
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2019-02-28

Accelerating Sequence Calculations on

Parallel GPU Architecture

Hossain, Roksana

Hossain, R. (2019). Accelerating sequence calculations on parallel GPU architecture (Doctoral

thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.

http://hdl.handle.net/1880/109923

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Accelerating Sequence Calculations on Parallel GPU Architecture

by

Roksana Hossain

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

FEBRUARY, 2019

c© Roksana Hossain 2019

Abstract

In this thesis, I have implemented a GPU (graphics processor unit) based sequencing

algorithm that finds a sequence or order among data points to optimize a given objective. I

have studied the sequencing algorithm as a path planner for an unmanned aerial vehicle

(UAV) and also, a basecaller for a miniature DNA sequencer. Parallel implementation

utilizing GPU enables faster processing and decision making that are important when data

is quite large and a real-time response is critical e.g., in UAV based transportation.

The goal of using UAV in my thesis is to construct a wireless sensor network in a re-

mote location by deploying wireless sensor nodes. The proposed path planner, also known

as a sequencer, is designed to find the shortest path that is also a safe path using travel-

ling salesman problem. A path is considered safe when the vehicle would not collide with

any obstacle. Two sets of heuristic algorithms, one for generating a sequence of waypoints

(sequence generator) and another one for constructing a path between two waypoints

(path explorer), are used to find the near optimal solution. The highly parallel multicore

GPU is used for the real-time implementation that offloads compute-intensive portions from

the traditional CPU to the GPU to make the decision-making process faster. In this thesis,

the parallel execution of the sequence generator and the path explorer achieved a 4.82× and

164× speed-up compared to the CPU-only approach respectively.

The second sequencer is a palm-sized miniature DNA sequencer, the so-called MinION

device. In the case of the MinION, a vast multitude of DNA strands are introduced into

the device and converted into noisy electronic time-series signals; these measurements are

essentially physical signatures related to the molecular make-up of the sensed DNA. Among

a long “pipeline” of analysis steps to be performed on such measurement sequences, the first,

and arguably most intensive, is the so-called basecalling step which analyzes the time-series

and converts it into the equivalent monomeric base of the DNA under test using the Viterbi

algorithm.

ii

Acknowledgements

I want to express my sincere gratitude to my supervisors Dr. Sebastian Magierowski and

Dr. Geoffrey Messier for providing their invaluable guidance, comments, and suggestions

throughout the research project. I would specially thank Dr. Sebastian Magierowski for

continually motivating me to work harder and supervising me from Toronto.

I am grateful to my family for their continuous support as it wasn’t an easy journey for

me. I like to thank my husband, Monir, for all of his help including teaching me algorithms.

Without Monir’s support, I would not have completed my degree. I also love to appreciate

my little one, Nora; for allowing me to work on my thesis. Special thanks to my mother

who always motivated me to complete the degree. I am also thankful to my other family

members and friends who have supported me along the way.

Extraordinary gratitude goes out to all down at Alberta innovates technology futures

and Queen Elizabeth II fund for helping and providing the funding for the work.

iii

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures and Illustrations vii

List of Tables ix

List of Symbols, Abbreviations and Nomenclature x

1 Introduction 1
1.1 Sequence Synthesis: Path Planning for UAV 3
1.2 Sequence Analysis: Real-Time DNA Sequencing 7

1.2.1 DNA Sequencing . 8
1.3 Thesis Contribution . 11
1.4 Thesis Organization . 12

2 Literature Review 13
2.1 Parallel Computation and Graphics Processing Unit 13
2.2 Parallel Sequence Calculation . 15
2.3 Wireless Sensor Network Construction using Unmanned Aerial Vehicle . . . 16

2.3.1 Unmanned Aerial Vehicle: A Robotic Aerial Vehicle 17
2.3.2 Control System of Unmanned Aerial Vehicle 17
2.3.3 Wireless Sensor Network Construction 19

2.4 Path Planner for a UAV . 20
2.4.1 Sequence Generator . 21
2.4.2 Path Explorer . 25

2.5 DNA Sequencing . 29

3 General Purpose Graphics Processing Unit 32
3.1 Overview of GPU . 32
3.2 GPU Architecture . 34

3.2.1 Compute Hierarchy: Thread, Block, Grid, Kernel, Warp 34
3.2.2 Memory Hierarchy . 36

iv

3.2.3 Processors/Hardware Architecture . 39
3.3 GPU Specifications . 41

4 System Model and The Path Planner 42
4.1 Environment Description . 42
4.2 System Model . 43
4.3 The Proposed Path Planner . 45

4.3.1 Performance Measure . 49

5 Sequence Generator for The Path Planner 51
5.1 Problem Definition . 51

5.1.1 Travelling Salesman Problem . 54
5.1.2 Genetic Algorithm . 55

5.2 Serial Execution . 58
5.3 Parallel Execution . 59

5.3.1 Challenges/Limitation . 60
5.3.2 Clustering . 62
5.3.3 Nearest Neighbour Technique . 63
5.3.4 GPU Implementation . 64

5.4 Analytic Model of Communication . 67
5.5 Experimental Results . 68
5.6 Conclusion . 72

6 Path Explorer: Probabilistic Roadmap 74
6.1 Problem Definition . 74
6.2 PRM Algorithm . 76

6.2.1 Sample Node Generation . 76
6.2.2 Milestone Calculation . 77
6.2.3 Nearest Neighbour . 79
6.2.4 Dijkstra Graph Search . 80

6.3 PRM: Serial Implementation . 81
6.4 PRM: Parallel Implementation . 83

6.4.1 Parallel Sample Generation and Milestone 84
6.4.2 Parallel k-Nearest Neighbour . 85

6.5 Experimental Results . 85
6.6 Conclusion . 92

7 Sequence Analysis: DNA Sequencing 96
7.1 DNA Sequencing: an Overview . 96
7.2 Problem Definition . 100
7.3 Serial Basecalling . 101

7.3.1 HMM-Based Basecalling . 102
7.3.2 Viterbi Algorithm for Basecalling . 106

7.4 Parallel Basecaller . 108
7.4.1 Parallel Basecaller: Single File . 109

v

7.4.2 Parallel Basecaller: Multiple Files . 114
7.5 Experimental Results . 115
7.6 Summary and Conclusion . 117

8 Conclusion and Future Work 118
8.1 Global Path Planner . 118

8.1.1 Sequence Generator . 119
8.1.2 Path Explorer . 120

8.2 DNA Sequencing . 122

Bibliography 124

A GPU: Performance Optimization and Algorithms 144
A.1 Performance Optimization . 144

A.1.1 Coalesced Memory Access . 144
A.1.2 CUDA Memory Types . 145
A.1.3 Data Transfer Parallelism / Asynchronous Data Transfer 145
A.1.4 Warp Schedulers Pipeline . 147

A.2 Algorithm . 148
A.2.1 Reduction . 148
A.2.2 Bitonic Sort . 149

vi

List of Figures and Illustrations

1.1 Wireless sensor network: example of data funnelling to a sink node. 4
1.2 Path found by the global planner in a cluttered environment. 6
1.3 Global path planner contains two blocks working on TSP and PRM. 6
1.4 A simplified diagram of the main features in a MinION-based DNA sequencing

pipeline. 8
1.5 The signal flow in a MinION sequencing process form sensing to basecalling. 9

3.1 CUDA memory management model. 34
3.2 CUDA memory management model and data flow direction. 37
3.3 Simplified block diagram of the next generation streaming multiprocessor (SM). 40

4.1 Control system of a UAV. 44
4.2 The proposed path planner generates the shortest path among the given way-

points. The UAV starts from the base station and fly through all of the
waypoints before returning the base station again. 48

5.1 Travelling salesman problem: graph representation, G(V,E). 54
5.2 Flowchart for the genetic algorithm. 56
5.3 Flipping. 57
5.4 Swapping. 57
5.5 Sliding. 58
5.6 A distance matrix example for a four-node waypoint combination. 61
5.7 An example of clustering. 64
5.8 Example of clustering in combination with nearest neighbour identification. . 65
5.9 Combination for 8 waypoints. 65
5.10 Percent difference between the CPU-based serial implementation and the

GPU-based parallel implementation. 70
5.11 Computation time required by the serial and the parallel implementation for

different waypoint settings. 71
5.12 GPU execution time varies with the number of waypoints per cluster. 72

6.1 A space is separated where the PRM will build a path from the start, S to the
destination, D. The sample nodes are placed in the separated (highlighted in
red) space. 77

6.2 An example of how the samples are distributed. 78

vii

6.3 An example of how the number of sample nodes and the number of nearest
neighbour affects the final path . 79

6.4 Graph for the path search . 81
6.5 Min heap used for the graph search. 82
6.6 The blocks of code executed either CPU or GPU. 84
6.7 The environment, En.2 with the obstacles. 86
6.8 The PRM execution time changes with the increase of obstacles in the envi-

ronment. 88
6.9 The execution time increases with the number of waypoints in En.1 89
6.10 The execution time increases with the number of waypoints in En.2 90
6.11 The execution time increases with the number of waypoints in En.3 91
6.12 PRM speed ups in different environment. 93
6.13 A comparison of the paths generated from the serial and the parallel imple-

mentation using the same set of sample nodes (64) and the same number of
nearest neighbour (40). 94

7.1 A schematic diagram of DNA and nucleobases of DNA : Adenine (A), Thymine
(T), Guanine (G), and Cytosine (C) [1]. 97

7.2 MinION: nanopore-based sequencing device [2]. 99
7.3 The HMM expressing the translocation of a molecule through a nanopore sensor.103
7.4 One model of possible transitions from one state to another. Stays, steps, and

single base skips are the transitions accounted for. In this model a total of 21
transitions form the state at i are possible. 105

