. This does not provide

the algorithm much incentive to improve sensitivity if it is at the expense of specificity. The naı̈ve

mean, however, of the sample if all observations are assumed as non-cases is the average of 0%

(sensitivity) and 100% (specificity), which is 50%. Clearly there are metrics are much improved

with an increase in sensitivity.

If a decision tree algorithm with a 10% prevalence is fit with a loss matrix that weighs false

positives 10 times higher than false negatives, the splits made by the algorithm will be selected with

a roughly equal balance of sensitivity and specificity. It should follow that implementations with a

1:1 loss matrix will maximize the misclassification rate, and a 1:10 loss matrix will maximize the

naı̈ve mean.

4.4.1.4 Tuning Parameters - CHAID

The CHAID algorithm does not include a loss matrix, which inhibits its usefulness. There are

other parameters that can be adjusted. The first is the threshold for the p-values. As stated earlier,

the CHAID algorithm determines splits via the p-value of a Chi-squared test. As this threshold is

adjusted, the number of splits increases or decreases accordingly. Iterations from 0.001 to 0.2 were

performed. Another parameter is the maximum height of the tree, similar to the “maxdepth” feature
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in the rPart implementation. Iterations of this variable are performed from 1-7 in the bootstrapping

phase.

4.4.1.5 Tuning Parameters - Forward Stepwise Logistic Regression

Forward stepwise logistic regression has only one parameter that is adjusted. This is the param-

eter that specifies the penalty added to the AIC calculation for an additional variable being added

to the model. As features are added, the AIC increases with each new feature. At a certain point,

the addition of another variable is outweighed by this penalty parameter, and no further variables

are added to the model. Iterations are performed across all plausible values of this parameter.

4.4.1.6 Tuning Parameters - LASSO Logistic Regression

LASSO regression, similar to forward stepwise logistic regression, just has one parameter that

is to be adjusted. This parameter is the penalty or limitation applied to the total sum of the absolute

values of the regression coefficients. When this penalty is low, more features are included in the

model. When this penalty is high, very few features are included. Iterations will be performed

across all values of this parameter.

The result of the bootstrapping phase is a set of parameters for each of the machine learning

algorithms, minimizing one of the metrics previously described, that can now be evaluated for

predictive accuracy.

4.5 Validation and Interpretation

Ten-fold cross validation was used to get final estimates of validity for the case definitions. This

splits the data into 10 unique folds, nine of which are used for training, and one used for testing.

This is repeated 10 times, so that each observation is used for testing once. The result is a 2x2 table

that can be used to calculate final estimates. This was performed four times for each algorithm,

once for each of the metrics used in the tuning parameter selection phase.

Once the validity estimates are established, the final case definitions are created by training the

model on all the available observations. The decision tree case definitions are easily interpretable.
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The final tree can be logically decomposed into a set of rules. In fact, the C5.0 algorithm has an

option that constructs sets of rules rather than trees.

The logistic regression algorithms require a larger amount of interpretation. These models

result in linear combinations of log odds estimates of coefficients. These are not directly inter-

pretable as case definitions. In order to decompose these results to a case definition, all features

with positive coefficients are added to an inclusion list, and features with negative coefficients are

added to an exclusion list. A patient is assumed to be a non-case unless they meet more inclusion

criteria than exclusion criteria.
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5 Manuscript 1 - Comparing feature selection methods for the development of

common chronic disease case definitions in a primary care electronic medical

record database

5.1 Background

With the widespread adoption of electronic medical records (EMRs), the quantity and types of data

routinely collected at the primary care level has expanded beyond simple coding systems. These

systems now include information such as prescription medications, referral information, labora-

tory values, examination values, physician free text describing health conditions and encounter

diagnoses. Increasingly, these data is being used for health services research, practice audit and

feedback, and chronic disease surveillance [162, 163, 30, 164]. However, these activities require

valid and robust case definitions to identify cohorts of patients with certain conditions. A case

definition is a set of criteria in a patient’s EMR that indicates disease status. The Canadian Pri-

mary Care Sentinel Surveillance Network (CPCSSN) is an organization that collects the EMR

data for over 1.7 million Canadians from many EMR vendors and transforms them into a com-

mon data model. CPCSSN has developed case definitions for eight chronic conditions including

hypertension, diabetes, osteoarthritis, depression, dementia, epilepsy, COPD, and Parkinson’s dis-

ease (Williamson et al) [41]. Each case definition was developed by a committee of physicians,

epidemiologists, biostatisticians and database experts before validation. This approach to case def-

inition development relies on the committee’s clinical experience to determine the data features or

patterns that are indicative of the condition of interest before the definition is operationalized, and

is then compared to a reference standard.

The purpose of this work is to introduce a new approach to developing and validating case

definitions using machine learning methods, which removes the requirement of first developing a

consensus-based definition candidate for the validation exercise. We propose a method in which

the results of the reference standard are used as the training data for machine learning classifiers

that can be interpreted as case definitions, specialized to maximize predictive accuracy. To date,

few studies have applied machine learning techniques to create case definitions or decision rules

[165, 106, 166, 101]. A few studies have used decision trees to create rule sets or models in

administrative data settings [167, 168, 169]. Most of the published machine learning EMR studies
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explore predictive modelling rather than case definition development [170, 97, 171]. Predictive

modelling excercises do not require a human readable set of rules, and tend to use complex ”black-

box” machine algorithms methods. This proposed method is likely to improve efficiency and

reduce the costs associated with developing new case definitions. This new method is well suited

to applications in EMR databases, where there are many candidate features.

