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Abstract

We give a new quantum algorithm to sample from probability distributions over graph

vertices quadratically faster than the optimal classical algorithm, which uses random

walks with stopping rules. Efficient sampling is an important computational task used

in simulations based on stochastic processes. This is the first quantum algorithm that

achieves a quadratic speed-up for sampling from general probability distributions over

graph vertices.

Our algorithm generalizes the controlled quantum walk algorithm proposed by Do-

hotaru and Høyer in 2015. Our main technical innovation is to allow for multiple distinct

controlled reflections. This allows us to generate the quantum state analogous to the tar-

get probability distribution over vertices. This quantum state, when measured, gives a

corresponding classical sample from the target distribution.

We also give a second classical algorithm for sampling from probability distributions

over graph vertices. This algorithm adds different self-loops to each vertex of the random

walk. We show how to construct the quantum analogue of this algorithm. Finally, we

show that we can embed this quantum analogue into our controlled quantum walk.
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Preface

The result presented in this thesis will be part of a manuscript written in collaboration

between fellow student Xining Chen, my supervisor Peter Høyer, and myself.

Xining Chen’s contribution was to prove that when the target distribution ~τ corre-

sponds to the distribution from an absorbing stopping rule (i.e. where we always stop

in marked vertices) then U(~θ) generates |τ〉 quadratically faster than the classical hitting

time by starting in |0, init〉. I generalized this to any target distribution, and the speed-up

is then over the access time, a generalization of the hitting time.
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Chapter 1

Introduction

In this chapter, we introduce the classical (i.e. non-quantum) concepts of sampling and

random walks, and we introduce quantum walks. In Chapter 2, we combine the two

classical concepts to introduce stopping rules of a random walk, which we use to sample

from a target probability distribution over vertices. In Chapter 3, we introduce quantum

states and operators as well as the concept of quantum hitting time, and we construct

the quantum analogue of random walks. We discuss uses of quantum walks in search

problems in Section 3.4.

Our novel contributions begin in Chapter 4, where we construct our new controlled

quantum walk. We show that its stationary eigenvector is a superposition of the quantum

analogues of the random walk’s stationary distribution and the target distribution. Our

main contribution is in Chapter 5, where we prove that controlled quantum walks provide

a quadratic speed-up for sampling over random walks with stopping rules. We find this

result by combining our analysis of random walks with stopping rules and our analysis

of quantum walks, which is the first connection between the two in the literature. In

Chapter 6, we introduce classical and quantum interpolated walks, and show that we can

embed quantum interpolated walks into controlled quantum walks.

1.1 Sampling

Sampling is the task of randomly generating a mathematical object from a set (which in

this thesis is the set of vertices of a graph) so that the probabilities of the samples collected

correspond to a target probability distribution. Sampling is a fundamental component of

tasks such as systems modelling and stochastic simulation [MRR+53, Has70].
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When the target probability distribution is fully known and well-studied, sampling is

easy and can take constant time. It becomes a more difficult task when the target proba-

bility distribution is more complicated or not directly given, such as when we only know

the relative probabilities of different states.

1.1.1 Rejection Sampling

Rejection sampling is an example of a sampling algorithm. It solves the resampling prob-

lem, where we have access to a black box which generates samples of a given probability

distribution encoded by the vector ~σ, where σi > 0 for all i. Our goal is to efficiently

generate samples from a different probability distribution, the target distribution ~τ.

The optimal algorithm, proposed by von Neumann [vN51], is to accept or reject sam-

ples from the black box with some probability based on the sample actually taken, and to

continue sampling from the black box until we accept a sample. The vector of acceptance

probabilities to sample ~τ from~σ is γ~τ
~σ with division taken entry-wise, where the optimal

γ is the largest possible value that keeps probabilities to at most 1. This optimal value of

γ is min~σ
~τ .

We can cast rejection sampling as a special case of sampling over vertices of a random

walk. We show how our quantum algorithm provides a quadratic speed-up over rejection

sampling in Section 5.1.1.

1.2 Random Walks

A random walk is a stochastic process on a graph, where we allow the graph to have di-

rected or weighed edges [Lov93]. At each step of the process, a random walker is at one

vertex of the graph. One step of the walk consists of the random walker moving to a ran-

domly selected neighbouring vertex. The probability of walking to vertex j given that the

random walker is at vertex i is proportional to the weight of the directed edge to j from i,

2



denoted wj←i.

Formally, given a set of N vertices labelled from 1 to N, and given non-negative edge

weights wj←i for every pair of vertices j and i, a random walker at vertex i will walk to

vertex j in the next step with probability

Pj←i =
wj←i

∑k wk←i
. (1.1)

The matrix P with elements Pj←i is the transition matrix for the random walk. We will

refer to P as the random walk for convenience.

The location of the random walker at each step t is a random variable Xt. Because the

probability of the walker being in a particular vertex Xt = xt depends only on the value

of the variable Xt−1 and the walk P, and not on other variables or t itself, the sequence

X0, X1, . . . is memoryless, and is a time-homogenous Markov chain.

We can represent the probabilities of the walker being at each vertex by a probabil-

ity distribution vector (a vector of non-negative real numbers which sum to 1). We use

column vectors, as that matches their use for states in quantum computing. This differs

from the more common usage in the random walk literature which is to use row vectors

for probability distributions.

Given an initial probability distribution~σ, taking one step of the random walk results

in the probability distribution P~σ (note the left-multiplication from using column vectors).

It follows that the probability distribution after t steps of the walk is Pt~σ.

1.2.1 Stationary Distribution

The sum of matrix elements of a given column i in P is

∑
j
Pj←i = ∑

j

wj←i

∑k wk←i

=
∑j wj←i

∑k wk←i

= 1.
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Matrices whose columns sum to 1 and whose entries are non-negative are column-

stochastic, and map probability distribution vectors to probability distribution vectors.

The row vector (1,1, . . . ,1) is then a left (+1)-eigenvector of the matrix P. This implies

that there is a right (+1)-eigenvector for P. This vector is a stationary distribution of P.

1.2.2 Special Properties of Random Walks

There are three special properties that random walks can have. We assume that all three

hold in our construction of their analogous quantum walks.

1. In irreducible walks, every vertex is reachable in a finite number of steps from every

other vertex. Irreducible walks have a unique stationary distribution by the Perron-

Frobenius theorem [Per07, Fro12]. The converse is not necessarily true: for instance,

the random walk of two vertices where one step of the walk always brings the walker

to vertex 2, 0 0

1 1

 ,

has the unique stationary distribution 0

1


and is reducible (i.e. reduces to two strongly connected components) since we cannot

reach vertex 1 from vertex 2.

2. In aperiodic walks, there is no integer that divides the length of all directed cycles on

the graph. A torus with even side lengths is an example of a periodic walk, since if

we coloured it with a checkerboard pattern then the random walker would alternate

colours with each step, making each cycle length a multiple of two.

An irreducible and aperiodic walk, called an ergodic walk, has a single eigenvalue with

absolute value 1, which corresponds to the unique stationary distribution ~π. This im-

4



plies that any probability distribution~σ eventually converges to ~π,

lim
t→∞

Pt~σ = ~π.

3. In reversible walks, the walk is ergodic and the stationary distribution satisfies the de-

tailed balance equation,

Pj←iπi = Pi←jπj. (1.2)

The intuition for the term reversible is that running the random walk and playing it

backwards are indistinguishable statistically. A useful property of reversible walks,

which we use in connection to quantum walks, is that all of their eigenvalues are real.

1.2.3 Edge Weights of Reversible Walks

An ergodic walk whose edge weights are symmetric, i.e. wj←i = wi←j for all j and i, has its

stationary distribution equal to the sum of all outgoing (or equivalently incoming) edge

weights for each vertex,

πi =
∑j wj←i

∑`,k w`←k
. (1.3)

We can normalize the edge weights by setting their sum ∑`,k w`←k = 1, thus simplifying

the above to πi = ∑j wj←i. We show that this is the correct stationary distribution of P by

direct calculation, using the notation~i to refer to unit vectors,

P∑
i

~i ∑
j

wj←i = ∑
k

~k∑
i

Pk←i ∑
j

wj←i

= ∑
k

~k∑
i

wk←i

∑` w`←i
∑

j
wj←i

= ∑
k

~k ∑
i

wk←i

= ∑
k

~k ∑
i

wi←k.

5



In addition, symmetric edge weights for an ergodic walk satisfy the detailed balance

equation and so imply reversibility,

Pj←iπi =
wj←i

∑` w`←i
∑
k

wk←i

= wj←i

= wi←j

= Pi←jπj.

The converse is also true: any reversible walk also corresponds to an ergodic walk

with symmetric edge weights. We set the weights to be

wj←i = Pj←iπi, (1.4)

where the symmetry wj←i = wi←j follows directly from the detailed balance equation.

This construction implies the identity πi = ∑i wj←i, which implies that the transition prob-

abilities in Equation 1.1 remain consistent. Normalized edge weights of reversible walks

are the probabilities that flow along each edge after taking one step from the stationary

distribution.

1.2.4 Discriminant Matrix

Since P is not necessarily a normal matrix (a class of matrices which includes real symmet-

ric matrices), its eigenvectors are not necessarily orthogonal. If P is reversible, however,

following Szegedy [Sze04] there is an easily constructed similar matrix to P, called the dis-

criminant matrix D. It is symmetric and hence has orthogonal eigenvectors, and we obtain

it by

D=
√
P ◦ PT, (1.5)

6



where the (Hadamard) product and square root of matrices are both entry-wise. Using

the detailed balance equation, we may rewrite the matrix elements of D as

Dj←i =
√

Pj←iPi←j

=

√
P2

j←i
πi

πj

=
1
√

πj
Pj←i
√

πi

which gives a second form for D,

D= diag
(√

~π
)−1

P diag(
√
~π). (1.6)

The similarity transformation of Equation 1.6 shows that D is similar to P, and thus

has the same eigenvalues. We can obtain eigenvectors of D by dividing eigenvectors of P

entry-wise by
√
~π. In particular, the unique (+1)-eigenvector of D is

√
~π.