7.5 Nanopore-based electronic current (around a mean) generated by the move-
ment of DNA through a nanopore sensor. Shown is the raw (noisy) time-series
and a piecewise-constant approximation extracted from it [3]. 106

7.6 CPU and GPU threads working within a single-file basecaller design. 112
7.7 Block diagram for multi file basecaller. 114
7.8 CPU and GPU threads working simultaneously for multi file basecaller. . . . 114
7.9 GPU threads accessing memory locations during multi files basecaller. 115

A.1 Example of coalesced (a) and non-coalesced (b) memory access. 145
A.2 Device with two (a) and one (b) copy engines and synchronous operation. . . 146
A.3 Updated asynchronous operation for single copy engine. 147
A.4 Warp scheduler pipeline. 148
A.5 Reduction method is used for searching maximum value within a block . . . 149
A.6 An example of bitonic sort. 150

viii

List of Tables

3.1 GPU’s memory description. 39
3.2 Device specifications for GeForce GTX 680, Tesla K20 and Tesla K80. 41

5.1 Results from serial and parallel implementation for different number of way-
points. 69

5.2 GPU execution results. 71
5.3 GPU execution results for TSPLIB problems. 72

6.1 PRM execution time for the serial and the parallel implementation. 87
6.2 The quality of the parallel implementation over the serial implementation. . 94

7.1 Parallel basecalling with single file. 116
7.2 Parallel basecalling with multiple files. 117

A.1 GPU’s memory description . 145
A.2 Algorithm for synchronous data transfer. 146
A.3 Algorithm for asynchronous data transfer for a device with single copy engine. 147

ix

List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition
GPU Graphics processing unit
GPGPU General purpose graphics processing unit
CUDA Compute unified device architecture
OpenCL Open computing language
VTOL Vertical take-off and landing
WSN Wireless sensor network
UAV Unmanned aerial vehicle
TSP Travelling salesman problem
PRM Probabilistic roadmap
NGS Next-generation-sequencing
CMOS Complementary metal oxide semiconductor
DNA Deoxyribonucleic acid
AWS Amazon web services
CPI Cycles-per instruction
GPS Global positioning system
NP Nondeterministic polynomial time
RRT Rapidly exploring random tree
NBS Nanopore-based sequencer
DRAM Dynamic random access memory
GDDR5 SGRAM Graphics double data rate five synchronous

graphics random access memory
SMEM Shared memory
PCIe Peripheral component interconnect express
ILP Instruction-level parallelism
PLP Processor-level parallelism
SP Streaming processor
SM Streaming multiprocessor
SFU Special Function Unit
IMU Inertial measurement unit
GA Genetic algorithm
SIMD Single instruction multiple data
Symbols from Chapter 4 to 6:

x

x x coordinate
y y coordinate
z z coordinate
Dmatrix Distance matrix
vi i-th waypoint
n Total number of total waypoints
{vi} A set of waypoints
V A path which is a set of sequenced

waypoints i.e. V = {vi}
{obj} A set of obstacles in the

environment and j = 1, 2 . . . q
q Total number of obstacles
UpdateTSP A boolean variable
UpdatePRM A boolean variable
E A set of all possible edges connecting

two different waypoints
xij A boolean variable
cij Cost associated for travelling from

waypoint vi to vj
k Total number of generated paths
{Vj} A set of generated paths, where j = 1, 2, . . . k
C Total distance for a path
{V ′} A set of best paths
{V ′′} A set of regenerated paths
P The best path, a set of sequenced waypoints,

(vi : i = 1, 2, . . . n)
t Number of threads
m Number of clusters
CHj jth cluster head, j = 1, 2, . . .m
{CHj} A set of cluster heads
CHvi The cluster head assigned to vi
u Number of combinations or population

for a cluster
vstart,CHj

The start waypoint inside j-th cluster
using nearest neighbour technique

vend,CHj
The end waypoint inside j-th cluster using
nearest neighbour technique

bw Number of bytes required by a waypoint
bd Number of bytes required by a distance matrix
bb Number of bytes required

by a barrier vector element
ntrd Number of threads per block
nblock Number of blocks
Cserial Length of the paths (serial implementation)

xi

Cparallel Length of the paths (parallel implementation)
s Sample nodes
w Total number of sample nodes

for each segmented path
{sr} A set of sample nodes, where r = 1, 2 . . . w
p Path for each segment

between start to destintion
d Distance of the segmented path, p
Symbols from Chapter 7:
s The sequence of states
N Number of observed events
e Observed events
L Strand length
f(s, e) A joint probability density model (pdf)
P (s) Probability of prior state sequences
f(e|s) The likelihood model
f(ei|si) The emission probability: the pdf of an event

ei in response to a nanopore state si
τ(si−1, si) The transition probability: the probability

of si−1 transitioning to si
vi(ei, si) The sequence posterior at each index i
M All the possible states that the nanopore can

assume at any particular measured event ei
b A base
N Guassian (normal) distribution
IG Inverse-Gaussian distribution
xi Mean value of event
yi Standard deviation of event
µj Model level mean for state j
σj Model level standard deviation for state j
ηj Model spread mean for state j
λj Shape parameter

xii

Chapter 1

Introduction

Sequence calculation, the selection or identification of a desirable sequential pattern from

within a complex space, is a common challenge faced by automation technology. It touches

on subjects as diverse as machine learning, robotics, social networks, biomedical applications,

etc. In the case of decision-making, a problem formulation that invites sequence calculations

considers all possible outcomes and seeks to compute an optimal sequence of decisions needed

to realize the most desirable result. Depending on the problem or application, the number

of possible outcomes as well as intermediate decisions can vary profoundly.

Often this quantity of outcomes is too large to work with using commodity computational

devices such as the ubiquitous microprocessor for applications with real-time performance

pressures. In such cases, a limited number of probable outcomes are considered therefore

sacrificing accuracy or fidelity. Naturally, the better the processor, the more outcomes may

be considered within a given time. To address this problem the graphics processing unit

(GPU) is used here.

In general, GPUs are used for graphics related operations. As such they accelerate the

graphical computations dominant in consumer electronic devices such as traditional com-

puters and mobile devices. For example, GPUs enabled the fast execution of RenderScript

code on the Google Android 4.2 device [4], and Apple introduced their own Apple A11 GPU

1

device with an API named, Metal [5] for the iPhone. GPUs mainly achieve this acceleration

by realizing many 100s of simple cores per die with memory to efficiently handle graphics

problems.

In addition, some GPUs allow us to do our own programming on applications of our own

choosing, a development spurred by GPU makers who realized the potential of such units

beyond graphics alone. Such GPUs are typically referred to as general purpose graphics

processing units (GPGPUs) [6]. Companies such as NVIDIA and AMD are now famous for

providing such devices to end users. Indeed, such products have been instrumental in the

explosive growth of specific machine learning applications, particularly those targeting the

deep learning paradigm [7, 8], and have inspired the parallel computing research reported in

this thesis as well.

The GPGPU offloads compute-intensive portions of an application from the traditional

central processing unit (CPU) to the GPU co-processor, while the remainder of the code

still runs on the CPU [9]. In this thesis, for convenience, I do not distinguish between GPUs

and GPGPUs as many so-called GPU graphics cards support custom programming. The

two main and generally similar programming frameworks for GPGPU computing are CUDA

which is NVIDIA’s own proprietary programming model and OpenCL which is supported by

AMD, Intel, NVIDIA, etc. [10, 11]. In this thesis, I employ the CUDA programming model

which was released before OpenCL.

Although GPU use has escalated tremendously in the last decade, it is arguable that a

large part of the applications in which it has met considerable success has been confined

to problems naturally suited for massively parallel machines. That is, a set of relatively

independent calculations that can be done in parallel. These include compute paradigms [12]

such as map, scan, reduce, gather, scatter, stencil, etc. But how can GPU technology be

used in applications like sequence calculation without such a clear-cut mapping

onto the traditional GPU framework?

This is the key question addressed by this thesis. Sequence calculation is used in many

2

applications like product assembly [13, 14] and disassembly [15], task sequencing [16] for

robotics, path planner for autonomous vehicles [17, 18], DNA sequencing [19, 20] etc. Among

these applications, this thesis dealt within the context of two emerging embedded-systems

applications: autonomous vehicles and biomolecular detectors. Namely, in this thesis, the

GPU is used to accelerate the path sequence and path planning calculation for an unmanned

aerial vehicle (UAV) and the basecalling step of the DNA sequencing pipeline. Now the

question will be how can a path planner be related to a DNA sequencer? The first

similarity between these problems is that both problems require a sequence or order of data

points to optimize individual objective. The objective of path planning is to minimize the

traveled distance by ordering waypoints. The objective of DNA sequencing is to maximize the

likelihood of the genomic sequence. Aside from the sequence calculation, these applications

share two other important constraints increasingly encountered in practice: they are deployed

in small resource constrained devices and solutions are required in real-time. These added

complexities stress the importance of realizing local compute enhancement that can operate

in an embedded fashion.

Given the similarities between the path planner and the DNA sequencer, the question

will be whether these problems are exactly the same . Although there are similarities,

these are not exactly the same problem. The last hypothesis of the thesis studies if the

problems can be solved using the same algorithm or different algorithms . The

next few sections will address these questions by outlining details of the path planner for

UAV and DNA sequencing.