5.2 Methods

5.2.1 Data Source

CPCSSN is Canada’s largest and only pan-Canadian primary care EMR database [136]. CPCSSN

is a federation of 11 primary care practice-based research networks from 8 provinces and terri-

tories in Canada. CPCSSN extracts data on over 1.7 million Canadians from 12 different EMR

systems and aggregates the data into a standardized format using various cleaning algorithms and

transformations [172, 173].

This project uses data collected by Williamson et al. in 2014 as the reference standard [41].

For that study, the electronic chart of 1920 CPCSSN patients were reviewed for the presence or

absence of hypertension, osteoarthritis, diabetes, and depression, and four other conditions in an

age-stratified random sample. A chart review was deemed to be the optimal reference standard

for accuracy and cost. The size of this sample was selected based on target confidence interval

widths for proportions. The extraction was performed on June 30th, 2012. The reference standard

was established independently of case definitions. Sampling was conducted such that 90% of

the sample was over the age of 60. Sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV) were calculated for each of the committee-created case definitions.

This was done to ensure that there would be a large enough number of chronic disease cases

and ensure coverage for each condition. This strategy falsely inflated the prevalence of chronic

disease in the sample, which has minimal effect on the estimates of sensitivity and specificity, but

likely overestimates the PPV and underestimate the NPV, as the predictive values are related to

the prevalence of the condition. This project attempts to create case definitions for hypertension,

diabetes, osteoarthritis, and depression.

We had access to the entire CPCSSN record for each of these 1920 patients from the June 30,

2012 extraction. The data was received by permission from CPCSSN after the study was reviewed
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by the University of Calgary Conjoint Health Research Ethics Board.

5.2.2 Data Features

Features were selected from the CPCSSN billing, encounter diagnosis, problem list, medications,

laboratory, and examination tables. From the billing, encounter diagnosis, and problem list table,

indicator columns for each unique ICD-9 code that appeared in any of the 1920 patient’s EMR was

created, with separate indicators for codes appearing twice within one year and twice within two

years. From the CPCSSN medications table, each unique Anatomical Therapeutic Chemical code

that appeared in any of the 1920 patient’s medication entries was identified. From the CPCSSN

laboratory table, binary indicators for the occurrence of HBA1C and fasting glucose tests with

scores over multiple thresholds (e.g. HbA1C > 7) were created. An indicator for each word

that appears in the physician free-text, as well as disease-specific keyword searches were included.

This text appears in the problem list, encounter diagnosis, encounter reason, and medication reason

fields.

5.2.3 Feature Selection Algorithms

There are many machine learning classification algorithms, but not all are suitable for this problem.

To create a case definition, a method that can be interpreted as a series of rules is preferred. We fo-

cused on feature selection algorithms that were capable of creating simple rule sets. We compared

3 decision tree classifiers and two methods of feature selection for logistic regression.

The 3 decision tree classifiers are Ross Quinlan’s C5.0 classifier [80, 81], Terry Therneau’s

implementation of CaRT methodology in R [76, 77], and Kass’ Chi-square automatic interaction

detection (CHAID) [83, 84]. The C5.0 method decides splits using an information gain ratio.

Earlier methods simply used an information gain, but the ratio component was implemented to

create more concise trees, as it increases the incentive to make more equal splits. Therneau’s CaRT

decision tree method uses a purity measure called the Gini Index to determine optimal splits. The

CHAID method determines splits via the p-value of a Chi-Squared test. These differences in purity

measures mean they often yield different decision rules on the same training sets. The final class

assignment of a decision tree is determined by the majority class of the terminal node.

These were compared with Forward Stepwise Logistic Regression [68, 65] and LASSO penal-

ized logistic regression [174, 71]; both employ methods of feature selection that can be interpreted
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as an inclusion/exclusion list. The Forward Stepwise method selects features by finding the feature

that makes the biggest improvement in a measure called the Akaike Information Criterion, which

is based on the likelihood function from the regression. The LASSO method assigns a restriction

or “penalty” on the total sum of the coefficients. This restriction forces the model to only include

the variables most associated with the outcome. These methods were selected due to their inter-

pretability and popularity in the machine learning classification literature. For forward stepwise

and LASSO logistic regression, case definitions were derived from a list of inclusion and exclusion

variables. Variables with positive coefficients were added to the inclusion list and variables with

negative coefficients were added to the exclusion list. If a patient’s EMR indicates more entries

on the inclusion list, they are considered a case. This allows a user to create a human readable

set of rules rather than a linear combination of regression coefficients and determing class using a

cutpoint in the log-odds estimate, which is not human readable.

5.2.4 Tuning Parameter Selection

Each of the feature selection algorithms has tuning parameters that limit the complexity of the

model. The decision tree algorithms have a pruning parameter that limits the number of splits

made. The LASSO algorithm has a parameter that limits the magnitude of coefficients. The

Forward Stepwise method includes a parameter that adds a higher penalty for each new feature

included in the model. In order to find the optimal tuning parameter values, a bootstrap technique

was used. This involved the repeated random sampling with replacement of the 1920 observations,

where not all observations are included in the training of the model. The observations upon which

the model were not trained was used as the test data. The training set always contained 1920

observations, and the test set contained an average of 707 unique observations. This was repeated

30 times for each parameter value, and the value that minimized the mean misclassification rate

was selected as the optimal tuning parameter.