1.3 Quantum Walks

Quantum walks are the quantum computing analogue of random walks, which we dis-

cuss in further detail in Section 3.3. They can solve certain problems asymptotically faster

than the corresponding optimal classical algorithm.

One problem that quantum walks solve faster is the disjointness problem, where two

parties have bit strings of length N and want to determine whether there is some position

where both bit strings have value 1. Classically, a worst-case input requires Θ(N) bits of

communication. There is a quantum walk algorithm that solves the disjointness problem

using O(
√

N) qubits [HdW02, AA03], a quadratic improvement.

Quantum walks can also solve the element distinctness problem, the problem of de-

termining if there exist two elements in a set of N which are identical. Classically, this

requires Ω(N) queries in the worst case, whereas a quantum walk algorithm can solve it

in Θ(N2/3) queries [Amb04].

7



Quantum walks can also solve the problems of detecting and finding marked vertices

on a graph, which we describe in more detail in Section 3.4.

8



Chapter 2

Sampling Using Random Walks with Stopping Rules

A random walk by itself does not have a stopping condition, and so does not directly pro-

duce probability distributions. We can sample from a probability distribution by adding

a stopping rule to the walk. The presentation of stopping rules throughout this chapter

follows that of Lovász and Winkler [LW95].

A stopping rule for a random walk is a set of conditions that determine when the walk

should stop. Once a walk has stopped after starting in some probability distribution ~σ,

the vertex in which it stopped is a sample from some new probability distribution, which

by construction is the target distribution ~τ.

The conditions for stopping can include the number of steps taken, the current vertex

of the random walker, and a probabilistic choice. In general, a stopping rule is a function

from the set of possible paths on the underlying graph to a probability of stopping.

2.1 Access Time

The expected number of steps that a random walk P takes before stopping, given that we

began in an initial probability distribution~σ, is the access time of the stopping rule. For a

given walk, initial distribution, and target distribution, we denote the access time of an

optimal stopping rule from the initial to the target distribution as HT(P, ~σ→~τ).

We use the notation HT because access times relate to the concept of hitting times. The

hitting time is the expected number of steps before stopping in one of a subset of vertices,

called marked vertices. The two are equal if we set ~τ to be the resultant distribution of a

stopping rule which is to stop exactly when we reach a marked vertex.

9



2.2 Exit Frequencies

For each vertex i of the graph, the expected number of times that the walk will exit that

vertex (and so enter a new one) before stopping is the exit frequency for that vertex. The

vector ~x of exit frequencies satisfies ‖~x‖1 = HT(P, ~σ → ~τ), since the expected number

of steps before stopping is exactly the expected total number of times the walk will exit

vertices.

The exit frequencies are the key ingredient to the connection between random walks

with stopping rules and the quantum walks we introduce in Section 4.1. Exit frequencies

are a king of encoding for entire history of the walk as well as the relationship between

the initial and target distributions, via the identity

P~x = ~x +~τ −~σ. (2.1)

Expressed in the form ~τ = P~x +~σ−~x, the identity states that in order to stop at a vertex

(according to ~τ), we must have reached this vertex after having exited another (P~x) or

have started in it directly (~σ), without having then exited it (−~x).

If two stopping rules for the same random walk have the same initial and final distri-

butions, then both their exit frequency vectors~x1 and~x2 satisfy Equation 2.1. In particular,

P(~x1 −~x2) = ~x1 −~x2

so ~x1 and ~x2 differ by a multiple of a stationary distribution of P. If P is irreducible, then

they differ by a multiple of the unique stationary distribution ~π. Conversely, by rewriting

Equation 2.1 as (P−1)~x =~τ−~σ we can see that if two stopping rules differ by a stationary

distribution of P, then their target distribution is the same for the same initial distribution.

We can obtain the exit frequencies of an optimal stopping rule by finding the solution

to Equation 2.1 which minimizes ‖~x‖1. For irreducible walks, we find any solution to

Equation 2.1 and subtract a multiple of ~π such that the smallest element of ~x is 0 (i.e., at

10



least one vertex is absorbing, meaning that the walk always stops if it reaches the absorb-

ing vertex).

2.3 Local Stopping Rules

A local stopping rule is a stopping rule that depends only on the current vertex of the

walker at each given step. That is, the stopping rule function depends only on the last

vertex in the random walker’s path, so we can specify it by a vector of stopping probabil-

ities ~q. Local stopping rules are memoryless like the random walk itself, and so require

minimal overhead to implement.

We can construct a local stopping rule from the optimal exit frequencies ~x as follows.

For each vertex i, the expected number of times we exit the state and keep walking is xi,

and the expected number of times we stop in that vertex (which is the probability that

we stop in that vertex) is τi. Thus, the overall probability that we stop in vertex i upon

reaching it is

qi =
τi

xi + τi
. (2.2)

Equation 2.2 is thus a necessary condition for the local stopping rule.

We argue that these local stopping probabilities are sufficient to generate ~τ from ~π by

an argument from contradiction. If the local stopping rule produced a final distribution~τ′

distinct from~τ, then there would be some vertices where τ′i > τi and other vertices where

τ′i < τi. Because the local stopping rule ensures that~τ′/~x′ =~τ/~x, the vertices with higher

stopping probabilities will also have higher exit frequencies than the exit frequencies for

the target distribution ~τ. This implies that the local stopping rule results in a walk that

enters those vertices where τ′i > τi more often than a stopping rule that stops in ~τ.

The local stopping probabilities thus cannot generate a distribution distinct from ~τ.

The underlying graph P has not changed, and the only difference between the local stop-

ping rule and a rule that generates~τ is when we stop, not how we move before stopping.

11



There is no mechanism by which a random walk modified only by stopping rules can

enter one class of vertices more often while exiting the other class of vertices less often.

12



Chapter 3

Quantum Walks

3.1 Quantum States and Operators

In quantum computing, we represent the state of a system as a ket, which is a column

vector in a Hilbert space. For example, a classical bit which can take on the values 0 and 1

becomes a qubit in the Hilbert spaceH2, whose computational basis states are |0〉 and |1〉.

The conjugate transpose of a ket, which is a row vector, is a bra (hence the term “bra(c)ket

notation”) and we represent it as 〈ψ|.

For any set of quantum states in the same space, any normalized linear combination,

or superposition, of them is also a valid quantum state. Thus, the state 1√
2
(|0〉+ |1〉) = |+〉

is a valid qubit state.

The probability to measure a basis state |φ〉 when we have the state |ψ〉 is |〈φ|ψ〉|2.

Because the probabilities over all orthonormal basis states must sum to one, quantum

states have a 2-norm of one, i.e. they are 2-normalized.

Because physical quantum states are always normalized, the allowed operations on

quantum states must preserve norms. This class of operators is the unitary operators.

The eigenvalues of a unitary operator are on the unit circle, so we can write them as

eıθ for some real eigenphase θ ∈ (−π,π]. Another property of unitary operators is that

the adjoint † of the operator (or conjugate transpose of the matrix) is the inverse of the

operator, which in particular implies that all quantum operators are invertible.

In this thesis, all operators we consider are also real-valued unitary operators in some

basis (i.e. they are orthogonal matrices when written in that basis). This implies, by the

complex conjugate root theorem, that the eigenvalues come in complex conjugate pairs

e±ıθ, with the corresponding eigenstates being complex conjugates of each other.

13



For more general introductions to quantum computing, see [Mer07, dW16].

3.2 Quantum Hitting Time

Our quantum algorithm, which we introduce in Chapter 4, works within the framework

of the quantum phase estimation algorithm [CEMM98]. Phase estimation is a quantum

algorithm which approximately isolates the (+1)-eigenvector of an operator, when the

input is a state that overlaps it.

Theorem 1 (Phase Estimation) [CEMM98, DH17] Given any unitary operator W with spec-

trum

W = |λ0〉〈λ0|+ ∑
i

eıθi |λi〉〈λi|

and a starting state |ψ〉, we can isolate a state with constant overlap with the unique (+1)-eigen-

vector |λ0〉 using

Θ
(
QHT(W, |ψ〉)
|〈λ0|ψ〉|

)
applications of W and with success probability |〈λ0|ψ〉|2, where

QHT(W, |ψ〉) =
√

∑
i
|〈λi|ψ〉|2 cot

(
θi

2

)
. (3.1)

The strategy we use is to construct an operator whose unique (+1)-eigenvector is an

equal superposition of the initial state and the target state. Our algorithm does not require

direct knowledge of the target state, as we only need to know the target probabilities

relative to the initial probabilities as we explain further in Section 4.1.

By running phase estimation, we can isolate the (+1)-eigenvector with 1/2 probabil-

ity, and find a different eigenstate with 1/2 probability. If we have the (+1)-eigenvector,

we perform a second measurement of an ancilla qubit, which with 1/2 probability is |1〉

and collapses the state to the target state, and with 1/2 probability is |0〉 and collapses
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it back to the initial state. The overall algorithm thus has a success probability of 1/4 to

generate the target state from the initial state.