1.1 Sequence Synthesis: Path Planning for UAV

In recent years, due to improvements in technology, robots have been replacing human opera-

tors. An example of such replacement includes robotic arms in manufacturing industries [21],

medical surgeries [22, 23], robotic vehicles [24, 25, 26] etc. In this vein, one of the subjects

3

Figure 1.1: Wireless sensor network: example of data funnelling to a sink node.

of this thesis is the UAV, which is a robotic vehicle that can fly without the assistance of a

human pilot.

This thesis concentrates on the fast computation of path planning for small vertical take-

off and landing (VTOL) UAVs that build wireless sensor networks (WSNs) [27] by dropping

sensor nodes at given locations. The decision regarding where the sensor nodes will be

deployed is made at the stage of designing the network. The sensor nodes can communicate

with each other by transmitting and receiving data. For WSNs, the ultimate goal is often to

collect sensing data from all sensors and funnel it to specific sink nodes and perform further

analysis at the sink nodes. Thus, data collection is one of the most common services used

in sensor network applications. Fig. 1.1 shows an example of the data collection process in

a WSN. In the figure, a single sink node, red coloured, collects sensing values from every

sensor using a collection tree.

The quality of the network depends on the several criteria that make the network con-

struction challenging [27]. Each node has a limited transmission range so the distance be-

tween the nodes should not exceed this range. The quality of the data transfer among the

nodes depends on the distance between the nodes as well as the physical environment [27].

Due to the limited battery life of the nodes, all of the nodes should be deployed as quickly

as possible to get the most efficient performance. Otherwise, if there is a long time interval

between the deployments of two sets of nodes in the same network, the batteries of the first

set of nodes start discharging before the completion of the network construction. This kind

4

of unexpected situation reduces the total lifetime of the network.

The advantage of using a robotic helicopter to construct a wireless sensor network is that

helicopters can be sent to remote locations instead of human operators. The helicopter can

fly close to the ground allowing it to deploy nodes accurately. Flying close to the ground

increases the number of obstacles on the path. In such a situation, the benefit of using a

helicopter over fixed-wing aerial vehicles is that the former can hover if it finds an obstacle

in front of it. In short, the helicopter posses the ability to achieve much finer control over

its flight path.

However, a UAV requires a path planner to direct it towards the sequence of desired

locations where it will deploy a WSN’s sensor nodes. The path planners can be subdivided

into two components: a global path planner and a local path planner. In general,

the global path planner finds a path from the starting location to the destination so that

the UAV will not hit any obstacles. The local path planner generates the required steering

controls so that the UAV can follow the path generated by the global path planner.

In this thesis, a unique global path planner is proposed and designed that allows a VTOL

UAV to deploy wireless sensor nodes so that the total distance traveled by the vehicle is

minimized. In Fig. 1.2, there are three destination locations, or waypoints shown as blue

stars; obstacles are shown in red. In such a cluttered environment (an environment that

contains obstacles) the global path planner produces a safe path as illustrated with green

dots.

In this thesis, the locations where the sensor nodes are to be deployed, the waypoints , are

given to the UAV software control system at mission start. As this thesis considers multiple

sensor nodes, the global path planner requires finding a path through various waypoints. In

such situations, the UAV decides over which sequence it should deploy the sensor nodes as

the length of the path through all the waypoints varies depending on the sequence.

The proposed global path planner finds the sequence of waypoints by essential solving

the travelling salesman problem (TSP) [28] and finds the flying path between two waypoints

5

Figure 1.2: Path found by the global planner in a cluttered environment.

Figure 1.3: Global path planner contains two blocks working on TSP and PRM.

without hitting any obstacle by way of probabilistic roadmap (PRM) methods [29] as shown

in Fig. 1.3. A detailed discussion on how the TSP and the PRM work together to generate

a final path is discussed in Chapter 4. In this thesis, both the TSP and the PRM have been

implemented separately and are discussed in Chapter 5 and 6 respectively.

For the global path planner, both the sequence generator and the path explorer require a

significant amount of computational effort. To make a quick final decision from the UAV soft-

ware system blocks, each block should respond fast with the correct output. Making a quick

final decision also saves a UAV from hitting an unmapped obstacle. Parallel computation

is used to reduce the computational time for the proposed global path planner. Successful

implementation of the proposed global path planner can be used in different robotic applica-

tions. Examples of such applications can vary as widely as military operations with UAVs in

the battlefield performing a search over multiple target locations to domestic setting where

flying robots deliver parcels to different addresses, robots conveying groceries to any grocery

6

centre or collecting numerous books from a library system, monitoring gas, oil and water

pipelines etc.

1.2 Sequence Analysis: Real-Time DNA Sequencing

The complement to the sequence synthesis (construction) problem above which seeks to

realize an autonomous vehicle traversal pattern over a set of discrete labels (i.e., waypoints)

is the sequence analysis problem which seeks to find discrete labels for a given pattern.

Although sequence analysis is not so pressing an issue in emerging UAV applications, it is

well ensconced in molecular biology where the measurement of complex strings (life molecules

such as proteins and nucleic acids) plays a critical role.

As with autonomous aerial vehicles, exciting advances in the form of miniaturized real-

time portable DNA (deoxyribonucleic acid) sequencers has greatly improved the need for

efficient and high-speed sequence analysis and its concomitant computational hardware.

Presently, the embodiment of this advance is a palm-sized miniature DNA sequencer, the

so-called MinION device [30], which has been commercially available for nearly three years.

In the case of the MinION, a vast multitude of DNA strands are introduced into the device

and converted into noisy electronic time-series signals; these measurements are essentially

physical signatures related to the molecular make-up of the sensed DNA.

Among a long “pipeline” of analysis steps to be performed on such measurement se-

quences, the first, and arguably most intensive, is the so-called basecalling step which

analyzes the time-series and converts it into the equivalent monomeric base sequence (from

the discrete set of four possible nucleobase molecules, adenine(A), cytosine(C), guanine (G),

thymine (T)) of the DNA under test [31]. Achieving this analysis at low-cost and in real-

time promises substantial breakthroughs in point-of-care clinical analysis and molecular-level

environmental analysis. A short description of DNA and DNA sequencing is given in Sec-

tion 1.2.1.

7

Figure 1.4: A simplified diagram of the main features in a MinION-based DNA sequencing
pipeline.

1.2.1 DNA Sequencing

DNA is a molecule that ostensibly carries the genetic instructions used in the growth, de-

velopment, functioning, and reproduction of all known living organisms and many viruses.

Most DNA molecules consist of two biopolymer strands (template and complement) coiled

around each other to form a double helix. Fig. 1.4 shows a simplified block diagram of a

DNA sequencing pipeline as may be used in the context of a MinION device.

The first step (Fig. 1.4a), signal processing , involves the extraction of representative

signal features from the MinION’s raw measurements. One prominent feature is a piecewise-

linear representation of the underlying raw signal, also referred to as a “squiggle plot”. The

mean features of the squiggle plot are referred to as events and, as a result, the signal

processing stage is sometimes referred to the event detection phase.

The next step (Fig. 1.4b), basecalling is the main component of the so-called primary

analysis calculation. The job of the basecalling is to convert the squiggle plot (or even raw

data in some cases) to their text (i.e. A, C, G, T) equivalent. As noted, only this step is

considered in computational detail in this thesis.

Next, the secondary analysis phase (Fig. 1.4c) of the sequencing pipeline seeks to

reconstruct all the different text files generated during basecalling into a complete genome.

8

Figure 1.5: The signal flow in a MinION sequencing process form sensing to basecalling.

The final step, the tertiary analysis phase (Fig. 1.4d), seeks to make classifications and

inferences of value to researchers in computational biology and medical clinicians.

Fig. 1.5 illustrates the MinION sequencing process in a little more of its physical detail. It

demonstrates how a weak current signal (black) resulting from DNA sensing is first amplified,

conditioned, and sampled (red) by analog circuitry. As noted above this is followed by event

detection (blue) and basecalling (green).

The rate at which each DNA molecule is measured by a MinION device is about 250

bases per second (bp/s) [32]. In fact, an amazing amount of effort has gone into making

DNA translocation through the pore as slow as 250 bp/s. If left to its own devices (i.e., no

special protein-based movement control) the rate could be as high as 1M bp/s (1,000,000

bp/s).

In contrast, the computational workload for basecalling [33] requires about 1.5 × 106

arithmetical operations per second (OPS) for each squiggle plot event. A detailed calculation

along with the basecalling algorithm itself is discussed in Chapter 7.

A MinION working at a channel rate of 250 bp/s and 250 operational channels at one

9

time (another critical feature of the device is its ability to measure many DNA samples in

parallel), effectively requires 9.5 × 1010 OPS. At [34], an i7 4820K (based on 22-nm Ivy

Bridge-E running overclocked at 3.9 GHz) is reported to achieve 12× 109 DIPS (Dhrystone

instructions-per-second) or 2.410 OPS running an optimized version of a Dhrystone 2.1 test.

Thus, per second, we are 3.96× behind in terms of calculating DNA sequencing. This OPS

calculation is for one event. Usually, the total number of events is in the range of 5k but

can easily exceed this value by 10× or 20×. If we consider 1000 events only, a traditional

CPU-centred computational system is 3.96 × 103 times slower than the rate of raw signal

production by the MinION device.

Speeding up the calculation rate is essential for real-time DNA sequencing in case of ur-

gent care diagnoses. Using a computing cloud option such as the c3.xlarge facilities provided

by Amazon Web Services (AWS) imposes a cost of $0.21/hour [35]. For a human genome

consisting of 3× 109 bases the cost of such a service is $55 based on the calculations above.