5.2.5 Statistical Analysis

The machine learning algorithms are trained using the chart review as the reference standard. The

committee-created case definitions were also compared against the reference standard. In order to

get unbiased estimates, sensitivity, specificity, PPV, and NPV were reported using 10-fold cross

validation along with 95% confidence intervals. 10-fold cross validation is a technique in which
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the sample is split into 10 distinct and equal parts. The predictive model is trained on 9 of the

10 parts, and tested on the remaining part. There is some evidence that the optimal number of

folds is 10, and that it performs better than a bootstrap for determining validity [160]. The only

patient’s excluded for missing data reasons were those that were unable to get a reference standard

diagnsosis. The final reported case definitions was trained using all 1920 observations. All analyses

were conducted using R Statistical Software version 3.3.1 [175].

5.3 Results

Table 14 shows the patient characteristics, including the prevalence of each of the 8 conditions. The

prevalence of each chronic condition was high given that 85.4% of the study cohort was older than

60 years of age. Table 15 describes the 10-fold cross validation results for each of the algorithms

across all 4 conditions. For hypertension, sensitivity ranged between 93.1-96.7%, while specificity

ranged from 88.8-93.2%. For diabetes, sensitivities ranged from 93.5-96.3% with specificities

between 97.1-99.0%. For osteoarthritis, sensitivities ranged from 82.0-84.4% with specificities

between 92.7-94.0%. For depression, sensitivities went from 81.4-88.3%, and specificities ranged

from 93.4-94.9%. A visual comparison of the validity estimates for the committee-created case

definitions and the C5.0 estimates is seen in Figure 5. When comparing these values with the

committee-created case definitions, we see that the machine learning methods yield comparable

validity measures in each category, and are significantly better in a few conditions. In hyper-

tension, sensitivity and NPV are significantly higher with every of the automated methods. In

diabetes, specificity and PPV are significantly higher using C5.0 and CaRT methods. The machine

learning case definitions more concise than the committee created case definitions. The CPCSSN

Committee Created case definitions are available on www.cpcssn.ca.
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Patient Characteristics Percent

Gender (% Male) 44.5

Age ≥ 60 years 85.4

Disease Prevalence:

Diabetes 16.8

Hypertension 50.1

Depression 20.2

Osteoarthritis 31.6

COPD 7.9

Dementia 4.9

Epilepsy 7.3

Parkinsonism 4.3

Number of Chronic Conditions

(Of 8 CPCSSN conditions):

0 22.7

1 34.6

2 26.1

3+ 16.6

Table 14: Patient Characteristics
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Condition Algorithm Sensitivity Specificity PPV NPV

Hypertension

Committee 84.9 (82.6,87.1) 93.5 (92.0,95.1) 92.9 (91.2,94.6) 86.0 (83.9,88.2)
C5.0 94.8 (93.1,96.1) 92.2 (90.2,93.7) 92.4 (90.5,93.9) 94.6 (92.9,96.0)
CaRT 93.1 (91.3,94.6) 93.2 (91.4,94.7) 93.2 (91.4,94.7) 93.1 (91.3,94.6)

CHAID 95.4 (93.8,96.6) 92.0 (90.0,93.6) 92.2 (90.3,93.8) 95.2 (93.6,96.5)
FS 96.0 (94.5,97.1) 90.4 (88.3,92.1) 90.9 (88.9,92.6) 95.8 (94.2,97.0)

LASSO 96.7 (95.3,97.7) 88.8 (86.6,90.7) 89.6 (87.6,91.4) 96.4 (94.9,97.5)

Diabetes

Committee 95.6 (93.4,97.9) 97.1 (96.3,97.9) 87.0 (83.5,90.5) 99.1 (98.6,99.6)
C5.0 93.5 (90.0,95.8) 99.0 (98.3,99.4) 94.9 (91.7,97.0) 98.7 (98.0,99.2)
CaRT 94.7 (91.5,96.8) 98.9 (98.3,99.4) 94.7 (91.5,96.8) 98.9 (98.3,99.4)

CHAID 96.0 (93.0,97.7) 98.4 (97.7,99.0) 92.5 (89.0,96.0) 99.2 (98.6,99.5)
FS 96.3 (93.4,98.0) 98.2 (97.4,98.8) 91.7 (88.1,94.3) 99.2 (98.6,99.6)

LASSO 95.3 (92.3,97.3) 97.4 (96.5,98.1) 88.2 (84.2,91.3) 99.0 (98.5,99.5)

Osteo

Committee 77.8(74.5,81.1) 94.9 (93.8,96.1) 87.7 (84.9,90.5) 90.2 (88.7,91.8)
C5.0 82.0 (78.7,85.0) 93.8 (92.3,95.0) 86.0 (82.9,88.7) 91.8 (90.2,93.2)
CaRT 82.4 (79.1,85.3) 93.4 (91.9,94.7) 85.3 (82.1,88.0) 91.9 (90.3,93.3)

CHAID 82.0 (78.7,85.0) 94.0 (92.6,95.2) 86.5 (83.3,89.1) 91.9 (90.2,93.2)
FS 82.0 (78.7,85.0) 94.0 (92.6,95.2) 86.5 (83.3,89.1) 91.9 (90.2,93.2)

LASSO 84.4 (81.2,87.1) 92.7 (91.1,94.0) 84.2 (81.0,87.0) 92.7 (91.1,94.0)

Depression

Committee 80.9 (76.9,84.9) 94.7(93.6,95.9) 79.2 (75.1,83.2) 95.2 (94.2,96.3)
C5.0 84.2 (80.1,87.6) 94.9 (93.6,95.9) 80.7 (76.4,84.3) 96.0 (94.8,96.9)
CaRT 87.1 (83.2,90.2) 93.4 (92.0,94.6) 76.9 (72.6,80.7) 96.6 (95.5,97.5)