In our calculations, we find the quantum hitting time not by using Equation 3.1, which

involves a full spectral analysis of the operator, but by using another formula in Lemma 2,

which involves finding the (+1)-eigenvector of a related operator.

Lemma 2 Given a real unitary W whose unique (+1)-eigenvector is |λ0〉 and given a starting

state |ψ〉, there is a unique (+1)-eigenvector of the operator W(1 − 2|λ0〉〈λ0|)(1 − 2|ψ〉〈ψ|),

which we denote as |κ〉. We can calculate the quantum hitting time from |κ〉 as follows [DH17],

QHT2(W, |ψ〉) = 1
|〈κ|ψ〉|2 − 1. (3.2)

3.3 Construction of Quantum Walks

We can construct a quantum walk following the construction by Szegedy [Sze04] and Am-

bainis, Kempe, and Rivosh [AKR05]. The walk is on the edges of the graph, instead of on

the vertices as in random walks; this ensures that the resulting operator is unitary and

therefore invertible. For each vertex i, we use the state |i〉 to represent the vertex, and for

each edge from vertex i to vertex j, we use the state |i, j〉 to represent the edge. This is

a shorthand for the tensor product state |i〉 ⊗ |j〉 = |i〉|j〉 = |i, j〉, and it represents having

one quantum register in the vertex state |i〉 and another in the state |j〉.

We define the canonical superposition of the neighbours of vertex i in a reversible

walk P as

|pi〉 = ∑
j

√
Pj←i|j〉 (3.3)

and we construct the following isometry which maps from the vertex space to the edge

space,

T= ∑
i
|i, pi〉〈i| = ∑

i,j

√
Pj←i|i, j〉〈i|. (3.4)
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i ×

pi ×

Figure 3.1: The quantum walk as the set of reflections about |i, pi〉 followed by SWAP

The other important operator we use is the self-inverse operator SWAP which reverses

the direction of edges,

S= ∑
i,j
|j, i〉〈i, j|. (3.5)

We define the quantum walk operator as a reflection about the neighbours of each

vertex followed by a swap of all edges,

W = S(2TT† − 1) = S
(

2∑
i
|i, pi〉〈i, pi| − 1

)
, (3.6)

which we represent as a quantum circuit in Figure 3.1. Note that because we represent

quantum states as column vectors, composed operations apply to states from right to left

when written algebraically.

The stationary eigenvector of a walk under Szegedy’s construction is the quantum

analogue T
√
~π of the stationary distribution ~π, which we denote as

|init〉 = ∑
i

√
πi|i, pi〉 = ∑

i,j

√
Pj←i
√

πi|i, j〉 (3.7)

and it satisfies (2∑i |i, pi〉〈i, pi| − 1)|init〉 = |init〉 by construction.

Using normalized edge weights as defined in Equation 1.4, we can also see that

|init〉 = ∑
i,j

√
wj←i|i, j〉

and since the underlying walk P is reversible, this implies that S|init〉 = |init〉, and hence

W|init〉 = |init〉.
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3.3.1 Szegedy’s Correspondence

Consider the operator T†ST which acts on the vertex space. A state |i〉 corresponding to

vertex i under this operator maps to

T†ST|i〉 = T†S|i, pi〉

= T†|pi, i〉

= ∑
j
|j〉〈j|pi〉〈pj|i〉

= ∑
j

√
Pj←iPi←j|j〉

= D|i〉.

Since this is true for all vertex states |i〉, it follows that

T†ST= D. (3.8)

Now consider an eigenvector |λ〉 of D with eigenvalue λ 6= 1. Since D has the same

eigenvalues as P, and since we assume that P is reversible, −1 < λ < 1, so we may write

λ = cos(θ). If we apply the walk W = S(2TT† − 1) to the edge space vector T|λ〉, we

obtain

S(2TT† − 1)T|λ〉 = 2STT†T|λ〉 − ST|λ〉

= 2ST|λ〉 − ST|λ〉

= ST|λ〉

where we use that T†T= 1 because T is an isometry.

If we apply the quantum walk to this state ST|λ〉, we obtain

S(2TT† − 1)ST|λ〉 = 2STT†ST|λ〉 − SST|λ〉

= 2STD|λ〉 − T|λ〉

= 2cos(θ)ST|λ〉 − T|λ〉.
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We thus see that the subspace spanned by T|λ〉 and ST|λ〉 is invariant under the action

of W. As this is a two-dimensional space spanned by real vectors and W is a real unitary,

this subspace is a two-dimensional rotational space. The angle of rotation is

cos−1 ((ST|λ〉)†(T|λ〉)
)
= cos−1(〈λ|T†ST|λ〉)

= cos−1(〈λ|D|λ〉)

= θ.

Since |λ〉 relates to the corresponding eigenvector~λ of P by

|λ〉 =
~λ√
~π

,

where the division is entry-wise, it follows that each eigenvector of P with eigenvalue

cos(θ) corresponds to a rotational space in two dimensions of W with rotational angle θ.

Note that repeated applications of W to states of the form T~w will always stay in the

span of states of the form T~w and ST~w, or equivalently the span of states of the form |i, pi〉

and |pi, i〉. This relevant space is of dimension 2N− 1, because there is one dimension cor-

responding to the (+1)-eigenvector |init〉, and N − 1 two-dimensional rotational spaces.

We refer to this space as HW. By construction, |init〉 is the unique (+1)-eigenvector of W

inHW.

We can also derive the mathematical objects and relations used in this thesis from

any real unitary operator with a unique (+1)-eigenvector, which we describe in detail in

Appendix B.

3.4 Detecting and Finding

Two main types of problems that quantum walks can solve quadratically faster than clas-

sically are the detecting and finding problems on graphs. Both involve splitting the graph

into marked and unmarked vertices as detailed further in Section 5.2. The detecting prob-

lem is the problem of determining whether marked vertices exist in the graph, and the
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finding problem is the problem of identifying any particular marked vertex if at least one

exists.

Both finding and detecting on the complete graph are solvable using Grover’s search

algorithm [Gro96], which is quadratically faster than a random walk on the complete

graph (the equivalent of sampling vertices randomly until we find a marked vertex).

More generally, we can convert any quantum algorithm with a success probability of p

to find a marked state into another quantum algorithm with constant success probability

using 1/
√

p applications of both the original algorithm and of a reflection of the marked

states, using the amplitude amplification algorithm [BHMT02].

Applying amplitude amplification directly to random walks has the disadvantage of

repeatedly reflecting the (+1)-eigenvector |init〉, a superposition of all edges, whereas

quantum walks only use a single copy of |init〉 at the beginning of their application then

use operations that only affect neighbours in any individual step. Interleaving the quan-

tum walk step W with a reflection of the marked states, and embedding this in phase

estimation, solves the detection problem quadratically faster than quantum walks, and

solves the finding problem if there is a unique marked vertex [Sze04, AKR05]. Interpo-

lated walks [KMOR16], which we discuss as they apply to sampling in Chapter 6, as well

as quantum fast-forwarding [AS19], can both solve the finding problem quadratically

faster than random walks [AGJK20].

Quantum interpolated walks [KMOR16] and controlled quantum walks [DH17] can

sample from the stationary distribution limited to marked vertices (which solves the find-

ing problem), and do so quadratically faster than the extended hitting time, which as we

show in Section 6.4 is upper-bounded by the access time for the analogous classical sam-

pling. We generalize these models in Section 4.1 so that we can sample from any distri-

bution of vertices.
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Chapter 4

Controlled Quantum Walks

Our novel contribution begins in this chapter, where we construct a controlled quantum

walk which can sample from probability distributions quadratically faster than random

walks. We then prove the speed-up in Chapter 5. We generalize the controlled quantum

walk circuit from Dohotaru and Høyer [DH17] to have a different control angle for each

vertex. This allows us to sample from the quantum analogue of the target distribution ~τ,

|τ〉 = ∑
i

√
τi|i, pi〉. (4.1)

We also use scaled versions of ~τ and |τ〉 using the scaling parameter pτ (which in

practice is close or equal to 1) as

~τun = pτ~τ

|τun〉 =
√

pτ|τ〉.

4.1 Construction

We first define the vector of control angles entry-wise as

cos2(θi) =
τun,i

πi + τun,i
=

(
πi

τun,i
+ 1
)−1

(4.2)

with θi ∈ (0,π/2]. We exclude θi = 0 because πi 6= 0 for all i in irreducible walks, and

so cos2(θi) < 1. We have the angle θi = π/2 when τun,i = 0. Note that we can compute

the angles solely from the individual ratios between πi and τun,i. This means that an

implementation can calculate all of the angles in superposition.
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0̃1 0̃2 . . . 0̃N

1, p1 2, p2 . . . N, pN W

≡ 0̃i

i, pi W

Figure 4.1: The circuit U(~θ)

We also define the rotated qubit bases {|0̃i〉, |1̃i〉} for each i as

|0̃i〉 = cos(θi)|0〉+ sin(θi)|1〉 =
√

τun,i

πi + τun,i
|0〉+

√
πi

πi + τun,i
|1〉

|1̃i〉 = −sin(θi)|0〉+ cos(θi)|1〉 = −
√

πi

πi + τun,i
|0〉+

√
τun,i

πi + τun,i
|1〉

(4.3)

where we note that 〈1|0̃i〉 6= 0 for all i.

The controlled quantum walk U(~θ) consists of N reflections of |0̃i〉 controlled by each

|i, pi〉, followed by W controlled by |0〉, as shown in the left-hand side of Figure 4.1. A

physical implementation can perform the N initial reflections as a single controlled oper-

ation, by having a quantum subroutine that calculates the angle of reflection based on the

state of the walk register, as shown in the right-hand side of the figure.