Depending on the accuracy, one may need to sequence a genome repeatedly to attain “cov-

erage” of say 30× resulting in a cost of $55 × 30 = $1,650. A not insubstantial price for a

continuous service. Perhaps even more are field scenarios where only expensive satellite or

cellular data services may be available if at all. In such cases the costs incurred in terms of

raw data tonnage from sensor to the cloud can easily eclipse the remote computing charge.

Considering the above limitations, a local computing accelerator for the basecalling func-

tions becomes highly desirable. Achieving such in terms of a commodity GPU provides an

extra measure of cost savings to the potential user. In this thesis, a pipeline system has been

implemented where CPU threads are also used in conjunction with a GPU solution, this fa-

cilitates rapid operation over a multitude of DNA squiggle results where the first CPU thread

reads the input (squiggle) file which includes the digital input data and does the necessary

pre-processing calculations. The second CPU thread starts working with the processed data

prepared by the first thread and calls the GPU for parallel computation where GPU threads

operate in parallel to accelerate the central basecalling problem.

10

The basecalling problem is solved using the Viterbi algorithm instead of travelling sales-

man problem which is used for path planning. Generally speaking, the Viterbi algorithm

provides an exact solution when the number of possible states is limited [36]. And for a

higher number of states, Viterbi beam serach [37] is used which generates an approximate

solution. In my basecalling problem, the number of states was manageable to use a Viterbi

algorithm with the number of processors available in GPU. If I would have used TSP, I had

to use heuristic algorithms that would provide me with a near-optimal solution.

1.3 Thesis Contribution

This thesis has three main contributions. The contributions are listed below.

Contribution 1: The first contribution is that the thesis solves the larger TSP on

the GPU which has smaller on-chip memory. A large problem is subdivided into smaller

problems so that the smaller problems can fit into the limited memory of the GPU. Then

the smaller problems are solved inside the GPU. In general, a search for the best sequence of

waypoints may invoke two opposite strategies: exact search and approximate search. Using

the exact search, all possible sequences or combinations are checked to find the best result.

As the number of points grows this approach quickly becomes intractable. In such situations,

an approximate search is used which may find a near-optimal result. In these approximate

searches, instead of checking all possible combinations, a limited number of combinations

are tested.

Existing computational systems are not capable of implementing an exact search for any

problem of practical interest. But after dividing the waypoints into small groups, it becomes

possible to do an exact search for small groups of waypoints. This approach generates the

best path through a limited number of waypoints and leads to producing a better final path

at the end. A 4.82× speed-up compared to the CPU-only case is achieved.

Contribution 2: The second contribution of this research is generating a path between

11

two waypoints by solving the PRM more quickly. In particular, two steps (sample generation

and k-nearest neighbour search) which take ≈ 99% of the total execution time on a typical

CPU-only implementation are parallelized. A 164× speed-up compared to the CPU-only

approach is achieved.

Contribution 3: The last contribution is accelerating the execution time for the DNA

basecaller. The implemented basecaller is capable of generating 7283 bp/sec whereas the

current serial basecaller developed by [38] can generate only 1080 bp/sec. The result is

achieved by using CPU threads and GPU threads simultaneously.

1.4 Thesis Organization

The thesis is organized into eight different chapters. A brief literature survey is included in

Chapter 2. A detailed description of GPU structure is been presented in Chapter 3. Chapter

4 discusses the total UAV mission strategy, the physical system configuration, I/O and the

proposed global planner. Chapter 5 presents the UAV sequence generator implemented in

this thesis. Also present therein is the customized clustering algorithm required to address

the GPU’s limited memory space. Chapter 6 presents the implementation of an accelerated

UAV probabilistic roadmap on the GPU. Chapter 7 presents the accelerated DNA basecaller.

The thesis concludes in Chapter 8.

12

Chapter 2

Literature Review

This chapter presents a brief description of the prior work done on key topics related to

this thesis. First, the concepts of parallel execution in general, and parallel execution on

the GPU in particular, are discussed. Then, this chapter presents the prior work related to

sequence calculation using a parallel architecture, the construction of wireless sensor networks

(WSNs) using unmanned aerial vehicles (UAVs), path planning for UAVs, and finally DNA

sequencing.

2.1 Parallel Computation and Graphics Processing Unit

A brief overview of hardware for parallel computation and, in particular, the GPU, is now

given.

In general, computing speed is often gauged by the number of clock pulses needed to

complete an instruction, the so-called “cycles-per instruction” (CPI). Although a variety

of techniques are used to achieve instruction-level and data-level parallelism, and hence

improve CPI, until the turn of the century the most popular means among commodity

microprocessors of improving computing speed was to increase the clock frequency. Due to

heat dissipation and energy consumption issues, however, this strategy eventually became

untenable; the number of tasks that could be processed in each clock period within a practical

13

power budget stopped improving at its previous rate. Processor developers responded to this

circumstance by designing units with multiple processors or cores per die and thus offered

the possibility of executing instructions in parallel; IBM’s POWER4, released in 2002, is the

first commercial processor to explore this [39].

Today, two different families of processors are marketed: multicore and many core. In

a multicore approach, a few cores (typically two to ten at present) are integrated into a

single microprocessor chip with the intention of speeding up the execution of the programs

traditionally run on commodity machines including personal computers. In a many-core

approach, several hundred cores (each with a limited computational ability and lower power

needs) are oriented in such a way that maximizes the throughput of traditionally parallel

problems. The GPU falls into the many-core category and has been adopted as the parallel

platform of focus in this thesis.

Many core machines are used for parallel computations that distribute the workload

among multiple processors working in parallel. Supercomputers [40], warehouse-scale com-

puters, and GPUs are examples of many-core devices. A warehouse-scale computer is a

cluster comprised of tens of thousands of servers connected together by a local area network

to act as a single large computer. Such warehouse systems typically consist of 50,000 to

100,000 servers and cost on the order of USD 150 million to set-up [41]. A user can buy a

subscription for single or multiple computers depending on the user’s needs.

Supercomputers play an important role in the field of computational science, and are

used for a wide range of computationally intensive tasks in various fields, including quan-

tum mechanics, weather forecasting [42], climate research [43], and molecular modeling [44].

The most powerful supercomputer in recent days, the Sunway TaihuLight, contains more

than ten million CPU cores and has been benchmarked with a performance rate of 93-

petaflops [45]. The Sunway TaihuLight is also the most energy efficient machine at 6051-

megaflops/watt and costs USD 273 million to make.

Many applications have adopted the GPU (energy efficiency for Kepler typed GPU is re-

14

ported in the range of 12 ∼ 18 gigaflops/watt [46]) for their computing needs including: im-

age processing for computer vision [47], medical imaging [48, 49], environment mapping [50],

movement tracking [51] etc. More specifically, the image processing problem, a dominant

GPU application, includes blurring, edge detection, filtering, decoding, and encoding. Apart

from image processing, the GPU is also used in computational biology for DNA analysis,

sequencing [52], and alignment [20]. The GPU is also used in fluid mechanics for solving

sparse matrices [53] as often encountered in weather prediction problems [54].

Over the last few years, the GPU has been the subject of intense interest from machine

learning researchers, especially following the emergence of the deep learning paradigm. Sig-

nificant performance improvement over standard CPU architectures has been recorded by

using the GPU in this context especially in the training of convolutional neural networks for

the GPU’s staple application: image processing [55, 56, 57].

2.2 Parallel Sequence Calculation

Researches have already been used a parallel architecture like GPU for calculating sequences.

These sequence calculations include, but not limited to, task sequencing [58], path planner

for autonomous vehicles [17, 18], DNA sequencing [19, 20] etc. Travelling salesman problem

is commonly used to define sequencing problems. Many algorithms, i.e., ant colony, min-

max, genetics algorithm etc, are used to solve the TSP. More details discussion on TSP, used

for sequence calculation are included in section 2.4.1.

The Viterbi algorithm is another known algorithm of solving sequential problems which

is used for DNA sequencing in this thesis that provides an optimal solution. In general, the

Viterbi algorithm is used for the decoding problem (defines as, given a sequence of symbols

or observations and a trained model, what is the most likely sequence of states that produced

the sequence). In the following paragraph, I will discuss a few prior research works that use

GPU to solve the Viterbi algorithm in different research areas.

15

The Viterbi algorithm is widely used in the communication system, i.e., Li et al. [59]

have used Viterbi decoding algorithm (VDA) in WLAN, WiMAX, or 3G communications

where they have analyzed the parallelism of the Viterbi algorithm. Li et al. [59] have

proposed a parallel version of the algorithm executable on the multi-core CPU, graphics

processing unit (GPU), and field programmable gate array (FPGA). For more examples, the

Viterbi algorithm is used in sparse communication channels [60], for decoding in software

defined radio using GPUs [61]. The parallelly implemented Viterbi algorithm is also used to

recognize speech [62] as well as to detect the speech of two-person from a single recording [63].

DNA alignments [64], liver image segmentation [65] are the few examples of the parallelly

implemented Viterbi algorithm in biomedical technology.

The above paragraphs give a general idea of sequence calculation using a parallel archi-

tecture like GPU to the readers. From now, further discussion will be limited to the thesis

topics only which are building a wireless sensor network using UAV and DNA sequencing.

2.3 Wireless Sensor Network Construction using Un-

manned Aerial Vehicle

UAV-enabled (and GPU assisted) automated wireless sensor network (WSN) construction

is a main application outlet of this thesis.

