Wor wanibe Compuet hashing, ok tees, lnvortible hush function, (He strachiten, st omipeision wigiive
predidlon

Numimm y

W pper whows how tiees cnn bo wtored 1 a very compact form, called “Hotnl, il Dushh (nbion - A
Wothenl 1 dewceibed (it e sultable foe targe trson it grow monotonically wiihin A peadkBoeg masimim
wo it Uit 1, politors In any oo can be ropronstiiedd within @ 1 [logyn | BI0Ng0 0l wlieie o e e
AT ke of chifdeen & node ean fiuve. W Beat deacribe & gotieral wity OF alts g s 00 s iblos,
ANttt Do e the tdew of compaet hashing which underiles the Bonsal siiehirs s g hnkgios
A ol 1o glve o compaet eepresontation of tross, and o practical methodology 18 i ok s il the
foadyn of e wtinctnren. The new represontation In compared with two conveltionil e niplementiom
bt ol fhe stonnge tegquited per node Kxamplos of programs that it sote e 1o o i w s
AR NI wkee Tnelide those at operste on (rie structires dorived from natital IRgNee sl W duwalbe
o thire Hostnd techindoue has beon appliod 10 the ttoos tht arlee In toxt compreminn A0 A slicion,
AL de b ot aenton of the dexign parsmeters thit work well In prictles

Inteaduetion

Whet siottng lmge trees, space I often ot a promium, For many applications, ol s most ol the
wpwes Fhewr e most commonly teprosontod In [log, S bits where S tx the alze of niriny - O v,
MRy Dtk tiptememtations can store politors n [log A | bits where A1 I the stumbmt ol i st avalinble
1o Do e However, there s impliclt intormation In the slze of nodes and Bielt T A in oy
AN e wugrleited fo Turther reduce the slzo of polnters,

TR0 s whiown how treow can be atord 1o an oxtremely comipaet form, eallsd Rt nsing bk
Pbelwn Tl potintern I ny tee et be reprencitod uxing 6 1 |fogyn | DIt pet tode wliste i b e s im
bt o chibdien o node can have Note that this figure I the tolal slze of gh i ol gt i e
Wew ob e Indleldunt one. Shnee (e method involves hashing, s overhoat) must bie bl i o s e
Wl o mdntindze collistons The amount nooded |s governod by the dexlted teeem e I 309 iu
tnnntinhibe o aost npplicntions

P Hustint ietho b sultable for targe (oo which grow monotonieally within o pieheiod nmslimm
wlon LN € oltbebons e handled probbilinleatly und there e chance thi a s a0F nl) - 1hiesan be

e ety snall by incteasing e nisber of bits used (o resolve collisioin Il g s deadgn o
N el 0 AL 0 RO% oceuprney, Dt atiocating one ddltlonal bit et e gldibon il 101 A

There are many applications that must store large trees within a strict maximum size and can tolerate a
low, but non-zero, probability of error. Examples are the PPM text compression method! and the REACTIVE
KEYBOARD predictive text generation system,? which both store trie data structures derived on the fly from
the text seen so far. (A trie, from the word retrieval, is a type of tree data structure designed to speed node
retrieval.) For example, a compression model formed by storing successive 7-tuples of characters from a
770,000-character book (book1 of the Calgary Compression Corpus') produces a trie with 760,000 nodes,
each of which includes a character, a count, and pointers. The pointers associated with a node occupy a total
of 8 bits using the Bonsai method as against 64 bits with conventional address pointers. Thus, in round terms,
a Bonsai node needs only 3 bytes versus the 10 bytes required for a conventional representation. Allowing
a 20% overhead for collision control, the whole tree consumes slightly more than a third of the 7.6 Mbytes
normally required.

Using a Bonsai, a constant average penalty per access is paid; this is independent of the size of the tree
and proportional to memory occupancy. The main restriction of the method is that while leaf nodes can easily
be added or deleted, inserting or deleting internal nodes is expensive. This is because a pointer to a node is
coded with respect to its parent’s physical location to reduce its size. It turns out that when an internal node
is deleted, all its children—and all their children, and so on—must be repositioned in memory if the space it
uses is to be reclaimed.