Note that states of the form |i, pi〉 in the walk register control the first N reflections.

These are the only operations in U(~θ) that affect a state of |1〉 in the ancilla non-trivially,

since |0〉 controls W. If we start in states of the form |0〉 ⊗T~w, then whenever we have |1〉

in the ancilla we will always have a superposition of states of the form |i, pi〉 in the walk

register.

The relevant space for U(~θ) is thus the span of |0〉 ⊗ HW and the N states of the form

|1〉|i, pi〉. We refer to this space of dimension 3N − 1 as HU (note that the space does not

depend on~θ).

4.2 Stationary Eigenvector

Lemma 3 The unique (up to scalars) (+1)-eigenvector of U(~θ) inHU is

|U0〉 =
1√

1 + pτ
(|0, init〉 −√pτ|1,τ〉) = 1√

1 + pτ
(|0, init〉 − |1,τun〉). (4.4)
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Proof We rewrite a scaled version of |U0〉 as

√
1 + pτ|U0〉 = ∑

i
(
√

πi|0〉 −
√

τun,i|1〉)|i, pi〉

= ∑
i

√
πi

(
|0〉 −

√
τun,i

πi
|1〉
)
|i, pi〉

= ∑
i

√
πi

sin(θi)
(sin(θi)|0〉 − cos(θi))|1〉|i, pi〉

= −∑
i

√
πi

sin(θi)
|1̃i〉|i, pi〉.

Because |1̃i〉 is orthogonal to |0̃i〉 for each i, it follows that the first N reflections of U(~θ)

have no effect on the (+1)-eigenvector. From Equation 4.4, applying W conditioned on

|0〉 will also have no effect because |init〉 is a (+1)-eigenvector of W.

We can prove that |U0〉 is the unique (+1)-eigenvector of U(~θ) in HU by using the

flip-flop lemma, which we prove in Appendix A and state below.

Lemma 4 (Flip-flop lemma) [Doh15] Let A be a real unitary operator, and let |ψ〉 be a real

state. Let d+ be the dimensionality of the (+1)-eigenspace of A. The dimensionality of the operator

A(1− 2|ψ〉〈ψ|) is (d+ − 1) if |ψ〉 overlaps the (+1)-eigenspace of A, and it is (d+ + 1) if |ψ〉

does not overlap the (+1)-eigenspace of A.

Because W has a unique (+1)-eigenvector |init〉 in HW, and HU consists of the direct

sum of |0〉 ⊗HW and the N-dimensional subspace spanned by states of the form |1〉|i, pi〉,

it follows that W controlled by |0〉 has (1 + N) (+1)-eigenvectors in HU. Each reflection

of |0̃i〉|i, pi〉 in U(~θ) overlaps |1〉|i, pi〉, so after N applications of the flip-flop lemma, the

remaining (+1)-eigenspace of the full operator U(~θ) has dimension exactly 1, making |U0〉

the unique (+1)-eigenvector of U(~θ) inHU. ut
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Chapter 5

Quadratic Speed-Up Over Access Time

In this chapter, we prove our main result that our controlled quantum walk samples from

probability distributions quadratically faster than random walks with stopping rules. We

do this by showing how to use U(~θ) within phase estimation to generate the quantum

state |τ〉 which is analogous to the target distribution ~τ. We can begin the controlled

quantum walk with the state |init〉, which is the analogous state to ~π, or |init〉, which is

|init〉 limited to a set of unmarked vertices.

We prove that the quantum hitting time of our new controlled quantum walk is of

order the square root of the access time from ~π to ~τ, i.e.

QHT(U(~θ), |0, init〉) ∈ Θ
(√

HT(P, ~π→~τ)
)

, (5.1)

and we have a similar quadratic speed-up when starting in |init〉,

QHT(U(~θ), |0, init〉) ∈ Θ
(√

HT(P, ~π→ ~̃τ)
)

, (5.2)

where

~̃τ =
1

ε + pτ
(pτ~τ + ~πM) (5.3)

and ~πM is the stationary distribution limited to the set of marked vertices.

5.1 Starting in |init〉

The form of the (+1)-eigenvector in Equation 4.4 suggests that we can produce the target

state |τ〉 from the stationary state |init〉 using phase estimation. For the purposes of calcu-

lating the quantum hitting time, we write the initial state with the ancilla qubit |0, init〉 as
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a superposition of the (+1)-eigenvector and an orthogonal vector. The orthogonal vector

is

|0, init〉 = 1√
1 + pτ

(
√

pτ|0, init〉+ |1,τ〉) (5.4)

so that we can write

|0, init〉 = 1√
1 + pτ

|U0〉+
√

pτ

1 + pτ
|0, init〉. (5.5)

The exact squared quantum hitting time of U(~θ) starting in |0, init〉 is

QHT2(U(~θ), |0, init〉) = QHT2
(
U(~θ),

1√
1 + pτ

|U0〉+
√

pτ

1 + pτ
|0, init〉

)
=

pτ

1 + pτ
QHT2

(
U(~θ), |0, init〉

)
. (5.6)

We use Lemma 2 to determine an exact form of the squared quantum hitting time

using the vector |κ〉,

QHT2(U(~θ), |0, init〉) = pτ

1 + pτ

(
1

|〈κ|0, init〉|2
− 1
)

=
pτ

1 + pτ

(
‖|κun〉‖2

|〈κun|0, init〉|2
− 1
)

. (5.7)

The form of the vector |κ〉 involves a quantum analogue of the exit frequencies ~x. We

define this quantum analogue |x〉 as

|x〉 = (1− S)T
~x√
~π

. (5.8)

Note that any state multiplied by 1− S, including |x〉, is a (−1)-eigenvector of S. This

follows from S(1− S) = S− 1. More generally, states of the form |i, j〉 − |j, i〉 are (−1)-

eigenvectors of S, and states of the form |i, j〉+ |j, i〉 are (+1)-eigenvectors of S.

Lemma 5 The unique (+1)-eigenvector of the operator

U(~θ)(1− 2|0, init〉〈0, init|)(1− 2|U0〉〈U0|)

inHU is

|κx〉 = |0, x〉+ |0, init〉+ 1
√

pτ
|1,τ〉 = |0, x〉+

√
1 + pτ

pτ
|0, init〉. (5.9)
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Proof We show that this is a (+1)-eigenvector of U(~θ) by direct calculation.

First, we show that 〈U0|κx〉 = 0, making the state invariant under the first reflection.

We can see this from the last formulation of |κx〉 in Equation 5.9, and from |U0〉 being a

superposition of |0, init〉 and |1,τ〉. The first term |0, x〉 is orthogonal to |0, init〉 because

|x〉 is a (−1)-eigenvector of S while |init〉 is a (+1)-eigenvector of S, and |0, x〉 is also

orthogonal to |1,τ〉 because the ancilla qubits are orthogonal. The second term |0, init〉 is

orthogonal to |U0〉 by construction in Section 4.2. We thus have that

(1− 2|U0〉〈U0|)|κx〉 = |κx〉.

Second, we find the effect of the reflection of |0, init〉. Because it too is a superposition

of |0, init〉 and |1,τ〉, it is orthogonal to |0, x〉. We thus negate the |0, init〉 term to obtain

(1− 2|0, init〉〈0, init|)|κx〉 = |0, x〉 −
√

1 + pτ

pτ
|0, init〉. (5.10)

Finally, we apply U(~θ). We begin with its first step, the reflections of the N states

|0̃i〉|i, pi〉. We use a specific superposition of these states,

∑
i

√
τi

pτ

1
sin(θi)

|0̃i〉|i, pi〉 = ∑
i

√
τi

pτ
(cot(θi)|0〉+ |1〉)|i, pi〉

= ∑
i

√
τi

pτ

(√
τun,i

πi
|0〉+ |1〉

)
|i, pi〉

= ∑
i

(
τi√
πi
|0〉+

√
τi

pτ
|1〉
)
|i, pi〉

= |0,ρ〉+ 1
√

pτ
|1,τ〉

where we have introduced the unnormalized state

|ρ〉 = ∑
i

τi√
πi
|i, pi〉 = T

~τ√
~π

. (5.11)

We rewrite the intermediate state from Equation 5.10 as

|0, x〉 − |0, init〉 − 1
√

pτ
|1,τ〉 = (|0, x〉 − |0, init〉+ |0,ρ〉)−

(
|0,ρ〉+ 1

√
pτ
|1,τ〉

)
.
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The subtracted term gets reflected as it is a linear combination of the states |0̃i〉|i, pi〉, and

the first term stays the same since |init〉 and |ρ〉 are in the image of T and

T†|x〉 = T†(1− S)T
~x√
~π

= (1−D)
~x√
~π

=
(1− P)~x√

~π

=
~x− (~x +~τ − ~π)√

~π

=
~π −~τ√

~π
(5.12)

= T†(|init〉 − |ρ〉). (5.13)

The identity T†|x〉 = ~π−~τ√
~π

in particular gives an intuition for why |x〉 is important to this

proof: it encodes the relationship between the initial and the final state, in an analogous

way to the classical identity (1− P) = ~π −~τ when starting in ~π.

After the reflections, we thus have the state

(|0, x〉 − |0, init〉+ |0,ρ〉) +
(
|0,ρ〉+ 1

√
pτ
|1,τ〉

)
= |0, x〉 − |0, init〉+ 2|0,ρ〉+ 1

√
pτ
|1,τ〉.