In this study, I have assumed that the WSN consists of a number of spatially distributed

sensor/communication nodes whose physical location has been pre-determined according to

some objectives/constraints assumed to be outside the scope of this thesis. Thus, the main

objective of this thesis aspect deals with the computational challenges of the ensuing stage

of such WSN realization: the automated deployment of the nodes at their specified locations

via UAV. Since this objective address means of high-level control (i.e. planning) in UAVs,

this section first outlines the main characteristics of a typical UAV’s control system followed

by a discussion of existing examples of UAV use for WSN construction.

16

2.3.1 Unmanned Aerial Vehicle: A Robotic Aerial Vehicle

Depending on the applications and environment, either fixed wing or rotary wing aerial

vehicles are used. The most common example of fixed-wing UAVs are drones which are often

used for military purposes. The velocity of these vehicles can be as fast as 16,700 miles/hour

at altitudes of thousands of meters [66]. For low flying applications, it is preferable to

use rotary wing aerial vehicles like the classic single-rotor helicopter. In such applications,

the vehicle’s richer maneuverability frees it to operate very close to the ground ostensibly

improving its ability to reliably seed WSN from the air. Such an approach naturally requires

avoiding collisions with a broad range of obstacles: trees, buildings, wires etc. For such low

flying applications, small obstacles might not be visible from afar and it may happen that

the vehicle cannot find an alternate path to avoid the obstacles instantly. In that case, the

advantage of the rotary wing aerial vehicle is that the UAV can come to a stop position

rather than hitting the obstacle [67]. Other advantages are easy landing and take off.

An exciting civilian example of rotary wing UAVs is the Amazon Prime Air, this drone,

created by the retailer Amazon [68], has been in development over the last few years for the

purpose of automated aerial parcel delivery. Similarly, one of China’s biggest retailers is

building a delivery drone that can carry 2000 pounds of cargo [69]. Most of the small rotary

winged UAVs that have emerged in recent years are equipped with an autopilot and remote

control. The number of fully autonomous UAVs remain quite limited however and although

researchers have proposed multiple applications for these small UAVs, most of the work on

them remains confined in research laboratories.

2.3.2 Control System of Unmanned Aerial Vehicle

In general, each robot has a software control system which initiates multi-stage decisions

as part of the machine’s plan execution. According to Kortenkamp and Simmons [70], the

design of such a robot software control system refers to two different concepts: architectural

structure and architectural style.

17

The robotic architectural structure refers to how the system is subdivided into multiple

subsystems. These are typically categorized into four groups [70]: deliberative model [71] (the

robot thinks first, then takes an action), reactive model [72] (reacts in real-time according

to pre-programmed controls), hybrid model [73] (combination of deliberative and reactive),

and behaviour-based control model (a set of modules are designed with specific behaviours).

The architectural style refers to how each of the subsystems communicate with each other.

Two of the most common styles are client-server and publish-subscribe methods. In the client-

server system, the request for any result is paired with the server and the client waits until

the result has been received. In the publish-subscribe style, one subsystem completes a goal

and broadcasts the commensurate result. Only those subsystems that require the result

assert it. The subsystems are often referred to as modules when they are built on top of one

another. In this case, the result of one module is used by the next module. Each module

is designed to implement a specific goal. Such modular design reduces the complexity of

the system by lowering the need for communication through the narrow bandwidth of the

system. For the implementations considered in this thesis, the software system is designed

on a modular basis.

More generally, instead of a single robot, multiple robots can be used to achieve goals.

In case of multiple robots, a network control system is required to manage the robots or to

facilitate effective communication among them. In some experiments, the unmanned vehicles

are controlled from a central unit [74, 75]. Alternatively, in other approaches, all vehicles

have their own control system on board but the vehicles also have the option to communicate

with other vehicles that are engaged in the same mission [76]. This thesis limits its scope to

the single-UAV case.

The control system of a UAV is used for implementing a fixed goal like scanning an

environmental disaster, constructing a network, reconnaissance, target acquisition, search

and rescue, surveillance, environmental monitoring, mapping, and many other applications.

For example, Quaritsch et al. [77] have built a disaster management application where UAVs

18

fly over the disaster area. The UAVs are equipped with cameras and sensors to collect

video and images of the area. The videos and images are sent back to the ground and are

used by the rescue team after completing some specific analysis. Again, if we consider an

example of mapping, Scherer et al. [78] used a low-flying robot to map a river which requires

distinguishing the river’s edge from the embankment vegetation. Many other examples of

UAV applications can be cited, but presently there is no work done for constructing a WSN

from the UAV control perspective according to my knowledge.

2.3.3 Wireless Sensor Network Construction

The concept of deploying sensor nodes from a UAV is not new and a number of researchers

have experimented with UAVs for just such a purpose [79, 80, 81]. Corke et al. [79, 80], used

a wire coil with a radio controller to deploy nodes to the correct position on the ground from

a UAV. After deploying the sensor nodes, the connectivity of the network was checked and

additional nodes were deployed on demand.

In [79, 80], the UAV was equipped with GPS (global positioning system) for localization

and connected with the ground station through a 2.4 GHz wireless Ethernet link. During

the node deployment, instead of an online path planner, the UAV followed either a pre-

programmed path or control instructions sent from the ground station [79, 80].

Ho et al. [82] used a UAV to collect data from the cluster heads in a WSN and addressed

optimal robot navigation across a sequence of points by solving a version of the travelling

salesman problem (TSP). Note that the TSP solves for the sequence of waypoints which will

generate the shortest path that visits each of the waypoints in some set only once. Ho et

al. [82] mentioned the desired ground velocity and altitude of the UAV, but did not mention

how the flight path will be constructed.

In many such studies [79, 80, 81, 82], the authors assumed that the UAV could somehow

carry-out a safe journey and did not focus on the flight control: how the obstacles were

avoided, how the steering was controlled, how the paths to the destination were found etc.

19

Generally speaking, the main drawback of works considering UAV-deployed WSNs has been

that only the accuracy of the network was considered while largely ignoring the issue of UAV

control during the mission.

Again, the number of deployed nodes depends on the transmission range of the sensor

nodes and on the desired network performance. For example, Corke et al. [79] deployed 50

nodes, each with a transmission range of 2.5-m, in a 22-m×10-m sized field. In contrast,

Tian and Georganas [83] placed 100 nodes in a region whose area is 50 m×50 m. The

node transmission range in [83] was 10 m. For larger area and sensor nodes with a shorter

transmission range, the number of the sensor nodes can be as large as several thousand, a

scale not discussed in [83, 79, 80, 81, 82]. Such a big wireless sensor network is typically used

in the oil, gas or water pipeline monitoring system [84, 85]. Jawhar et al. [85] mentioned that

in the United Arab Emirates, there is 2,580 km of gas pipelines, 300 km of liquid petroleum

gas pipelines, 2,950 km of oil pipelines, and 156 km of refined products pipelines according

to the year of 2006. Monitoring such a big infrastructure requires thousands of sensor nodes

to cover the entire pipeline.

2.4 Path Planner for a UAV

The problem studied in this thesis, UAV-assisted WSN construction, has multiple waypoints

denoting locales for sensor node deployment. Naturally, the UAV is therefore required to

fly through all of the given waypoints, seeding a node at each point. For such flights, the

UAV’s path planner decides which waypoint the UAV should next go in its node deployment

sequence and which flying route the UAV should follow in flying from one waypoint to the

another.

A review of UAV path planners reported in the literature reveals that few research works

concentrate on both the sequence generator (i.e. which waypoint the UAV should go to next),

and the point-to-point path constructor together. For example, Requicha and Spitz [86] have

20

worked on the sequence planner and path construction for coordinate measuring machines

(CMMs) where a probe is moved to multiple designated spots for measurement. This involves

both path planning for collision avoidance and sequencing the points to minimize the length

of the path. In particular, [86] solved the TSP for the sequence planning and another

algorithm (the probability roadmap — PRM) for path construction. The entire planner

took 12.96 sec for 30 waypoints and 24.48 sec for 100 waypoints using serial execution on

a Sun ULTRA 1 machine. In [87], [88], and [89], the planner includes both sequencing and

path construction but all of these examples are offline planners.

Most path planner research works, other than the small number of research studies fo-

cusing on both sequence generation and path construction, are focused either on computing

a safe path between two waypoints or on finding an efficient sequence of waypoints, often

called as task planner. In light of this partition, the following discussion on prior works

related to UAV path planning, is divided into two sections: 2.4.1, and 2.4.2 which discuss

the sequence generator, and the path construction between two waypoints, respectively.

2.4.1 Sequence Generator

A sequence generator computes an optimum sequence of waypoints to follow, depending

on the problem objective. Example objectives in the context of UAV path planning over

multiple waypoints include minimizing flight length, minimizing fuel cost etc. A rigorous

means of addressing this challenge is in terms of the aforementioned travelling salesman

problem (TSP).

The TSP is a very well-known topic with a rich history of research [28]. As mentioned

above, classically, it concerns the problem of visiting each of a given set of points exactly

once such that the length of the total route through the sequence is a minimum.

This is an NP-hard problem that, as with all such challenges, can be solved in two basic

ways: an exact algorithm or an approximate (heuristic) method [28]. The former finds the

exact solution at the expense of computation time which increases exponentially with the

21

number of waypoints [28]. Conversely, the heuristic approach solves the problem faster but

can not guarantee the optimal solution although near-optimal results are possible.

Specific examples of strategies employed for exact algorithmic solutions include integer

linear programming, branch and bound, breadth-first search etc. [90]. Heuristic examples

include nearest neighbour search, genetic algorithm (GA), simulated annealing etc. [28].

Researchers have solved the TSP with different algorithms and executed the computation in

either a serial or a parallel manner. Further discussions on the prior TSP work is divided

into two parts: TSP with serial implementation, and TSP with parallel implementation.