CHAID 88.3 (84.6,91.3) 93.7 (92.4,94.9) 78.0 (73.8,81.8) 97.0 (95.9,97.8)
FS 81.4 (77.0,85.0) 94.8 (93.5,95.8) 79.7 (75.3,83.5) 95.3 (94.0,96.3)

LASSO 81.4 (77.0,85.0) 94.0 (92.6,95.1) 77.3 (72.9,81.3) 95.2 (94.0,96.2)

Table 15: 10-fold cross validation estimates of sensitivity, specificity, PPV, and NPV. Shown are estimates for each of the 5 feature
selection algorithms, and the reported validity estimates from the committee created case definitions reported by Williamson et al. 95%
confidence intervals are recorded in brackets.
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Figure 5: A visual comparison of the validity estimates from the committee-created method (black) and the C5.0 decision tree case
definitions (blue).
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Condition Algorithm Definition

Hypertension

C5.0 Encounter Code 401, Problem list code 401
CaRT Encounter code 401, Problem list code 401, ATC code C08CA01(Amlodipine)

CHAID Encounter code 401, Problem list code 401
FS Encounter code 401, Problem list code 401, Billing code 401 twice in 2 years

LASSO
Billing code 401, Encounter text “hypertension”, Encounter code 401,

Problem list code 401

Diabetes

C5.0 Encounter code 250 twice in 2 years, Problem list code 250

CaRT
Encounter code 250 twice in 2 years, Problem list code 250 + billing text

“acute”, Problem list code 250 + not ATC code N02BA01 (Aspirin)
CHAID Encounter code 250, Problem list code 250

FS Encounter code 250, Problem list code 250

LASSO
Billing code 250, Billing text “mellitus”, Encounter code 250,

Encounter code 250 2 in 2 years

Osteo

C5.0 Encounter code 715, Problem list code 715
CaRT Encounter code 715, Problem list code 715

CHAID Encounter code 715, Problem list code 715
FS Encounter code 715, Problem list code 715

LASSO Billing code 715, Encounter code 715, Problem list code 715

Depression

C5.0
Encounter code 311, Problem list code 311,

Encounter code 300.09, Billing code 298 twice in 1 year, Problem list text ”depressive”, ATC Code N06AB10,
problem list list code 298, encounter text ”affective” [eg. bipolar affective, seasonal affective], med N06AB04

CaRT
Encounter code 311, Problem list code 311, ATC Code N06AB04, ATC Code N06AX16,

ATC Code N06AB10, Problem list code 298.0, Billing code 296 twice in 1 year

CHAID
Encounter code 311, Problem list code 311, ATC Code N06AB04, ATC Code N06AB10,

Encounter code 298.0, Billing code 296 twice in 1 year
FS Encounter code 311, Problem list code 311, ATC Code N06AB04

LASSO ATC Code N06AB04, Billing text ”depressive”, Encounter code 311, Problem list code 311

Table 16: The final case definitions for each of the feature selection methods. The commas signify OR statements, the +’s signify AND
statements.
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Figure 6: The diabetes bootstrap plot of the CaRT algorithm for tuning parameter selection.
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Figure 7: The osteoarthritis bootstrap plot of the C5.0 algorithm for tuning parameter selection.
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Figure 8: The osteoarthritis bootstrap plot of the CHAID algorithm for tuning parameter selection.
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Figure 9: The hypertension bootstrap plot of the LASSO algorithm for tuning parameter selection.
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Figure 10: The osteoarthritis bootstrap plot of the Forward Stepwise algorithm for tuning parameter

selection.

Generally, the various algorithms were similar in their validity measures. However, this was

not the case for the depression case definitions. Both of the logistic regression methods resulted in

lower sensitivity measures than the tree-based methods. This is an example of how some conditions

may require a decision tree structure rather than a simple inclusion/exclusion list. There is little

evidence to suggest that any one of the decision tree algorithms is better suited for case definition

development from these results.

There was notable agreement in terms of the features selected for the final case definitions.

Most case definitions included problem list and encounter diagnosis ICD codes. There is often

direct agreement between the algorithms; for example, 4 of the 5 osteoarthritis case definitions are

identical. More diversity exists between the depression case definitions. No two methods selected

the exact same features. In other conditions, there are small differences and sometimes even logical

inconsistencies in some of the definitions. For example, the CaRT case definition for diabetes

includes the word “acute” and the absence of a prescription for aspirin. This emphasizes the need
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to employ clinical knowledge as these minor rules are likely artifacts of the random sample, and

not clinically relevant.

5.4 Interpretation

We have shown that equally valid case definitions can be created using machine learning methods

as compared to committee created case definitions. Once a reliable reference standard is estab-

lished for a sample, it is possible to create new case definitions that utilize all data that is extracted

from the EMR. Furthermore, the validity measures from the 10-fold cross validation show a dis-

tinction between the logistic regression methods and the tree methods for the depression case defi-

nition. There appears to be parity between the decision tree methods in terms of validity measures,

but notable differences in the features selected for the final case definitions.

The depression case definitions show the most obvious differences between algorithms. Unlike

diabetes and hypertension, depression is often a more difficult condition to define using adminis-

trative data. This is due to the sometimes-subjective view of the condition itself, as well as the

granularity of the ICD codes for the condition. A systematic review of hospital administrative data

case definitions for depression found sensitivities ranging from 28-35% [176]. The ICD-9 codes

ranging from 290 to 319 are all mental disorders, several of which could be defined as depression.

The variability in coding makes feature selection less consistent across algorithms. This differs

from the diabetes, hypertension, and osteoarthritis case definitions, which are typically well rep-

resented by a single code (250, 401, and 715 respectively). The C5.0 algorithm seems to favor

specificity compared to the other decision tree algorithms, which have slightly higher sensitivities.