The final operation is W controlled by |0〉, so we consider only the part of the state

with |0〉 in the ancilla qubit,

W(|x〉 − |init〉+ 2|ρ〉) = S(2TT† − 1)
(
|ρ〉+ (|x〉 − |init〉+ |ρ〉)

)
= S

(
|ρ〉 − (|x〉 − |init〉+ |ρ〉)

)
= |x〉+ |init〉.

We can now prove that |κx〉 is a (+1)-eigenvector,

U(~θ)(1− 2|0, init〉〈0, init|)(1− 2|U0〉〈U0|)|κx〉 = |0, x〉+ |0, init〉+ 1
√

pτ
|1,τ〉 = |κx〉.
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To complete the proof, we show that |κx〉 is the unique (+1)-eigenvector in HU. First,

because |0, init〉 is orthogonal to |U0〉 by construction, the intermediate operator U(~θ)(1−

2|0, init〉〈0, init|) has a (+1)-eigenspace of two dimensions from Lemma 4, with one of the

dimensions being |U0〉. Second, the reflection of |U0〉 reduces the dimensionality of the

(+1)-eigenspace by 1 by another application of Lemma 4, leaving the full operator with

a unique (+1)-eigenvector, which is |κx〉. ut

Lemma 6

‖|κx〉‖2 = 2HT(P, ~π→~τ)− 2
∥∥∥∥~τ~π ·~x

∥∥∥∥
1
+

1 + pτ

pτ

where · indicates entry-wise multiplication of vectors, and the division of vectors is also entry-wise.

Proof We use the fact that |0, x〉 and |0, init〉 are orthogonal as proven above and find

‖|κx〉‖2 = ‖|0, x〉‖2 +

∥∥∥∥∥
√

1 + pτ

pτ
|0, init〉

∥∥∥∥∥
2

=

(
~x√
~π

)T

T†(1− S)2T
~x√
~π
+

1 + pτ

pτ

= 2
(

~x√
~π

)T
~π −~τ√

~π
+

1 + pτ

pτ

= 2‖~x‖1 − 2
∥∥∥~τ
~π
·~x
∥∥∥

1
+

1 + pτ

pτ

= 2HT(P, ~π→~τ)− 2
∥∥∥~τ
~π
·~x
∥∥∥

1
+

1 + pτ

pτ
.

ut

We now prove our main result of the quadratic speed-up over access time in Theo-

rem 7 and Corollary 8.

Theorem 7

QHT2(U(~θ), |0, init〉) = 2
(

pτ

1 + pτ

)2(
HT(P, ~π→~τ)−

∥∥∥~τ
~π
·~x
∥∥∥

1

)
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Proof We prove the statement by using Equation 5.7 and identifying |κun〉 with |κx〉,

QHT2(U(~θ), |0, init〉) = pτ

1 + pτ

(
‖|κx〉‖2

|〈κx|0, init〉|2
− 1
)

=
pτ

1 + pτ

(2HT(P, ~π→~τ)− 2
∥∥∥~τ~π ·~x∥∥∥1

+ 1+pτ

pτ

1+pτ

pτ

− 1

)

= 2
(

pτ

1 + pτ

)2(
HT(P, ~π→~τ)−

∥∥∥~τ
~π
·~x
∥∥∥

1

)
.

ut

Corollary 8 Using U(~θ) within phase estimation, we can generate an approximation of the state

|τ〉 with arbitrary precision from |init〉 with constant success probability using

Θ

(√
HT(P, ~π→~τ)−

∥∥∥~τ
~π
·~x
∥∥∥

1

)

applications of U(~θ).

Proof We set pτ = 1, which makes |0, init〉 an equal superposition of the (+1)-eigenvector

|U0〉 and the orthogonal state |0, init〉. Then, using Theorems 1 and 7, we can produce

an approximation of |U0〉 with 1/2 probability in Θ
(√

HT(P, ~π→~τ)−
∥∥~τ
~π ·~x

∥∥
1

)
steps.

We then measure the ancilla qubit: if it is |1〉 (with close to 1/2 probability) then we

have an approximation of the target state |τ〉, and otherwise if it is |0〉 then we have an

approximation of |init〉. Because of the nature of phase estimation, the larger the size of

the phase estimation circuit, the closer we can approximate |U0〉 and so the closer the

resultant state will be to |τ〉 when we succeed. ut

5.1.1 Quantum Rejection Sampling

Consider the resampling problem from Section 1.1.1. In this problem, we have access to

a black box that generates samples of a distribution ~σ which is strictly positive in all its

elements, and we want to generate samples from a different probability distribution ~τ.
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We can embed this into a random walk sampling problem, by letting P be the complete

graph (including self-loops) with edge weights set to

wj←i = σjσi,

so that the transition probabilities are

Pj←i =
σjσi

∑k σkσi
= σj.

Taking one step of P always results in an independent sample of~σ, so the stationary dis-

tribution of P is~σ. Since the edge weights are symmetric and σi > 0 for all i, P is reversible.

Classical rejection sampling in this case is a local stopping rule with probabilities~q = γ τi
σi

,

which makes the exit frequencies ~x = ~σ
γ − ~τ. The access time is γ−1 − 1, the expected

number of steps for rejection sampling without counting the final accepted sample.

We can apply the results in Corollary 8 to this random walk with stopping rules that

encode rejection sampling. We can then generate |τ〉 usingO
(√

γ−1
)

applications of U(~θ)

if we start in |init〉 = ∑i
√

σi|i〉 ⊗ ∑j
√

σj|j〉. From Equation 4.2, the control angles satisfy

cos(θi) = (σi
τi
+ 1)−1, and so we can compute them in superposition using a quantum

implementation of a classical calculation, all without knowing a global property.

Ozols, Rötteler, and Roland [ORR13] gave a different quantum algorithm that builds

on classical rejection sampling. Their algorithm encodes acceptance as |1〉 and rejection

as |0〉 in an ancilla qubit. It performs amplitude amplification of the direct quantum

analogue of classical rejection sampling, which provides a quadratic speed-up over the

classical algorithm.

An advantage of the algorithm of Ozols, Rötteler, and Roland is that the amplitude

amplification produces the exact target state |τ〉, whereas using U(~θ) within phase esti-

mation produces an approximation of |τ〉. An advantage of U(~θ) is that it does not use

the value of γ directly, since all of its calculations are local.
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5.2 Starting in |init〉

We can also use U(~θ) when we limit the target distribution to a set of marked vertices, and

start in |init〉 limited to the complement set of unmarked vertices. More precisely, we split

the N vertices into the marked setM and the complement unmarked set U . Our initial

state is then

|init〉 = 1√
1− ε

∑
i∈U

√
πi|i, pi〉 (5.14)

where

ε = ∑
i∈M

πi (5.15)

is the probability that a given classical sample of ~π is of a marked vertex. We use the

subscripts U andM on vectors to limit the vectors to their unmarked and marked com-

ponents (i.e. the subscript indicates setting the other component to zero, without renor-

malizing).

Similarly to how we decomposed |init〉 into its |U0〉 component and an orthogonal

component (Equation 5.5), we decompose |0, init〉 into its |U0〉 component and the compo-

nent orthogonal to |U0〉. To do this, we first rewrite |U0〉 as

|U0〉 =
1√

1 + pτ
(|0, init〉 − |1,τun〉)

=
1√

1 + pτ

(
|0〉T

√
~πU + |0〉T

√
~πM − |1〉T

√
~τun
)

=
1√

1 + pτ

(√
1− ε|0, init〉+ ∑

i∈M
(
√

πi|0〉 −
√

τun,i|1〉)|i, pi〉
)

=
1√

1 + pτ

(√
1− ε|0, init〉 − ∑

i∈M

√
πi + τun,i|1̃i〉|i, pi〉

)
=

1√
1 + pτ

(
√

1− ε|0, init〉 −
√

ε + pτ|1̃,τ〉). (5.16)

We can express the normalized state |1̃,τ〉 introduced above in the equivalent formula-
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tions

|1̃,τ〉 = 1√
ε + pτ

(−|0〉T
√
~πM + |1,τun〉)

=
1√

ε + pτ
∑

i∈M

√
πi + τun,i|1̃i〉|i, pi〉 (5.17)

= ∑
i∈M

√
τ̃i|1̃i〉|i, pi〉

where in the last formulation we use the mixed distribution

~̃τ =
~πM +~τun

ε + pτ
. (5.18)

We now determine the component of |0, init〉 orthogonal to |U0〉,

|U+〉 =
1√

1 + pτ
(
√

ε + pτ|0, init〉+
√

1− ε|1̃,τ〉) (5.19)

=
(ε + pτ)|0〉T

√
~π −
√

1− ε(|0〉T
√
~πM + |1,τun〉)√

(1 + pτ)(ε + pτ)
. (5.20)

Now consider the random walk with optimal stopping rules which begins in

~π =
~πU

1− ε
(5.21)

and ends in the mixed distribution ~̃τ. We denote the vector of exit frequencies for this

walk as ~̃x.

Lemma 9 The unique (+1)-eigenvector of the operator

U(~θ)(1− 2|U+〉〈U+|)(1− 2|U0〉〈U0|)

inHU is

|κx̃〉 = |0, x̃〉 (5.22)

where

|x̃〉 = (1− S)T
~̃x√
~π

. (5.23)

31



Proof Again, we show that |0, x̃〉 is a (+1)-eigenvector by direct calculation. The first

reflection is of |U0〉, which is a superposition of |0, init〉 and |1,τ〉. Since |init〉 is a (+1)-

eigenvector of S and |x̃〉 is a (−1)-eigenvector of S, it follows that 〈U0|0, x̃〉 = 0 so

(1− 2|U0〉〈U0|)|0, x̃〉 = |0, x̃〉.