TSP: Serial Implementation

Most of the research work related to the TSP-based navigation using serial implementations,

assumes that the sequence of waypoints will be generated offline due to the relatively long

computational time. These contributions often incorporate other scenario features in their

calculations such as missile threats [91], radar network [92], flying angle etc.

To date, the best generic TSP solver (i.e. just the classic TSP with no additional feature

considerations) is the Concorde TSP [93] that finds the optimal result for all of the instances

in an example library, TSPLIB, using multiple heuristic algorithms including the cutting-

plane method, the minimum spanning tree, the nearest neighbour, the branch and bound

method. Specifically, the TSPLIB is a library of sample instances for the TSP [94] and

the largest problem in the TSPLIB contains 85,900 nodes. The execution time for 1000

waypoints (from the TSPLIB file named dsj1000) is listed as 410.32 sec [93] on a 500-MHz

Compaq XP1000 workstation. As a pure TSP solver, evaluated by the quality of its results

and size of problems handled, Concorde is recognized as the best available tool, but it can’t

be used online due to its execution time.

Dorigo and Gambardella [95] used the ant colony algorithm to solve the TSP. In general,

in the ant colony algorithm, a set of agents called ants cooperate to find a good sequence.

In nature, ants are able to find good solutions to the shortest path problems between a food

22

source and their home colony via a pheromone-based (aromatic substances) communication

scheme that they use in variable quantities to mark their trails. An ant’s tendency to choose

a specific path is positively correlated to the intensity of a found trail. The pheromone trail

evaporates over time. i.e., it loses intensity if no more pheromone is laid down by other ants.

If many ants choose a certain path and lay down pheromones, the intensity of the trails

increases and thus this trail attracts more ants. Dorigo and Gambardella [95] also used

3-opt local search with the ant colony algorithm and were able to find the optimal solution

for 318 waypoints in 537 sec and near optimal answer for problems larger than 318. Stutzle

and Hoos [96] used a max-min ant system, an updated version of ant colony system, that

also cannot guarantee to find an optimal solution like [95].

When multiple algorithms are used to solve a problem, the process is referred to a follow-

ing a hybrid approach. The hybrid method has become very popular for solving the TSP.

For example, Baraglia et al. [97] used the GA and Lin-Kernighan (LK) local search to solve

a 1000-node TSP in an average simulation time of 25 min using C++. The authors [97] also

claimed that their algorithm is capable of solving 13,509 nodes.

The main drawback of the serially executed TSP solvers [95, 96, 97] is the long execution

time. None of them can find the sequence online. For faster sequence generation parallel

computation architectures are explored in the next section.

TSP: Parallel Implementation

Due to the large computational workload, it is very common to solve the TSP using parallel

execution. For handling parallel execution on modern CPU and GPU platforms, multi-

threading is the most convenient method to use. For example, Sahingoz and Ozalp [98] used

16 CPU threads to solve the TSP in a 3D environment and added threats of a radar network.

The authors [98] used a genetic algorithm and achieved a computational time of more than

600 sec for a 963 waypoints problem.

References [99, 100, 101, 102, 103] etc. are examples of solving the TSP with parallel

23

GPU threads. O’Neil et al. [99] presented an implementation of the TSP using a GPU where

they applied an iterative hill climbing (IHC) method and opt-2 search for hill climbing or,

in other words, a 2-opt search was employed to find a better solution than the hill climbing

algorithm itself. In general, in hill climbing methods, the result is updated when a better

solution than the current state is found. The advantage of using IHC is that no additional

memory storage is required as the current state is updated only if a better new solution is

found. IHC is often able to find the local minima only. To resolve this drawback, 100,000

random start points are considered in [99]. Finally, [99] was able to find the optimal solution

for 100 waypoints. This GPU solution runs 60 times faster than an x86 core and runs as

fast as 32 CPUs with 8 cores/CPU.

The main limitation of O’Neil et al. [99] is that the algorithm can only solve a maximum

of 110 waypoints as they store pre-calculated waypoint separation distances in the GPU’s

shared memory, a very low latency local storage. Their design and GPU shared memory size

limitations cannot hold distances for problems with more than 110 waypoints.

Rocki and Suda [100] addressed the main limitation of [99]’s iterative hill climbing

method. In particular, they managed to increase the limit of the number of waypoints

by storing coordinates in shared memory and calculating the distances among the waypoints

on-the-fly. As a result, [100] managed to solve a 6000 waypoints problem using the IHC

method. However, at such scales, the approach was two times slower than the original serial

implementation.

Rocki and Suda [101] also have worked on a parallel implementation of TSP using an

iterative local search. This effort achieved 10 to 50 times faster execution time depending on

the size of the problem. The best thing about the implementation [101] is that the algorithm

can handle thousands of waypoints.

Ant colony algorithms have emerged as attractive means of tackling the parallel im-

plementation of the TSP. For example, Fu et al. [102] used an ant colony algorithm for

the parallel implementation of a TSP and achieved 30× speed for the problem with 1000

24

waypoints. The parallel implementation of a similar strategy, the so-called MAX-MIN Ant

system algorithm, runs 32 times faster than a CPU for 400 waypoints [103].

Genetic algorithm (GA) are another family that historically has not demonstrated great

success in implementing a larger GPU-based parallel TSP implementation. Fujimoto and

Tsutsui [104] used a GA to solve the TSP and demonstrated a parallel implementation work-

ing 24.2× faster than the CPU implementation. But their approach is limited to problems

with a maximum of 512 waypoints. The work done by Chen and his co-workers [105] also

supports a very limited number of waypoints using a GA; their parallel execution is less

than two times faster than the CPU execution. Li et al. [106] implemented an immune al-

gorithm using a genetic algorithm framework and got only a 11.5 times faster result for 225

waypoints. My research study is able to solve a larger problem with 4096 waypoints which

distinguish the research study with the others.

2.4.2 Path Explorer

In general, a UAV’s path explorer concentrates on the problem of path construction between

two waypoints. Among the many algorithms focused on path construction, two types of

general approaches are deterministic and stochastic [107].

In the deterministic algorithms, the uncertainty due to robot actuators and sensors is not

considered while stochastic approaches take these into account. In robotics, component in-

formation uncertainties can be due to unmodeled vehicle dynamics, unknown environments,

environmental disturbances, uncertainty about the pose information etc. This research work

follows the deterministic approach and further discussion is limited to this outlook.

Deterministic methods can be further divided into three main approaches [108]: the

skeleton approach, cell decomposition, and potential fields.

In the skeleton approach, a graph is generated around the start and the destination

locations. Then a graph search algorithm is applied to find the final path. This approach is

also known as a roadmap or highway approach [108].

25

In the cell decomposition method, the map is represented by cells; each cell is assigned

with a weight depending on the path planner [107, 109]. For finding the desired path, the

weight of each cell is updated depending on neighbouring cells which makes the process

serialized.

The potential field concept assigns repulsive forces (relative to the UAV) to obstacles and

attractive forces to the target, respectively [110]. Potential field planners are quite fast but

not guaranteed to find a path [111].

Much research work has been done on path construction using the three approaches

listed above. For the sake of simplicity, further discussions are divided in two Sections 2.4.2

and 2.4.2 depending on how the programs are executed, i.e., serial execution or parallel

execution.

Path Explorer: Serial Implementation

To date, most of the prior research work on UAV path planning falls into this computa-

tional style, where a safe path is constructed between start location to target location and

algorithms are executed in a serial manner in the CPU. Many of the studies are related to

avoiding radar networks [91] or obstacles [112], and generating smooth paths [113]. Com-

putational time is usually not listed in these reports. For example, Zhang et al. [114] have

used one of the most famous algorithms for path planning, the ant colony optimization, for

generating a path from start to destination. Mittal and Deb [113] have worked on gener-

ating paths offline using a hybrid algorithm that includes the genetic algorithm, B-Spline

curve, and clustering to find the safest path. But none of them [114, 113] have reported the

runtime.

Where the computational time is mentioned, the runtime is typically very long, relegating

the techniques to offline scenarios. For example, Pehlivanoglu [115] used a vibrational genetic

algorithm enhanced with a Voronoi diagram for the path construction between two waypoints

which took approximately 27 sec. The Voronoi diagram divides the space into several regions

26

depending on the obstacle locations [116]. Kim et al. [112] used reinforcement learning (the

Q learning algorithm) to endow the UAV with obstacle avoidance. But learning takes 26 sec

for a 20×20 size map with 52 obstacles. Using such planners requires additional flights at

the beginning to train the planner.

There are few UAV-focused path planners which work in real-time. Such planners typ-

ically contain two versions of the planner: an offline planner and an online planner. The

offline planner is executed before the vehicle takes off and the online planner in executed

during flight for making corrections in case of unexpected moving obstacles.

For example, Sujit and Beard [117] worked on multiple UAVs where each UAV had its

own start and end location and these UAVs which pass through the same environment. Each

UAV generates a path for itself in 60 sec, initially offline. Then, depending on the pop-up

and moving obstacles, the UAVs make corrections on their path which takes 5 sec to 6 sec

online. Similarly, Kothari et al. [118], used an offline and online version of planner using

RRT (rapidly-exploring random tree) algorithm. Qu et al. [119] worked on two types of path

planners: real-time suboptimal path planner (with A* and a geometry smoothing algorithm),

and an offline optimal path planner (employing GA and potential field methods).

Path Explorer: Parallel Implementation

Research works on path explorers using parallel implementation are reviewed in this section.