The next section describes a general way of storing trees in hash tables. Following that we introduce
the idea of compact hashing, which underlies the Bonsai structure. These two techniques are then combined
to give a compact representation of trees. The section following that compares the new technique with two
conventional tree implementations in terms of the storage required per node, and describes how it has been

applied to trees used in PPM and the REACTIVE KEYBOARD.

Hash trees

We first review how to represent a tree using hash tables. The description is independent of any particular
hashing algorithm; an implementation using compact hashing is described later.

Hash tables store values associated with a single key. A hash function is computed from the key and used
as a first-guess location when seeking it in the table. If the location is occupied by another key, one of many
possible collision algorithms is used to select further locations for searching. Some information about the
key must be stored in each occupied location to permit disambiguation. In most designs the stored key is
somewhat larger than an index into the hash table; however, using the Bonsai method outlined later the stored

key can be greatly reduced.

Hash tables

A hash table consists of an array of keys and their associated values. The values stored with a particular key
do not materially affect the algorithms below and are therefore omitted. Let K be the set of all possible keys,
and store the table in an array T'[k],0 < k < M, where M is the size of the table. Associated with each key
K € K is an initial hash address i = h(K), where h : K — {0...M—1}. When akey is being stored in the
memory this is the first location tried. If it is empty, the key is placed there. There are many possible choices
of h; a simple one is described shortly. The general intention is to randomize the key so that the probability
of two keys having the same value of h(K) is no more than chance.

If the initial hash location ¢ already has a key stored in it, a collision algorithm is invoked. This either
moves the incumbent key or searches elsewhere for an empty location. One result is that a key K may
not be stored in T[h(K))] but could end up in some quite different location. Rather than getting involved
immediately in the complexities of particular collision algorithms, 7" will initially be assumed to be a two
dimensional array Tz, j],0 < i < M, where j > 0is called the “collision number.” The first key that hashes

to location 7 will be stored in T[4, 0], the second in T'[, 1], and so on.

Tree representation

Now consider some tree in which each node has at most n children, numbered 0 to n — 1. For the purposes
of hash table storage, nodes are uniquely identified by keys referred to as node keys. These are constructed as

follows:
o if anode is stored at T[4, j], the node key for its m’th child is the triple (m, 1, j);
o a special node key (root) is reserved for the root node.

Figure 1 shows a binary tree encoded in this way. For the sake of a concrete example the nodes are
given one-character labels. All nodes whose label alphabetically precedes their parent’s are located in its left
subtree, while all whose label is greater lie to the right. The Figure shows the nodes with their labels and
the position in T'[7, j] where they will be stored. Arrows between nodes are labeled with the node key of the
child.

The tree is always accessed through the node key (root). In this case, k({root)) = 3, so the root node,
labeled “d”, is stored at T'[3,0]. It has two immediate children labeled “b” and “e” with node keys (0, 3,0)
and (1,3, 0) respectively. The bottom half of the Figure shows the node keys stored in T'(z, j], together with
the associated labels and the hash function h whose values are randomly chosen for this example. Because
h({1,3,0)) = 5, the node labeled “e” is stored at 7'{5,0]. This in turn has two potential children with keys
{0,5,0) and (1,5,0). Only the latter is actually part of the tree, and the former is not stored in T'. The labels

do not participate in the storage scheme being described and are included solely to aid in understanding the
diagram.

Because a child’s node key cannot be constructed until a value has been determined for j by placing its
parent in the table, the structure must be built from the root up. For the same reason a subtree, once stored,
cannot be moved or attached to another node without being rebuilt.

Given the position of a node in the memory—that is, the indices ¢, j—any of its children can be retrieved
by constructing the appropriate node key (m, ¢, j), calculating its hash value, and consulting that location
in the table. To find a node’s parent is even easier, for if the key is (m, ¢, j) its parent is stored in 7'z, ;).
Consequently the representation implicitly makes parent nodes immediately accessible from their children.
This supports an algorithm for tree traversal®* which is iterative rather than the usual recursive method; it

uses a fixed amount of storage and does not modify the tree.