The second reflection is of |U+〉. We first evaluate T†|x̃〉 using the analogous result to

Equation 5.13,

T†|x̃〉 =
~π − ~̃τ√

~π

=

√
~π

1− ε
−

~̃τ√
~π

. (5.24)

The inner product of |U+〉 and |0, x̃〉 is then(
(ε + pτ)

√
~π −
√

1− ε
√
~πM

)T
T†(1− S)T

~̃x√
~π√

(1 + pτ)(ε + pτ)

=

(
(ε + pτ)

√
~π −
√

1− ε
√
~πM

)T(√ ~π
1−ε −

~̃τ√
~π

)
√
(1 + pτ)(ε + pτ)

=
ε + pτ + 1− ε√

(1 + pτ)(ε + pτ)(1− ε)

=

√
1 + pτ

(ε + pτ)(1− ε)
,

so applying the second reflection gives

(1− 2|U+〉〈U+|)(1− 2|U0〉〈U0|)|0, x̃〉

= |0, x̃〉 − 2

√
1 + pτ

(ε + pτ)(1− ε)
|U+〉 (5.25)

= |0, x̃〉 − 2√
1− ε

|0, init〉 − 2√
ε + pτ

|1̃,τ〉

= |0, x̃〉 − 2√
1− ε

|0, init〉+ 2
ε + pτ

|0〉T
√
~πM −

2
ε + pτ

|1,τun〉.

We finally apply U(~θ). The first stage of U(~θ) consists of the N reflections of |0̃i〉|i, pi〉.

Noting the similarity between Equations 5.10 and 5.25, we use that the state |0,ρ〉 +
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1√
pτ
|1,τ〉, rescaled as

1
ε + pτ

(pτ|0,ρ〉+ |1,τun〉),

is in the span of the reflected states. Using

1
ε + pτ

|1,τun〉 =
1√

ε + pτ
|1̃,τ〉+ 1

ε + pτ
|0〉T

√
~πM

T
~̃τ√
~π

=
2

ε + pτ
T
√
~πM −

1
ε + pτ

T
√
~πM +

pτ

ε + pτ
|ρ〉,

we rewrite our intermediate state as(
|0, x̃〉 − 2√

1− ε
|0, init〉+ |0〉T

~̃τ√
~π
− 1√

ε + pτ
|1̃,τ〉

)
− 1

ε + pτ
(pτ|0,ρ〉+ |1,τun〉).

From |1̃,τ〉 = ∑i∈M
√

τ̃i|1̃i〉|i, pi〉, the reflections do not affect |1̃,τ〉. From Equation 5.24,

the term |0, x̃〉 − 2√
1−ε
|0, init〉+ |0〉T ~̃τ√

~π
is not in the image of T so the reflections do not

affect it either. Thus the reflections produce the state(
|0, x̃〉 − 2√

1− ε
|0, init〉+ |0〉T

~̃τ√
~π
− 1√

ε + pτ
|1̃,τ〉

)
+

1
ε + pτ

(pτ|0,ρ〉+ |1,τun〉)

= |0〉
(
|x̃〉 − 2√

1− ε
|init〉+ T

τ̃√
~π
+

T
√
~πM + pτ|ρ〉

ε + pτ

)
+ |1〉−|τun〉+ |τun〉

ε + pτ

= |0〉
(
|x̃〉 − 2√

1− ε
|init〉+ 2T

τ̃√
~π

)
.

We now apply W = S(2TT† − 1) to the state |x̃〉 − 2√
1−ε
|init〉+ 2T ~̃τ√

~π
,

S

(
2√

1− ε
|init〉 − 2T

~̃τ√
~π
− |x̃〉 − 2√

1− ε
|init〉+ 2T

~̃τ√
~π

)
= |x̃〉,

where the last line follows from |x̃〉 being a (−1)-eigenvector of S.

We conclude this proof by proving the uniqueness of |κx̃〉 in HU (up to scalars). The

unique (+1)-eigenvector of U(~θ) in HU is |U0〉 by Lemma 3. Since |U+〉 is orthogonal to

|U0〉, by Lemma 4, the operator U(~θ)(1− 2|U+〉〈U+|) has two (+1)-eigenvectors, one of

which is |U0〉. With the reflection of |U0〉, the overall operator U(~θ)(1− 2|U+〉〈U+|)(1−

2|U0〉〈U0|) has a unique (+1)-eigenvector inHU. From the above it is |κx̃〉 = |0, x̃〉. ut
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Lemma 10

‖|κx̃〉‖2 =
2

1− ε
‖~̃xU‖1 − 2

∥∥∥∥~̃τ · ~̃x~π
∥∥∥∥

1
(5.26)

Proof

‖|κx̃〉‖2 = ‖|x̃〉‖2

= 〈x̃|x̃〉

= 2
(

~̃x√
~π

)T

(T†(1− S)T)

(
~̃x√
~π

)
= 2
(

~̃x√
~π

)T(~π − ~̃τ√
~π

)
= 2
(

~̃x√
~π

)T(√
~πU

1− ε
−

~̃τ√
~π

)
=

2
1− ε

∥∥~̃xU∥∥1 − 2
∥∥∥∥~̃τ · ~̃x~π

∥∥∥∥
1
.

ut

We now prove that we can sample from |τ〉 starting from |init〉 quadratically faster

than using random walks and stopping rules to sample the mixed distribution ~̃τ after

starting from ~π .

Theorem 11

QHT2
cot(U(~θ), |0, init〉) = 2

( ε + pτ

1 + pτ

)2(
HT(P, ~π→ ~̃τ)− δ

)
(5.27)

where

δ = (1− ε)
∥∥∥~̃τ · ~̃x

~π

∥∥∥
1
+ ‖~̃xM‖1 +

1
2

1 + pτ

ε + pτ
. (5.28)
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Proof

QHT2
cot(U(~θ), |0, init〉) = QHT2

cot

(
U(~θ),

1√
1 + pτ

(
√

1− ε|U0〉+
√

ε + pτ|U+〉)
)

=
ε + pτ

1 + pτ
QHT2

cot(U(~θ), |U+〉)

=
ε + pτ

1 + pτ

(
‖|κx̃〉‖2

|〈κ̃|U+〉|2
− 1

)

=
ε + pτ

1 + pτ

(
2

1−ε

∥∥~̃xU∥∥1 − 2
∥∥~̃τ · ~̃x~π∥∥1

1+pτ

(1−ε)(ε+pτ)

− 1

)

= 2
(

ε + pτ

1 + pτ

)2(∥∥~̃xU∥∥1 − (1− ε)

∥∥∥∥~̃τ · ~̃x~π
∥∥∥∥

1
− 1

2
1 + pτ

ε + pτ

)
= 2
( ε + pτ

1 + pτ

)2(
HT(P, ~π→ ~̃τ)− δ

)
where in the last step we use Equation 5.28 together with

HT(P, ~π→ ~̃τ) =
∥∥~̃x∥∥1 =

∥∥~̃xU∥∥1 +
∥∥~̃xM∥∥1 .

ut

Corollary 12 When ε < 1/2, we can use U(~θ) within phase estimation to generate an approxi-

mation of the state |τ〉 with arbitrary precision from |init〉 with constant success probability using

O
(√

HT(P, ~π→ ~̃τ)

)
applications of U(~θ).

Proof Here we set pτ = 1− 2ε, which makes |0, init〉 an equal superposition of the (+1)-

eigenvector |U0〉 and of |1̃,τ〉. Then, using Theorems 1 and 11, we can produce an approx-

imation of |U0〉 with 1/2 probability in O
(√

HT(P, ~π→ ~̃τ)

)
steps.

Once we have this approximation of |U0〉, the steps to produce an approximation of |τ〉

are identical to Corollary 8, except that the probability to measure |1〉 from |U0〉 becomes

pτ

1 + pτ
=

1− 2ε

2− 2ε

which approaches 1/2 as ε approaches 0. ut
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Chapter 6

Interpolated Walks

6.1 Construction

Krovi, Magniez, Ozols, and Roland [KMOR16] introduced and analyzed the interpolated

walk, which interpolates between a random walk P and a walk where marked vertices

are absorbing, so their only outgoing edge is a self-loop. We extend their construction

by allowing a different interpolation parameter for each vertex on the graph. Formally,

given an irreducible random walk P (so that the stationary distribution is unique), we can

construct an interpolated walk by adding self-loops~s to each vertex,

P(~s) = P diag(1−~s) + diag(~s). (6.1)

Taking one step of the walk P(~s) when in vertex i consists of remaining in vertex i with

probability si and taking a step of P with probability 1− si. These self-loops thus allow

us to modify the stationary distribution to (up to normalization)

~πs =
~π

1−~s . (6.2)

We show this by calculation,

P(~s)~πs = P diag(1−~s) ~π

1−~s + diag(~s)
~π

1−~s

=

(
1 +

~s
1−~s

)
~π

=
~π

1−~s

= ~πs.
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6.2 Sampling From Interpolated Walks

Interpolated walks operate by modifying the stationary distribution of a random walk,

unlike classical stopping rules which have a well-defined stopping condition. Classical

sampling using interpolated walks thus consists of approaching the modified stationary

distribution from the initial distribution.

If our goal is to sample from ~τ, then we set the self-loops so that the new stationary

distribution is the mixed distribution ~π +~τun,

~π +~τun =
~π

1−~s

~s = 1− ~π

~π +~τun
=

~τun

~π +~τun
. (6.3)

Once we have run the walk for a sufficiently long time so that we have reached a close

approximation of the new stationary distribution ~πs, we then take one more step of the

walk. If we take the self-loop in this final step, then we have sampled from

~πs ·~s = (~π +~τun) ·
~τun

~π +~τun
=~τun

which is the target distribution. If we do not take the self-loop, then we have sampled

from

~πs · (1−~s) = (~π +~τun) ·
~π

~π +~τun
= ~π

which is the stationary distribution of the original walk P, at which point we could run

the interpolated walk again, using a similar idea to rejection sampling.