Note that an increase in the specificity value results in more correct classifications than an equal

increase in sensitivity, as there are only 386 depression cases and 1529 non-cases (20.2% preva-

lence). A key strength of this study is that we are able to get estimates of specificity and NPV,

which many other machine learning publications lack, as they only report sensitivity and PPV.

It is important to consider the tradeoff between the accuracy and interpretability of a case

definition. When considering accuracy, there may be cases where sensitivity may be valued over

specificity (screening purposes) and vice versa. On the other hand, slight increases in the validity

measures may not outweigh the loss of interpretability. In these examples, we are not able to

make a clear distinction as to which algorithm is best suited for case definition development. At

73



this point, finding the optimal case definition using machine learning methods may require the

implementation of several methods, and a judgement being made based on clinical and statistical

considerations. Further validation of these methods on other conditions and in other settings may

resolve this ambiguity.

Our study should be interpreted in light of its limitations. First, our sample population is

older than the general population - which was intentional to ensure a higher prevalence of disease.

Further validation needs to be performed to ensure that the validity estimates reported for these

case definitions are generalizable to other ages. Second, there is always reason to believe that the

reference standard is imperfect. A chart review for the presence or absence of these four conditions

can be subjective and difficult to assess with the data used for review. This problem is a reality

of any chart review exercise. Notwithstanding these limitations, this study draws from a relatively

large sample size and was randomly sampled. Further, this study was draws on EMR data from

across Canada, increasing the generalizability of these findings.

5.5 Conclusion

Going forward, it will be important to assess the abilities of machine learning algorithms to develop

case definitions in rare conditions, such as dementia and epilepsy. For rare conditions, minimizing

the misclassification rate may render case definitions with very high specificity but poor sensitivity.

Since the vast majority of the reference set will not have the condition, the algorithms may favor

case definitions that are very exclusive. Here there is very little room for improvement in the

misclassification rate and the algorithm may be unable to improve sensitivity so other measures

should be considered. For example, sensitivity, specificity, the F1-score, the G-mean, or weighted

accuracy could be maximized instead.

Case definitions created using machine learning methods are as valid and generally involve

fewer criteria than definitions developed by a committee of healthcare professionals. The decision

tree algorithms performed best among the machine learning methods considered. This new method

presents a simpler, and in our opinion more efficient, way of developing case definitions for EMR

databases.
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6 Discussion

The key finding from this study is that machine learning methods are useful for creating chronic

disease case definitions that are comparable with committee-created case definitions. In fact, in

some cases, these case definitions outperform the committee created definitions. The case defi-

nitions are also simple and concise, when compared to the committee-created definitions. Most

notably, there are no long lists of medications. These methods allow for timely generation of high

quality case definitions to improve chronic disease surveillance. The results of this study also war-

rant a further discussion about which algorithms are best suited for this process. More work needs

to be done to identify the ideal loss functions to optimize in different settings.

6.1 Comparison of Decision Tree Methods and Logistic Regression Methods

Perhaps the most obvious distinction between the machine learning algorithms can be made be-

tween the logistic regression methods and the decision tree methods. It is clear from the 10-fold

cross validation results that the logistic regression feature selection algorithms were consistently

outperformed by their decision tree counterparts. This is due to two main factors: the lack of use-

ful tuning parameters available to these algorithms, and the inability of the algorithms to explore

feature interactions.

The fact that the logistic methods only offer one tuning parameter limit the versatility of the

feature selection. This is most prominently illustrated by comparing these methods in conditions

where the prevalence is low. In Chapter 5, the only metric that was considered was the misclassi-

fication rate. This is the metric that a logistic regression method is naturally inclined to maximize.

For all conditions, when the misclassification rate is minimized, the logistic regression perform

roughly equally to the decision tree method. The differences become apparent when minimizing

other metrics, especially for rare conditions. Further work will be performed on conditions with

a lower prevalence, warranting the maximization of other metrics, like the G-mean, F1-score, and

Naı̈ve Mean.

Thus far, the only tuning parameter optimized in the bootstrapping step for the LASSO regres-

sion is the penalty applied to the sum of the absolute value of the coefficient estimates. There are

other options available to the LASSO regression that could become useful when optimizing other
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metrics. As with many other regression methods that use likelihood estimates, it is possible to

apply weights to observations. This method has been used in linear regression applications to help

meet distributional assumptions, most notably the assumption of constant variance. We can repur-

pose this method to apply higher weights to the cases or non-cases, resulting in higher sensitivity

or specificity case definitions. This effect is similar to that of the loss matrices in the decision tree

algorithms.

Another limitation of the logistic regression methods is that the algorithm is unable to examine

the relationship between combinations of features. The only algorithms that this implementation

of the logistic methods can produce are a list of inclusion and exclusion features. This only allows

for “or” statements with no opportunity for combinations of features, or “and” statements. For

conditions that can be explained simply, using just a few features with no interactions, this is not

a problem. For more complicated conditions, however, this is a major drawback of the logistic

regression method. Interestingly, no exclusion criteria were selected in any of the final reported

case definitions.

Yet another limitation of the logistic regression methods is that the feature selection is some-

times redundant. For example, the LASSO-generated case definition for diabetes includes a feature

representing the presence of code 250, and the presence of code 250 twice in 2 years. This is a

clear redundancy, as anyone who has been assigned the code 250 twice in two years must also

meet the criteria for receiving the code 250. Here the likelihood estimate of the LASSO logistic

regression included both features because it identified a difference in the estimate of the log-odds

between those that were assigned code 250 twice within two years, and those who were assigned

code 250 at all. The decision tree algorithms, on the other hand, will not select features that have

this redundancy. This is a clear example where the decision tree algorithms are better suited for

case definition development.