The skeleton approach is more popular for such realizations on many-core GPUs. In the

skeleton approach, multiple sample nodes (in the range of hundreds to thousands, depending

on the space size and problem formulation) are used and the same set of codes are executed

for all of the sample nodes which can exploit a GPU’s high parallelism. Conversely, in

the cell decomposition method, individual cells depend on neighbouring cells which limits

opportunities for straightforward parallelization.

Two common skeleton-based methods, often called sample based algorithms, are prob-

abilistic roadmaps (PRMs) and rapidly-exploring random trees (RRTs). Manocha and his

27

team worked rigorously on PRM with 6-DOF (degree of freedom). Pan et al. [111] presented

a novel parallel algorithm for real-time motion planning of high DOF robots that exploits the

computational capability of a commodity GPU. In general, the problem complexity grows

exponentially with increases in the DOF and [111] was able to handle such computational

workload.

PRM has two phases: a construction phase and a query phase. In [111], efficient parallel

strategies for the construction phase are described that include sample generation, collision

detection, connecting nearby samples, and local planning. The query phase is also performed

in parallel based on graph search. In order to accelerate the overall performance, [111] also

described new hierarchy-based collision detection algorithms. They highlight its performance

on multiple benchmarks on a commodity PC with an NVIDIA GTX 285 GPU and observe

a 10-80 times performance improvement over CPU-based implementations.

Collision detection and k-nearest neighbour search are the most computationally expen-

sive phases in a sample based planner. Pan et al. [120] implemented a novel algorithm for

k-nearest neighbour search with linear space and time complexity and exploits the multiple

cores and data parallelism effectively in GPU. The formulation is based on locality sensitive

hashing (LSH) and cuckoo hashing techniques, which can compute approximate k-nearest

neighbours in higher dimensions. The implemented algorithm improves the performance

of the overall planner by 20 to 40 times for CPU based planners and up to 2 times for

GPU-based planners.

Pan and Manocha [121] presented parallel algorithms to accelerate collision queries for

sample-based motion planning like PRM and RRT. In order to take advantage of many-core

GPUs, they present a clustering scheme to appropriately allocate collision queries to different

cores, and collision-packet traversal to perform efficient collision queries, from [120], on

multiple configurations simultaneously. The implemented code can perform 500,000 collision

queries per second, which is 10 times faster than prior GPU-based techniques. Moreover,

they can compute collision-free paths for rigid and articulated models in less than 100 ms

28

for many benchmarks, almost 50 to 100 times faster than CPU-based PRM planners [121].

Yoon et al. [122] presents GPU-based collision detection method that accelerates collision

queries for sampling-based motion planning where a robot used 4-DOF robotic arm with each

joint having 0 to 360◦ mobility. For the collision detection, the rectangular shaped oriented

bounding box (OBB) is used to represent the robot as well as the obstacles in 3D space. The

robot could be a combination of multiple OBBs depending on its shape. Then the collision

between the obstacle OBB and the robot OBB is checked. They observed a ten-fold speed-up

in the local planner compared to using a CPU.

2.5 DNA Sequencing

The DNA sequencing process is getting faster and more accurate with new innovations in

bioscience. Fred Sanger’s DNA sequencing technique [123], a means employing randomly

interrupted enzymatic extension, was a profound contribution to genomics science. In short,

this technique employs some chemical reactions and the outcome of this reaction is a set

of dsDNA (double-stranded DNA) of various lengths whose terminating nucleotide can be

identified and thus sequenced by resulting molecule size. Sanger’s contribution accelerated

the process of DNA sequencing from rates of roughly 10 base pairs (bp) per year to about

100 bp/day [124].

Later, in the mid-80s and in the late 90’s, two outstanding improvements in the field of

sequencing was the adoption of fluorescent labelling [125], and capillary technology [126],

respectively. In the fluorescent labelling process, nucleotides are bonded to fluorescent

molecules and emitted colours help the automation of the sequencing process. The introduc-

tion of capillary transport in place of gel electrophoresis increased sequencing throughput to

360 kilo base pairs (kbp) per day and, through refinements, is today capable of processing

roughly 1-2 million bp/day [127].

A substantial advance in DNA sequencing methods started in 2005 with the emergence of

29

a variety of so-called next-generation-sequencing (NGS) techniques. NGS machines achieve

sequencing by adhering to a ssDNA (single-stranded DNA) multiple detectable bases in a

controlled and sequential process (and thus synthesize a double-stranded chain), a method

generally referred to as sequencing-by-synthesis. This approach makes it possible to carry

out sequencing in-situ, without the need for physical transport of the analyte as needed in

the Sanger method. As a result, NGS has opened and exploited the possibility of realiz-

ing much more complex and compact sequencing platforms. This, in turn, has lead to the

construction of multi-channel systems and thus achieved high-throughput operation with

institutional NGS machines capable of exceeding 1 Tbp/day and even some desktop NGS

machines operating over 100 Mbp/hour [128]. Important examples of NGS technologies

employing the sequencing-by-synthesis strategy include the Solexa/Illumina bridge ampli-

fication method which dominates the field today [129] as well as Roche’s pyrosequencing

method [130].

To achieve sequencing with sufficient fidelity, multiple copies (roughly one million) of

analyte molecules must be made; the reason for this is the limited sensitivity of detection

methods in NGS which also introduces noise. Another limitation of NGS systems is their

relatively short read-length, that is, the number of nucleotides (nt) that can be sequenced

using NGS processes in a single run to a given accuracy. The availability of only short reads

naturally leads to difficulties in the sequence extraction of significant long-range patterns

(e.g. genes) from the DNA under investigation [127].

Arguably, the next major step in the evolution of sequencing machines into their third

generation centres around the creation of single-molecule detection technologies. Such a

development promises to address two critical complications in NGS machines: chemical

amplification and short read-lengths. Nanopore-based sequencers are one embodiment of

this vision.

The nanopore-based sequencing method breaks both of the key features (synthesis and

optics) established by its predecessors: i) its signalling process works directly on the DNA and

30

the chemical complexities this entails (e.g. nucleotide modification, amplification, nucleotide

addition, wash, fluor removal, blockers, etc.); ii) it associates structural DNA features with

electronic charge rather than photonic wavelength making an interface to production-grade

microelectronic technologies (i.e. complementary metal oxide semiconductor — CMOS)

much more amenable.

Nanopore-based sequencers (NBS) are a very recent addition to the sequencing tool mar-

ketplace. Most prominently, a nanopore-based molecular sensing device plus accompanying

sequence analysis tool chain have been made available by Oxford Nanopore Technologies

Inc. (ONT) since the spring of 2014 [131, 132]. These systems currently achieve sequenc-

ing speeds on the order of 500-nt/s, orders of magnitude faster than the methods outlined

above, with the potentially for vastly higher per-sensor speeds given a quality interface to a

sufficient signal processing technology.

The MinION currently relies on a cloud computing platform, Metrichor (metrichor.com),

for translating locally generated sequencing data into basecalls. David et al. [38] build the

first offline open-source basecaller for the MinION and made the basecaller open source which

named as Nanocall. Nanocall can generate about 2500 Kbp of sequence per core hour or 694

bp/sec per core using the hidden Markov model and Viterbi algorithm.

To accelerate the DNA sequencing process, in terms of computation, GPU has been used

by researchers [133, 134, 135, 64]. Boža et al. [133] solved the basecaller for MinION based

on nueral network. Researchers [135, 64] used GPU for DNA alignment which is a part of

secondary analysis discussed in Chapter 1. [134] is an example of solving basecalling with

GPU using deep learning method. But my reserach work on basecalling is based on the

hidden Markov model and Viterbi algorithm.

31

Chapter 3

General Purpose Graphics Processing

Unit

The general purpose graphics processing unit (GPU) is a promising computing architec-

ture for parallel programming. The GPU’s compute hierarchy, memory hierarchy, hardware

architecture, and specifications are discussed in this chapter. Energy consumption and per-

formance rate for selected GPUs are listed in the GPU specifications section.

3.1 Overview of GPU

A promising computing architecture for parallel programming is the GPU [6]. Compared

to the CPU, the GPU has a thousand times more cores within a similar chip area, a sim-

pler hardware control, and more power efficient operation (i.e., the power requirement as

a function of throughput) [136]. Another primary difference between the CPU and the

GPU is that the CPU is typically designed to optimize the latency (reduce execution time

for a task) while the GPU is designed to maximize the throughput (the number of tasks

completed within a time frame). Thus the GPU is widely used for parallel processing a com-

puting technique known for boosting throughput via distribution of operations over many

simultaneously operating units.

32

The CUDA programming framework, developed by NVIDIA, allows a programmer to

write code for both processors (CPU and GPU) in a single program [137]. A picture describ-

ing a typical CPU/GPU workstation arrangement is shown in Fig. 3.1. Typically, the GPU

essentially functions as a coprocessor for the CPU. The CPU is in charge of initiating all the

instructions. In general, the CPU is referred to as the host and the GPU is referred to as

the device [137]. Both the CPU and the GPU have their own dedicated memories: the tra-

ditional DRAM (Dynamic Random Access Memory) for the CPU and the GDDR5 SGRAM

(Graphics Double Data Rate Five Synchronous Graphics Random Access Memory) [138] for

the GPU. The GPU also has on-chip shared memories denoted as SMEM (Shared Memory)

in Fig. 3.1.

Typically, the CPU and the GPU communicate with each other through the PCIe (Pe-

ripheral Component Interconnect Express) bus. The CUDA framework through which GPU

resources may be accessed for general program execution supports numerous programming

languages. In this thesis, C/C++ has been used with an extension for GPU programming.