Compact hashing

Compact hashing, developed by Cleary,’ stores keys in a one-dimensional array T[k] rather than the notional
two-dimensional array T'[¢, 5] used above. To resolve any conflict between keys that generate the same initial
hash address, a collision algorithm based on bidirectional linear probing is employed. This is a particularly
efficient version of the general open addressing method® which resolves collisions by calculating a sequence of
new locations from the original one. Bidirectional linear probing’ simply searches the sequence of locations
immediately above and below the original. By storing nodes that hash to the same location in order of
insertion, the collision number j for each one can be determined by counting from the beginning of its
collision group and need not be stored explicitly.

The compact hash modifies bidirectional linear probing to reduce its storage requirements significantly.
Only part of each key needs to be stored in T—if the table is M locations long, the initial hash address i,
which occupies [log, M | bits, can safely be omitted.

An example will help to make this clear. Consider the case when the number of keys in K is less than
M. Then every key can be assigned its own location in 7" without possibility of collision. T" degenerates to
an ordinary indexed array and the keys need never be stored—though a single bit may be needed to indicate
whether or not a particular location is occupied. The same reasoning can be used to show that it is not
necessary to hold the entire key in memory even if the key space is larger than M,

In general, an average of [|K|/M keys are liable to hash to any one location in the table. Bidirectional
linear probing ensures that these will be stored as a group of consecutive locations. With each location,
enough bits must be stored to distinguish any given key from the other members of its collision group; we call

this the “disambiguation” number. A probabilistic argument can be used to determine the maximum number

of keys liable to hash to the same location, and this dictates the number of bits allocated for disambiguation.

Special action must be taken to keep collision groups distinct. In the event that an insertion threatens to
overlap another group, a space must be opened for the new node. This is done by moving the threatened
group by one location and recording enough information to enable it to be found from its original position. It
turns out that a minimum of two extra bits are necessary for each hash table entry. One, the “virgin” bit, is
used to indicate whether or not a particular location has been hashed to. The other, the “change” bit, marks
the boundaries of collision groups. Together they are used to locate groups and distinguish one group from
another. Extra bits can serve to speed up the process of locating the target group, but experiments® indicate
that no sensible further improvement is obtained when more than 5 additional bits are used at hash table
densities of up to 95%.

Muttiple collisions can potentially push nodes above or below the physical limits of the table. This can
easily be accommodated by making the table circular. Alternatively, additional “breathing room” can be
left at the top and bottom of the table—the number of locations required can be determined by probabilistic

arguments, and is very small in practice (on the order of 20 locations).®

Bonsai trees

We now apply compact hashing to the tree storage method presented earlier. All the components are now in
place to build the tree. The structure of a node is described in the next subsection, and following that we give

a suitable hash function for a Bonsai tree.

Size of nodes

For each node, fields must be included for the disambiguation number, the virgin bit, the change bit, and the
data associated with the node—for example, a character label in the case of a text trie. To determine a suitable
size for the disambiguation field, we proceed as follows.

Recall that most of the information in a key is implied by the table index ¢ to which the key was originally
hashed. (Note that the node may not actually be stored in this location, because the collision algorithm can
move nodes around.) The disambiguation number must encode everything in the key which is in excess of
this table index. In our application, the key must identify the node’s parent T'[i, 5], and its own sibling number
m. This information is contained in the triple (m, 7, 7). This triple is randomized to a number which is then
decomposed into two components: the initial hash address, ¢, and the disambiguation number, whose size is
equal to that of the m and j fields combined.

The upshot of this is that the disambiguation field is [log,n] bits larger than that introduced above for

generic hashing, since the key must now also encode the sibling number m. As before, n is the maximum

number of children a node can have. In the case of our binary tree example, n = 2 5o one extra bit suffices.