6.1.1 An Interesting Case Study

There are situations in which the LASSO and forward stepwise logistic regression methods might

be preferable to the decision tree algorithms. Take, for example, the concept of frailty. Frailty

is a state, often comprised of several conditions. There are many combinations of conditions

and indications that could lead to a patient being deemed as frail. Attempting to use a decision
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tree classifier in this setting would be inappropriate, as the decision tree algorithms are unable to

account for the many independent conditions and features that need not be conditioned upon other

conditions.

Take the Charlson Comorbidity Index for example [177]. This is a measure that attempts to

quantify the 10-year mortality risk using a scoring system comprised of several conditions. As a

patient is diagnosed with additional conditions, their score increases according to the weight of

that condition. A decision tree classifier is unable to assess variables independently in this way.

A logistic regression method for feature selection, on the other hand, is much better suited for the

development of an index of this type, as it is able to generate lists of inclusion criteria, adjusting for

other conditions, but not conditioning each new condition on the previously included conditions.

6.2 Overfitting - Artifacts Observed in the Case Definitions

There are several examples in these analyses of the machine learning feature selection methods

choosing features that likely have no place being used in a case definition. For example, the CaRT

definition for diabetes includes the prescription of Aspirin. The C5.0 definition for depression

selected the free-text term “affective” from the encounter text. This feature is relevant for terms

like “bipolar affective disorder” but may not be relevant for indications like “seasonal affective

disorder”. This feature may not be generalizable outside of this specific sample, as the patients who

were assigned the text ”seasonal affective disorder” also happened to be suffering from depression.

This will not be the case with all patients.

A very interesting example of overfitting has been observed in other work, attempting to create

a case definition that distinguishes between type 1 and type 2 diabetes. The C5.0 algorithm maxi-

mizing the naı̈ve mean of sensitivity and specificity selected the word “LMC” as being predictive

of diabetes status. “LMC” refers to a specialty clinic operating in Calgary that treats type 1 dia-

betic patients in southern Alberta. There is a perfectly fine clinical reason why this feature was

selected for inclusion in the case definition: Those that are referred to the LMC clinic are type 1

diabetes cases. This is where we can distinguish between two types of overfitting. The first type is

where the machine learning algorithm overfits the available observations and selects a feature that

is an artifact. An artifact is an unwanted feature that has nothing to do with true disease status.

The second type of overfitting can occur at the sampling level. In this case, the model has not
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overfit the training data, rather the sample itself is overfit, and the observations within cannot be

assumed relevant to the general public. This emphasizes the importance of tailoring the sample to

the population you wish to make inferences about.

6.3 Customization of Case Definitions

Thus far, we have created case definitions that perform well compared with committee-created

case definitions. Future work will need to be done on low-prevalence conditions, and conditions

that are not easily defined. For example, the distinction between type 1 and type 2 diabetes is not

easily made in ICD-9. It is widely believed that the way to differentiate the type 1 from the type 2

cases in administrative cases is through medications. Type 1 diabetes patients tend to be prescribed

insulin, whereas type 2 diabetes patients get other glucose-lowering drugs. The free-text may also

provide a crucial role. Further exploration of which loss functions are optimal for different types

of conditions should be considered.

Perhaps the most powerful advantage of using machine learning methods for case definition

development is flexibility. It is possible to create multiple case definitions that maximize different

metrics. For example, a case definition with a high positive predictive value is useful in differ-

ent circumstances than a case definition that achieves a balance in sensitivity and specificity. A

high positive predictive value is achieved when specificities are high, as there are very few false

positives. It is entirely possible in a rare condition to have a case definition that has very poor

sensitivity, but strong positive predictive value. While this case definition would not be useful for

getting an estimate of prevalence, we do know that of those identified, we are confident they are

true cases. When identifying a cohort of patients for a study, it is important to be confident that all

cases are true cases.

Take, for example, a rare condition like Parkinsonism. It is estimated that in industrialized

countries, the prevalence of Parkinson’s disease is about 0.3% [178]. A machine learning algorithm

optimized for accuracy will likely generate a case definition with extremely high specificities, and

will not assign much weight to sensitivity, as there are so few cases. This case definition, with

extremely high specificity and lackluster sensitivity will likely have a high PPV. This means we

are confident that those cases identified by the case definition are true positives, and not false

positives. If a cohort of patients with Parkinson’s was to be identified for some observational
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study, it is critically important that every patient in the Parkinon’s cohort actually has Parkinson’s

disease. This case definition is well-suited for this situation, even though its sensitivity is low, as

PPV is the most important metric.

Alternatively, a case definition that maximizes the F1-score, G-mean, or Naı̈ve mean achieves

more of a balance between sensitivity and specificity, potentially at the expense of predictive val-

ues. A case definition that has moderate sensitivity and specificity, but poor predictive values is

of little use for cohort development, but is much better equipped to illustrate the prevalence of

disease, as it is much more accurate at a population level. This aids in the assessment of the burden

of disease.

The Parkinson’s example described earlier can illustrate this concept as well. While a case

definition with low sensitivity but high PPV may be useful in identifying a cohort of patients we

know to be Parkinson’s cases, it is very poor at ascertaining an estimate of prevalence. A case

definition with low sensitivity is doing a poor job of identifying every patient with Parkinson’s.

Implementing this case definition will very much underestimate the prevalence of Parkinsonism

in a population. In order to get a valid estimate of how many cases there are in a population, a

higher sensitivity is desired. A case definition with a balance of sensitivity and specificity is more

appropriate for this purpose than the high PPV definition.