Note the close resemblance between classical sampling using interpolated walks and

using the controlled quantum walk: taking the self-loop resembles seeing |1〉 in the ancilla

qubit and not applying W, and not taking it resembles seeing |0〉 and applying W. This

hints at the equivalence explained in the next section.
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6.3 Embedding Quantum Interpolated Walks Into Controlled Quantum

Walks

The quantum interpolated walk W(~s) is the construction of W as described in Section 3.3

applied to P(~s). One important difference is that we consider the new self-loops added by

~s as new edges on the graph, as opposed to an increased weight of possibly pre-existing

self-loops. If we use normalized edge weights (so that ∑i,j wj←i = 1), then the added self-

loops have weight

wi	 =
si

1− si
∑

j
wj←i

=
si

1− si
πi

=
τun,i

πi
πi

= τun,i.

As distinct edges, they also correspond to distinct quantum states. We denote these

new states as |i	〉, and they satisfy

T†|i	〉 = 0

S|i	〉 = |i	〉.

The states |i, p(~s)i〉 = T(~s)|i〉 decompose as

|i, p(~s)i〉 =
√

1− si|i, pi〉+
√

si|i	〉. (6.4)

There is an isometry that takes quantum interpolated walks to controlled quantum

walks, and using this isometry we can embed the former into the latter. The isometry we

present extends the discussion by Dohotaru and Høyer [DH17] to the case of different

self-loops (for quantum interpolated walks) and angles (for controlled quantum walks)

for each vertex.
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The key ideas of the isometry are, first, that the new self-loops added by~s correspond

to a value of |1〉 in the ancilla qubit as follows,

E|i, j〉 = |0〉|i, j〉

E|i	〉 = −|1〉|i, pi〉.
(6.5)

Second, we set the angles of U(~θ) so that

cos2(~θ) =~s. (6.6)

We can see from Equation 6.5 that orthogonal states map to orthogonal states, and so E

preserves inner products, proving that it is an isometry. E is thus an embedding from the

(N2 + N)-dimensional walk space with added self-loops to the (2N2)-dimensional walk

space without self-loops and with the ancilla qubit.

By Equation 6.4, the embedding takes the space HW(~s) to the space HU, as we can see

by applying it to states in the image of T(~s) and ST(~s),

E|i, p(~s)i〉 =
√

1− si|0〉|i, pi〉 −
√

si|1〉|i, pi〉

E|p(~s)i, i〉 =
√

1− si|0〉|pi, i〉 −
√

si|1〉|i, pi〉.
(6.7)

We now show that quantum interpolated walks behave in the same way as controlled

quantum walks.

Theorem 13 Applying the quantum interpolated walk before the isometry is equal to applying

the isometry before the controlled quantum walk, i.e.

E W(~s) = U(~θ) E. (6.8)

Proof We prove Equation 6.8 by showing that the two operators have the same effect on

basis states of the space of edges and added self-loops. First, we show this holds for the
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added self-loop states |i	〉,

E W(~s)|i	〉 = E S(T(~s)T(~s)† − 1)|i	〉

= E(2|p(~s)i, i〉〈i, p(~s)i|i	〉 − |i	〉)

= E(2
√

si|p(~s)i, i〉 − |i	〉)

= 2
√

si(1− si)|0〉|pi, i〉 − 2si|1〉|i, pi〉+ |1〉|i, pi〉

= 2
√

si(1− si)|0〉|pi, i〉+ (1− 2si)|1〉|i, pi〉

U(~θ) E|i	〉 = −U(~θ)|1〉|i, pi〉

= −(|0〉〈0| ⊗W+ |1〉〈1| ⊗ 1)(|1〉 − 2|0̃i〉〈0̃i|1〉)|i, pi〉

= −(|0〉〈0| ⊗W+ |1〉〈1| ⊗ 1)(|1〉 − 2
√

1− si|0̃i〉)|i, pi〉

= (|0〉〈0| ⊗W+ |1〉〈1| ⊗ 1)
(
2
√

si(1− si)|0〉+ (1− 2si)|1〉
)
|i, pi〉

= 2
√

si(1− si)|0〉|pi, i〉+ (1− 2si)|1〉|i, pi〉.

Second, we show this holds for the states of the form |i, j〉,

E W(~s)|i, j〉 = E S(T(~s)T(~s)† − 1)|i, j〉

= E(2|p(~s)i, i〉〈i, p(~s)i|i, j〉 − |j, i〉)

= E
(

2
√

Pj←i(1− si)|p(~s)i, i〉 − |j, i〉
)

= 2
√

Pj←i(1− si)|0〉|pi, i〉 − |0〉|j, i〉 − 2
√

Pj←isi(1− si)|1〉|i, pi〉

U(~θ) E|i, j〉 = U(~θ)|0〉|i, j〉

= (|0〉〈0| ⊗W+ |1〉〈1| ⊗ 1)(|0〉|i, j〉 − 2|0̃i, i, pi〉〈0̃i, i, pi|0, i, j〉)

= (|0〉〈0| ⊗W+ |1〉〈1| ⊗ 1)
(
|0〉|i, j〉 − 2

√
Pj←isi|0̃i, i, pi〉

)
= 2
√

Pj←i|0〉|pi, i〉 − |0〉|j, i〉 − 2
√

Pj←i

(
si|0〉|pi, i〉+

√
si(1− si)|1〉|i, pi〉

)
= 2
√

Pj←i(1− si)|0〉|pi, i〉 − |0〉|j, i〉 − 2
√

Pj←isi(1− si)|1〉|i, pi〉.

ut
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6.4 Extended Hitting Time

The original quantum interpolated walk as introduced by Krovi, Magniez, Ozols, and

Roland [KMOR16] adds self-loops to the random walk P such that every vertex either has

no added self-loop or has a self-loop of a single parameter s. It therefore splits the graph

into marked and unmarked vertices, as discussed in Section 5.2. They expressed their

results by introducing the extended hitting time, which in our framework maps to

HT+(P,M) =

(
1− s(1− ε)

)2

ε2 HT(~s)

=

(
1− s(1− ε)

)2

2ε2

(
QHT2(W(~s), |init〉) + 1− ε

1 + pτ

)
=

(
1− s(1− ε)

)2

2ε2

(
QHT2(U(~θ), |0, init〉) + 1− ε

1 + pτ

)
.

When the self-loops (and angles for U(~θ)) satisfy ~τun = 1−2ε
ε ~πM, i.e.

s =
τun,i

τun,i + πi
=

1−2ε
ε

1−ε
ε

=
1− 2ε

1− ε
,

which also sets pτ = 1− 2ε, we can simplify the extended hitting time further to

HT+(P,M) = 2QHT2(U(~θ), |0, init〉
)
+ 1.

Using the isometry, this angle matches the angle θ̃ used by Dohotaru and Høyer [DH17].

From Theorem 11, we have that

QHT2
cot(U(~θ), |0, init〉)

= 2
(

ε + pτ

1 + pτ

)2(
HT(P, ~π→ ~̃τ)− (1− ε)

∥∥∥~̃τ · ~̃x
~π

∥∥∥
1
− ‖~̃xM‖1 −

1
2

1 + pτ

ε + pτ

)
= 2
(

1− ε

2− 2ε

)2(
HT(P, ~π→ ~πM/ε)− (1− ε)

∥∥∥~πM
ε
·
~̃x
~π

∥∥∥
1
− ‖~̃xM‖1 −

1
2

2− 2ε

1− ε

)
=

1
2

(
HT(P, ~π→ ~πM/ε)− 1

ε

∥∥~̃xM∥∥1 − 1
)

so that we can express the extended hitting time as a function of access time by

HT+(P,M) = HT(P, ~π→ ~πM/ε)− 1
ε

∥∥~̃xM∥∥1. (6.9)
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Chapter 7

Conclusion

We present the first quantum algorithm that can sample from any probability distribution

over graph vertices. For any classical distribution ~τ over vertices of a reversible random

walk, our algorithm produces the corresponding quantum state |τ〉. We prove that it has

a quadratic speed-up over random walks with stopping rules.

Our work is the first use of random walks with stopping rules in the study of quantum

walks. Our quantum algorithm generalizes the controlled quantum walk by Dohotaru

and Høyer [DH17].

As we discuss in Section 4.1, we allow multiple control angles depending on the graph

vertex, using the local formula

cos2(θi) =
τi

πi + τi
=

(
πi

τi
+ 1
)−1

,

where ~π is the stationary distribution of the underlying random walk P.

We show in Theorems 7 and 11 that the quantum hitting time of this new algorithm

U(~θ) is quadratically smaller than the classical access time. The vector of exit frequencies

~x, which encodes the expected number of times a random walk starting according to

~π will exit each vertex before stopping according to ~τ, connects the classical access time

with the quantum hitting time. It is a single mathematical object that encodes within it the

history of the walk, and as such it encodes information about the classical and quantum

hitting times.

In Section 6.3, we give an isometry between quantum interpolated walks and our con-

trolled quantum walk with multiple angles. We can thus embed the quantum analogue

of a random walk with different self-loops added to each vertex into our controlled walk

model with multiple angles.
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In Section 6.4, we derive a new expression in Equation 6.9 for the extended hitting

time, a quantity used in the study of interpolated quantum walks and controlled quantum

walks. We show that the extended hitting time is a simple function of the exit frequencies

of a random walk with a stopping rule that generates the stationary distribution limited

to a set of marked nodes, after starting according to the stationary distribution limited to

the complement set of unmarked nodes.