The size of the collision number j is potentially unbounded. However, in practice it can be restricted to 4
bits. The argument for this is probabilistic. It has been shown?® that there exist hash functions which guarantee
that almost all sets of keys will be distributed randomly through the hash table. The density of keys stored in
the memory is p = N/M where M is the number of available locations and N is the number of items stored.
The probability that exactly keys will share some particular initial hash address is

e’ E:
r!

p will always be less than one, and we assume that it is at most 0.8. The probability € that there will be any
location with more than k keys hashing to it is bounded by

x r
€< Me™08 Z 0'8' .
r=k+1 T

Letting k = 16 (for a 4 bit j field), ¢ < 7 x 10717 M, and even if M is as large as 10'° this yields an error
probability of 3 x 107, which is acceptable in many applications. If this is not sufficient let k = 32 (5 bit j
field) so thate < 3 x 10~*! M, giving for practical values of M an error probability that is almost certainly less
than the probability of a hardware failure before the tree is constructed. Figure 2 shows the error probability
as a fraction of memory size at different hash table densities and for different numbers of j bits. For example,
with a tree of 10° nodes at virtually 100% table occupancy—even with just one free location remaining—a
7-bit disambiguation number reduces the chance of a failed insertion to 1 in 10208

In summary, we use 2 bits for the virgin and change bits, 4 bits for j, and {log,n] bits for m. Of these, j
and m are stored together as the disambiguation field. Each node key will therefore occupy 6 + [log,n] bits
in the hash table. For our binary tree example n = 2, giving 5 bits for the disambiguation field and a total of

7 bits per node for the compact hash mechanism—for any size of tree.

Invertible hash function

To store a node key (m, 7, j) in the hash table it is necessary to construct two numbers: the initial hash address
and the disambiguation number. This must be done in a way that allows (m, , j) to be reconstructed from
the two numbers together. What follows is a practical guide to how to do this.

The first step is to pack the integers m, ¢ and j into a single integer, ¢, using the field sizes:
¢ = (m x sizeof (§) + j) x sizeof () + i = (m x 2* + §) x M + 4.

If M is a power of 2, this can be done efficiently by storing m : j : i as bit fields in a machine word. The result

c ranges between 0 and ¢4, — 1, where ¢pq; = 16nM. However, this does not allow for the special node

key (root). In practice, it is convenient to allow for more than one tree—and thus more than one root—to be
stored in the hash memory. There can be at most M distinct root nodes which can be assigned keys ranging
from 16nM to 16nM + M — 1, which increases ¢4, to (16n + 1) M.

We use ¢ as the numeric value of the node key (m, ¢, j). The next step is to randomize it and split it into

two parts, the index and disambiguation value. Let
¢ = (¢ x a) mod p.

If p is a prime greater than the maximum possible value of ¢, a an integer between 1 and p, and a(P~1)/7 &£
0 mod p for all primes ¢ that divide p — 1, then ¢’ will be random and the step will be invertible.” A suitable
value for a can be found by choosing an initial guess, testing that a® mod p is not 1 for all x of the form
(p — 1)/q for some prime ¢, and if necessary incrementing the guessed value until this condition is met. In
practice, 2p/3 is a good starting point, and generally few increments are necessary. Table 1 shows suitable
randomization values for the case n = 3 which will be used below for the Bonsai structure. Here, p is the
smallest prime greater than cpmqy = (16n +1)M = 49 M, and in all cases less than 8 increments were needed
to find a from 2p/3.

Since ¢’ is now random, a suitable hash function is simply ¢’ mod M, and the corresponding disambigua-
tion value is |¢’/M |. If M is a power of 2, these are available as bit fields.

Toreconstruct (m, 7, j), each of these steps can be inverted. Givenahash table index i and adisambiguation
value b, first compute

d=bx M+

then

c=(a"!xc)modp, wherea ! =a?"?modp.

If ¢ is greater than or equal to 16nM, then the original key must have been the root numbered ¢ — 16n M.

Otherwise, the values of m, i and j are retrieved by

m = cdivloM,
it = cmod M,
J = (cmod16M)div M.

In practice, the physical table is somewhat larger than T to leave breathing room at the top and bottom
of the hash table as mentioned earlier. In programming languages such as C this is conveniently done by
explicitly adding to 7 (or subtracting from it) a small constant, say 20, when determining ¢ (or c').

Another practical consideration is the size of the integers involved in the multiplications and divisions that

compute ¢’ from ¢ and vice versa. For typical values (e.g. M > 1024 in Table 1), a long integer multiplication