The machine learning methods offer a new opportunity for specialized case definitions. The

previous method of case definition development, using committees, did not develop specialized

case definitions for specific purposes. As these methods develop and are implemented for more

conditions, the surveillance and identification of patients will be vastly improved and made more

efficient.

6.4 Temporal Considerations

One of the greatest strengths of the EMR for chronic disease surveillance is the longitudinal nature

of the data. As time goes on, an EMR may follow a patient for many years, collecting valuable

information. This also presents a challenge that needs to be addressed in case definition and cohort

development work. There are not clear answers in the literature that provide evidence for look-

back windows in case definitions. There are many case definitions developed in the past that have

used look-back periods of two years, some more, and some less. Perhaps the optimal look-back
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period is condition-specific and should be explored independently for each condition.

The CPCSSN data used for this analysis includes billing data dating back to 2002. Most

records, however, have occurred in just the past two years. There are a few methods that could be

considered going forward. One option is to assign a higher weight to the more current diagnoses

and observations compared with the older information. Another option is to specify the look-back

period. For example, only look at records that have occurred in the last two years, one year, or

six months. The efficacy of this approach would likely change depending on the condition. Some

conditions may be more permanent than others, like Parkinsonism as compared with hypertension.

An indication of Parkinsonism from three years ago is likely more relevant than an indication of

hypertension from three years ago. Typically, when a patient is diagnosed with Parkinson’s, they

suffer from the condition for the rest of their life. A patient diagnosed with hypertension, on the

other hand, may be prescribed anti-hypertensive drugs, or undergo a change in lifestyle that eases

the condition, and may even rid them of the condition. These sorts of considerations should be

included in the case definition development process going forward.

There are a few methods of performing a machine learning analysis that could incorporate

this temporal consideration. One method is to include tags in the feature generation step, that

specifies features as being indicative of code X appearing in the billing table in the year leading up

to the reference standard being established. Thus far, the feature selection methods in this project

include tags for multiple codes being observed within a one or two-year time period, but this does

not require the observation to be in the most recent two years. If a patient was assigned multiple

ICD codes for diabetes in 2010, they were considered to meet the criteria for two codes in one

year, even though the reference standard was established in 2014. Therefore, a new set of features

could be generated that only query the most recent years.

Another method of including the temporal information would be to restrict the entire dataset to

the most recent window. For example, if the reference standard was established in 2014, complete

the entire analysis on data solely recorded from 2012 to 2014, or 2013 to 2014. The validity

estimates of each repeat analysis can be compared, and the optimal lookback window determined

for each condition. Either of these two methods could potentially improve the validity of the

generated case definitions.
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6.5 Feature Considerations

There are a number of other features that could be included in case definition development. The

laboratory data is likely being underutilized in the current analysis. The features generated for

Chapter 5 were somewhat rudimentary. Cut-points were set and binary features were generated for

any occurrence, any two occurrences within 1 year, and any 2 occurrences within 2 years. There

are likely more informative ways to include this information. Temporal trends in laboratory values

could be used, average values over given time periods, maximum or minimum values, etc. This

should be an area of future research. Future CPCSSN data cuts will also include more laboratory

information than currently available, which could also include valuable predictive information.

Another step that could be taken is to include more information from the examination tables.

Currently, only blood pressure measurements are used from this table. Perhaps some of the avail-

able information, like BMI, weight, etc. would be useful in case definition development for condi-

tions like diabetes.

Further development of the Natural Language Processing steps can also improve the case defi-

nitions. The bag-of-words approach used here has proven to be effective, but there is likely room

for improvement using more complicated and powerful methods to incorporate physician free-text.

6.6 Reference Standards

The analysis used an age-stratified random sample and a subsequent chart review to obtain the

sample. The age-stratification was done to ensure that the sample had a sufficient number of cases

of chronic disease, as the older population tends to have higher rates of chronic disease. This false

inflation of the prevalence will have some effects on the estimates of PPV, NPV, and accuracy, as

these numbers are dependent on the sample prevalence. That being said, these numbers should

be generalizable to the elderly CPCSSN population. While these estimates may be somewhat

biased, the comparison between the machine learning algorithms and the committee-created case

definitions is still valid, as both estimates used the exact same sample.

Work is currently being done by a few organizations to produce reliable reference standards

without the costly acquisition of chart review data [46]. These methods are in their infancy, and

have yet to be validated in most cases, but are a promising area of future research. Essentially, they

require a high PPV definition for a condition. This results in a cohort of patients that are known
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to be true cases are identified using a high PPV case definition. These values are used cases in

a probability estimation exercise, involving a classifier such as a logistic regression using a large

number of generated features. It is then possible to get a predicted probability of being a true case

from this classifier. A cut-point in the probability estimate can then be specified and we can use the

resulting binary state as a reference standard. The advantage to this method is that we can generate

a reference standard on a much larger sample, without the need of a chart review. The reliability of

the reference standard is questionable in this scenario though, and further validation work needs to

be done to determine when and where this method is appropriate. Currently, it appears that using

chart reviews is the best source of a reliable reference standard. Alternatively, if a disease registry

exists, the presence of a patient in a registry is also a valuable reference standard. Unfortunately,

these registries are not available for every condition, or in every healthcare setting.

6.7 Comparison with More Powerful Machine Learning Algorithms

The machine learning methods used in these analyses were selected based on their ability to be

interpreted as a case definition. Decision tree algorithms are especially well-suited for this process.