Exit frequencies and their quantum analogue |x〉 (defined in Equation 5.8) provide a

new and exact mathematical link between classical and quantum algorithms for sampling

over graph vertices. Their study reveals a new way to think about both algorithms and

to prove relationships between them.
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walks can find a marked element on any graph. Algorithmica, 74(2):851–907,

2016. arXiv:1002.2419, doi:10.1007/s00453-015-9979-8.
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Appendix A

Proof of the Flip-Flop Lemma

We adapt this proof from Dohotaru [Doh15], and adapt Lemma 14 from Tulsi [Tul12].

Let A be real unitary operator and let |ψ〉 be a real state, both in a state space H. Let

d be the number of positive/negative pairs of distinct eigenphases of A, where we count

phases of 0 and π once each if they occur (from the complex conjugate root theorem, all

eigenphases other than 0 and π come in positive/negative pairs). Sort the eigenphases as

−π ≤ −αd < −αd−1 < . . . < −α1 ≤ 0 ≤ α1 < α2 ≤ . . . < αd ≤ π. For each eigenphase ±αj,

let |α±j,un〉 be the unnormalized projection of |ψ〉 onto the associated eigenspace of A. The

span of all the non-zero states |α±j,un〉 then forms the spaceH|ψ〉.

Lemma 14 Outside of H|ψ〉, the operator A′ = A(1− 2|ψ〉〈ψ|) behaves identically to A. Inside

of H|ψ〉, the eigenphases of A′ strictly interleave the eigenphases of A, so that there is a unique

eigenphase of A′ in between each consecutive pair of eigenphases of A along the unit circle.

Proof [Tul12] Since |ψ〉 ∈ H|ψ〉, the reflection (1− 2|ψ〉〈ψ|) has no effect outside ofH|ψ〉 so

the operators A and A′ behave identically outside of H|ψ〉. In particular, this means that

all the eigenvectors of A′ lie either entirely inside or entirely outsideH|ψ〉. The remainder

of the proof considers only the spaceH|ψ〉.

We find the relationship between the spectra of A and A′ by finding the inner product

between their eigenvectors, among those which lie in H|ψ〉. Let |α+j 〉 be an eigenvector of

A inH|ψ〉 with eigenvalue αj, and let |β+
j 〉 be an eigenvector of A′ inH|ψ〉 with eigenphase

β j. For the eigenvectors of A or A′ in H|ψ〉 with negative eigenphases, the below follows

equivalently by negating the relevant eigenphase, so the choice of positive eigenphases
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does not lose generality.

eıβk〈α+j |βk〉 = 〈α+j |A
′|βk〉

= e+ıαj〈α+j |(|βk〉 − 2|ψ〉〈ψ|βk〉)

= e+ıαj(〈α+j |βk〉 − 2〈α+j |ψ〉〈ψ|βk〉)

〈α+j |βk〉 =
2

1− eı(βk−αj)
〈α+j |ψ〉〈ψ|βk〉.

Since |ψ〉 lies inH|ψ〉, we can write the inner product of |ψ〉with |βk〉 and add the identity

withinH|ψ〉 composed of eigenvectors |α±j 〉 of A inH|ψ〉.

〈ψ|βk〉 = 〈ψ|1H|ψ〉 |βk〉 (A.1)

= 〈ψ|∑
j±
|α±j 〉〈α

±
j |βk〉

= 2〈ψ|βk〉∑
j±

∣∣〈α±j |ψ〉∣∣2
1− eı(βk∓αj)

1
2
= ∑

j±

∣∣〈α±j |ψ〉∣∣2
1− eı(βk∓αj)

0 = ∑
j±

∣∣〈α±j |ψ〉∣∣2 cot

(
βk ∓ αj

2

)
(A.2)

where in the last line we use the identity (1− eıχ)−1 = 1
2 +

ı
2 cot(χ

2 ).

As we increase the eigenphase βk in Eq. A.2, the right-hand side decreases monotoni-

cally except when βk = ±αj mod 2π for some αj, where the sum jumps from −∞ to +∞.

Thus, the right-hand side has exactly one root strictly in between each consecutive eigen-

phase of A inH|ψ〉. ut

Proof of Lemma 4

First, consider the case where H|ψ〉 contains a one-dimensional (+1)-eigenspace of A,

which occurs just in case |ψ〉 overlaps the (+1)-eigenspace of A. Then by Lemma 14,

A′ does not have any (+1)-eigenvector in H|ψ〉. Outside of H|ψ〉, A and A′ both have a
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(+1)-eigenspace of dimension d+ − 1. In the full space, A′ thus has a (+1)-eigenspace of

dimension d+ − 1.

Second, consider the case where H|ψ〉 does not contain any (+1)-eigenspace of A,

which occurs just in case |ψ〉 does not overlap the (+1)-eigenspace of A. Then there must

be a unique eigenphase of A′ on the unit circle strictly in between the smallest positive

and negative eigenphases of A. Since A′ is real, its eigenphases come in positive/negative

pairs, so this unique eigenphase of A′ must be its own negative and hence equals zero.

This zero eigenphase corresponds to a single (+1)-eigenvector of A′ in H|ψ〉. Outside

H|ψ〉, A and A′ both have a (+1)-eigenspace of dimension d+. In the full space, A′ thus

has a (+1)-eigenspace of dimension d+ + 1. ut

An equivalent statement for the (−1)-eigenspace proceeds by applying the above ar-

guments to −A and −A′, but we do not use it in this thesis.
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Appendix B

General Real Unitaries

Given a real unitary W composed of c two-dimensional rotations, d − c − 1 reflections,

and a unique +1 eigenvector (so that W acts in a (d + c)-dimensional space), we show

how to construct the operators T, S, and D, effectively performing Szegedy’s construction

in reverse.

Using the complex conjugate root theorem, we denote eigenvalues of W as α0 = +1

(unique), the c conjugate pairs e±ıαj for 0 < α0<j≤c < π, and the reflections αc<j<d−1 =−1.

These have associated eigenvectors |V0〉, the complex conjugate states |V±0<j≤c〉, and the

reflected states |Vc<j≤d〉. We can thus write W as

W = |V0〉〈V0|+
c

∑
j=1

(eıαj |V+
j 〉〈V

+
j |+ e−ıαj |V−j 〉〈V

−
j |)−

d−1

∑
j=c+1

|Vj〉〈Vj|. (B.1)

We define T and S as follows,

T= |V0〉〈0|+
1√
2

c

∑
j=1

(|V+
j 〉+ |V

−
j 〉)〈j|+

d−1

∑
j=c+1

|Vj〉〈j| (B.2)

S= 2|V0〉〈V0|+
c

∑
j=1

(eıαj/2|V+
j 〉+ e−ıαj/2|V−j 〉)(e

−ıαj/2〈V+
j |+ eıαj/2〈V−j |)− 1. (B.3)

Next we show that, using these definitions, W = S(2TT† − 1),

S(2TT† − 1)|V0〉 = S|V0〉

= |V0〉

S(2TT† − 1)|V±0<j≤c〉 = S|V∓j 〉

= e±ıαj/2(eıαj/2|V+
j 〉+ e−ıαj/2|V−j 〉)− |V

∓
j 〉

= e±ıαj |V±j 〉
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S(2TT† − 1)|Vc<j<d〉 = S|Vj〉

= −|Vj〉.

Next, we derive the d-dimensional operator D from S and T as

D= T†ST

= T†
(

2|V0〉〈0|+
√

2
d

∑
j=1

(
eıαj/2|V+

j 〉+ e−ıαj/2|V−j 〉
)

cos
(

αj

2

)
− T

)

= 2|0〉〈0|+ 2
c

∑
j=1

cos2
(

αj

2

)
|j〉〈j| − 1

= |0〉〈0|+
c

∑
j=1

cos(αj)|j〉〈j| −
d−1

∑
j=c+1

|j〉〈j|. (B.4)

Next, let |ρ′〉 be a state that is not necessarily normalized and that satisfies 〈0|ρ′〉 = 1.

Then define

|x′〉 = (D− 1)+(|ρ′〉 − |0〉) (B.5)

where we use the pseudo-inverse of D− 1, i.e.

(D− 1)+ =
c

∑
j=1

(cos(αj)− 1)−1|j〉〈j| − 1
2

d−1

∑
j=c+1

|j〉〈j|.

Since |ρ′〉 − |0〉 and |x′〉 have no overlap with |0〉, it follows that

(D− 1)|x′〉 = |ρ′〉 − |0〉

D|x′〉 = |x′〉+ |ρ′〉 − |0〉.

Next, we fix an alternative orthonormal basis {|kP〉, k ∈ [N]} of the space spanned by

{|j〉, j ∈ [N]}, such that 〈0|kP〉 > 0 ∀k ∈ [N]. The states |kP〉 then play the role of vertices.

52



Accordingly, we the elements

√
πk = 〈kP|0〉

τk =
√

πk〈kP|ρ′〉

xk =
√

πk〈kP|x′〉

P=
d−1

∑
k=0

√
πk|kP〉〈kP|D

d−1

∑
`=0

√
π`
−1|`P〉〈`P|.

Using these elements, we can make the identifications

|0〉 =
√
~π (B.6)

|ρ′〉 = ~τ√
~π

(B.7)

|x′〉 = ~x√
~π

. (B.8)
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