There are far more powerful and complicated machine learning algorithms that can be used for

classification purposes, that are not as interpretable. A future area of study would be to compare

the validity results of the simple machine learning methods used here as compared with the more

complicated methods such as the random forest model, Support Vector Machines, or Artificial

Neural Networks. If classification is much improved using these complicated algorithms, it would

be an indication that there are complicated relationships and inter-dependencies of the features that

cannot be captured using a single decision tree. This is an important area of future research that

will provide much insight into the nature of case definition development.

Interpretability is a key part of case definitions as they exist in the current EMR landscape. A

“black box” algorithm does not provide the same amount of inference that the simpler methods

do. While these methods often have a method of determining which features are most predictive

of disease status, they cannot be decomposed into a single set of rules. The decision as to which

is more important: accuracy, or interpretability depends largely on the nature of the problem. In

a purely predictive setting (e.g. predicting 30-day readmission rates in a tertiary care setting), the

“black box” algorithms may be preferred, but the interpretable methods are better suited for case
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definition development.

Interpretable models are also much easier to implement as a case definition, compared with the

more complex methods. If an ensemble tree method, such as a random forest Model were used

to create a classifier, the validity measures will likely be similar or more accurate than the single

decision trees that we have developed. The issue with the random forest model, is that it is far more

difficult to use the random forest model to classify new patients as case positive or case negative.

A random forest model will typically create 500+ unique decision trees, each with varying depths,

and a majority vote of the many trees determine case status. The implementation of this model

requires every single feature used in any of the 500+ trees. This makes the use of this model very

difficult.

Most EMR data lives in a relational database that is read with a Structured Query Language

(SQL). A SQL statement is a human readable sentence that selects a portion of the data living in

the relational database. The ideal case definition can be decomposed into human readable rules,

and those rules can be decomposed into a SQL statement. This makes it very easy to implement

a case definition and quickly identify patients as case positive or case negative. If we were to use

the random forest model, there would be no way to implement the classifier in this way. In fact,

the only way to interpret the random forest model is to perform all the feature generation steps

that were performed in this analysis. This requires the generation of thousands of features, for

every unique code, word, and lab value that exists in the database. Only after these computation-

ally expensive steps are taken can the random forest model be implemented to identify patients as

cases or non-cases. This is because every single feature that is included in any of the 500+ deci-

sion trees must be generated. This makes it very inconvenient to use a non-interpretable method

like random forest, Support Vector Machines, Artificial Neural Networks, K-Nearest Neighbours,

Logistic regressions using predicted probabilities, or even Naı̈ve Bayesian classifiers for case def-

inition development. The interpretable methods are much better suited for the implementation of

case definitions.

6.8 Implementation of this Method

In spite of the limitations and shortcomings of this study, it has been shown that machine learning

methods are capable of creating valid case definitions. This is evidence that the current method of
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case definition development should be replaced or supplemented with machine learning compo-

nents. Of course, clinical knowledge is very much required to ensure that the case definitions are

clinically relevant and logical. This advanced knowledge of each condition will also be required to

tailor the feature generation step as well.

The current landscape of the EMR in Canadian healthcare is anything but standardized. There

are many EMR vendors, formats, data quality standards, and practices across the country. It is

important that case definitions be developed in the setting for which they are to be used. The case

definitions developed here are currently only generalizable or reliable for the CPCSSN network, as

there is no validation of these definitions in any other setting. The major advantage of this method

is that the development of case definitions for new settings and EMRs is now much improved and

hastened. Although there is some evidence that common data models will solve at least a portion

of the diversity problem in the EMR landscape, this standardization is still some time away. The

opportunity for surveillance is here now, and this is a method of making surveillance possible in

most any EMR setting.

6.9 What This Work Has Done to Further the Literature

Up to this point, the majority of studies that have used machine learning methods in an EMR setting

have been for prediction and phenotype work. The resulting models are generally not human

readable, or interpretable as a set of rules. This work has shown that machine learning methods

can be leveraged to create a set of interpretable rules structured in a similar way as traditional case

definitions. This method can potentially bridge the gap between those that value interpretability

and clinical inference, and the “black box” machine learning methods, where interpretability and

direct inference are unclear at best.

This work has also shown that the current method of committee-generated case definitions

can be replaced or supplemented with a machine learning approach. Studies like this should also

lead to further consideration for optimal loss functions, alternate machine learning algorithms, and

other conditions that have been difficult to define using other methods.

6.10 Objectives and Conclusion

There were two objectives identified at in Chapter 2.
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1. Determine if machine learning methods are capable of creating chronic disease case

definitions in a primary care EMR that are comparable in terms of simplicity and

validity measures with committee-created case definitions.

2. Compare different machine learning methods to establish which methods are best

suited for case definition development.

For objective 1, we have proven that machine learning methods can perform as well, and even

improve upon committee-created case definitions in the EMR setting. In some cases, the case

definitions even outperform the existing case definitions in terms of both validity and simplicity.

This is an exciting revelation, as it provides evidence for a shift in the process behind case definition

development. This will not only improve the quality of disease surveillance, but it also improves

the efficiency.

For objective 2, we have shown that decision tree algorithms are superior to feature selection

methods for logistic regression in terms of case definition development. That being said, there is

little evidence to suggest that there is any one algorithm that is best for this purpose. However,

it is vitally important that those algorithms have a tuning parameter that allows for the explicit

assignment of weights to false positives and false negatives. This allows for the greatest amount of

customization and accuracy.

By achieving these three objectives, we have taken a major step towards the original goal:

utilizing the massive potential of the EMR for disease surveillance. This research will aid in

the allocation of resources, the management of chronic disease, and enable novel research to be

performed that will change policy and patient’s lives.
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