In such programs, a part of the code is executed in the CPU and rest of the code is executed

in the GPU. The code that is executed in the CPU is called the host code and the code

meant for GPU execution is known as the device code [137]. A compiler from NVIDIA,

nvcc, is responsible for the separation of both the host code and device code from within a

single program.

Efficient programming for the GPU requires an obvious idea of its architecture and the

optimization mechanisms through which it may be best utilized for a problem. Although spe-

cific parameter settings may change, well-designed program concepts should scale very well

between GPU architectures ranging from mobile devices to large distributed systems [137].

There are three main types of GPU architectures: Fermi, Tesla, and Kepler. Depending on

the GPU specification, i.e., the number of CUDA cores, memory size, etc., the performance

of the implementation will vary across these only because of access to more processing and

memory. In this thesis, the Kepler GPU architecture, as present in the NVIDIA GeForce

33

Figure 3.1: CUDA memory management model.

GTX 680 GPU model, was used for generating the experimental results. But an approximate

performance update will be estimated for high-end GPUs: Tesla K20 and Tesla K80.

3.2 GPU Architecture

This section introduces and outlines the basic GPU features essential for parallel program-

ming. Specifically, the organizational strategies used to arrange the compute and memory

portions of these devices are discussed.

3.2.1 Compute Hierarchy: Thread, Block, Grid, Kernel, Warp

Thread

Command execution in terms of threads is a long established practice in computing plat-

forms. It refers to the partitioning of code into distinct “sections” (i.e., threads). Each thread

simply encapsulates a piece of serial code. However, within this paradigm, the application is

free to decide which thread is best executed at any one time and thus performs intermittent

34

context switching between threads sharing a processor. For example, if one thread enters

a blocking state, the time may be right for the application to shift to another thread of

serial execution. Being part of one consistent application allows threads to share the same

address space in main memory, therefore, allowing for an efficient transition between threads

(relative to switching between individual processes) [6].

In CPUs, the treatment of individual threads is usually quite sophisticated including

the concept of simultaneous multithreading (e.g., hyperthreading) over pipelined superscalar

architectures with out-of-order execution capability. The result is a very sophisticated control

logic scheme intended to extract as much instruction-level parallelism (ILP) as possible from

serial thread code. In a commodity desktop multicore CPU, perhaps 16 thread instructions

may be executing simultaneously under optimum conditions.

In contrast, even relatively modest GPUs like the GTX 680 can support 1,536 simulta-

neous threads with the ability to partition an algorithm into many 1000s of non-concurrent

threads [138]. This is achieved rather directly, with 1000s of cores, so-called streaming pro-

cessors (SPs), placed adjacent to each other on a single-chip die. Each SP is much simpler

than a modern CPU’s core and hence is inferior in its ability to achieve high ILP from any

thread assigned to it. However, this architecture, via frameworks such as NVIDIA’s CUDA,

does give the programmer the ability to achieve significant processor-level parallelism (PLP).

Block

For NVIDIA GPU systems, the programmer has the option of lumping threads into larger

units called blocks. Threads aggregated to a given block have the possibility of at least

crudely synchronizing their actions (e.g., via so-called barrier synchronization mechanisms).

Each GPU allows a limited number of threads to be assigned to any one block, presently 1024.

The threads in a block are indexed according to a maximum of three-dimensional array thus

giving the programmer more flexibility in assigning parallel threads over multi-dimensional

arrays, particularly those directly describing physical phenomena, a relic of GPU origins in

35

graphics applications. Physically, each block is executed by a streaming multiprocessor (SM)

unit. SMs are collections of ∼ 200 SPs with dedicated control logic and shared memory

per SM. SM’s are further detailed in discussions below.

Grid

A grid consists of blocks [137]. As with blocks, a grid can be organized according to a three-

dimensional array. Like blocks, a grid also has limits on the number of blocks it can contain.

Code run on the host launches kernels which is technical jargon for functions executed on

the GPU. These kernels are executed by many GPU threads in parallel that are organized,

at the highest level, in grids. That is, a kernel is assigned to a grid with the grid being a

two-stage hierarchy comprised of the aforementioned blocks and threads.

Warp

During execution, threads in a block are divided into smaller groups called warps. Threads

in the same warp are executed at the same time. They also read and write data at the same

time. The standard warp contains 32 threads. If the total number of threads in a block is

not divisible by 32, a warp will contain less than 32 threads. For example, if there are 34

threads (numbered as #0 - #33) in a block, then the first warp will contain 32 threads (from

#0 to #31) and the second warp will contain two threads (#32 and #33).

3.2.2 Memory Hierarchy

As mentioned earlier, the program is initiated from the CPU. Thus, at the start of execution,

the program beings in the CPU and data is present in the CPU’s main memory. When the

CPU program reaches its device code execution section, it is required to send data to the

device so that the GPU can properly execute the device code. At this point, a memory

management issue arises. There are several types of memory present in the GPU which are

shown in Fig. 3.2. Fig. 3.2 also shows the direction of data flow.

36

Figure 3.2: CUDA memory management model and data flow direction.

The main types of memory in the GPU and their specifications are given in Table 3.1.

The largest memory available to GPUs is the global memory. This memory, which is on

the order of 10 GB on GPU modules (see Table 3.2 for specific examples), is implemented in

memory chips sharing the GPU’s motherboard with the GPU computing core. Communica-

tion between the CPU’s main memory and the GPU’s global memory is typically facilitated

by a PCIe link. For a typical 16-lane PCIe connection with eight lanes dedicated to each

direction, duplex communications on the order of 10 GB/s between the system and global

memories may be facilitated in each direction. Although such transfer rates may seem im-

pressive, compared to the GPU’s on-board memory’s bandwidth, they are quite slow. For

example, the GTX 680’s GDDR5 SGRAM (double data rate type five synchronous graphics

random-access memory) operates with an effective memory clock of 6008 MHz over a 256-

bit bus thus achieving a 192.2-GB/s memory bandwidth between the GPU and its global

memory [138]. As a result, data read/write between CPU host system memory and GPU

global memory is considered slow.

Constant memory is a small (64 KB) subset of the GPU’s main GDDR5 SGRAM

37

intended to store variables whose values do not change over the course of a kernel’s execution.

As a result, these values are preferentially cached on-chip by the GPU and thus exhibit faster

access rates than standard global memory contents. However, threads can only read data

from constant memory. Constant memory is optimized for broadcasting [137] which means

reading data from the same address of the constant memory by threads from the same warp.

This is as fast as reading from an on-chip register as long as all threads read from the same

address. Accesses to different addresses by threads of the same warp are serialized, so cost

scales linearly with the number of different addresses read by all threads within a warp.

Texture memory is also a read-only cached memory and can be accessed by all the

threads present in different blocks. Texture memory is optimized for 2D spatial access

patterns.

Shared memory is a fast, SRAM-based, on-chip memory for threads in the same block.

Each thread has its own on-chip registers which have the fastest accessibility among all the

memories. The difference between the shared memory and the register memory is that the

shared memory can be accessed by all the threads in the same block and the register memory

is for a single thread itself which can be accessed by that single thread only. If the threads

exceed the memory limit of these registers, they start using local memory which is an

off-chip memory. The local memory is part of global device memory, that is, it is accessible

only by the thread that declares it. As the access speed to the local memory is not as fast

as for the registers, the program gets slower.

Besides, sending data from host memory to global memory, there is another option that

does not send data to the device which is known as page locked memory. Using this

feature, the time required for transferring data from host to device and device to host can

be saved as the data resides in the host memory. In this process, a pointer (pointing to the

host memory where the data is saved) is sent to the device. This approach is helpful when a

large amount of data needs to be transferred to and received from the device. But multiple

accesses of a single data from the device ruins the time saved by not transferring data.

38

Memory Read/Write On/Off Cached Access speed Accessibility
type options chip

Global Read and Off Cached High latency All threads
Write and host

Constant Read only Off Cached Low latency All threads
and host

Texture Read only Off Cached High latency All threads
and host

Shared Read and On N/A Low latency, very Threads in the
Write high bandwidth same blocks only

per multiprocessor
Register Read and On N/A Low latency Individual

Write threads only
Local Read and Off Cached High latency Individual

Write threads only

Table 3.1: GPU’s memory description.

3.2.3 Processors/Hardware Architecture

In the GeForce GTX 680, there are 4 Graphics Processing Clusters, GPCs [138]. Inside

of each GPC, there are two next-generation streaming multiprocessors, SMs. Thus, in the

GeForce GTX 680, there are eight next-generation SMs. SMs are considered to be the heart

of the GPU architecture as processes distributed to SMs can be conveniently coordinated by

the programmer [139]. Fig. 3.3 shows a simplified block diagram of the SM. The working

principle in the SM is as follows:

• Instructions are cached in the instruction cache unit. During device code execution,

blocks are assigned to SMs. One block can be assigned to one SM only. This assignment

is not controlled by the programmer.

• Each block is broken into warps with 32 threads or less, as discussed in Section 3.2.1.

• Warps are assigned to the warp schedulers.

• Dispatch unit is coupled with the warps schedulers. An example of warp schedulers

coupled with dispatch unit is given in A.1.4. Note that, the programmer does not

39

Figure 3.3: Simplified block diagram of the next generation streaming multiprocessor (SM).

control the warp scheduler and dispatch unit.

• Instructions are assigned for execution from the dispatch unit depending upon the

availability of the execution units.

• There are several execution units like core and Special Function Unit, SFU. Cores are

dedicated for executing arithmetic operation, and SFUs are dedicated to executing the

special operations: sine function, cosine function, square root function, etc.

40

GTX 680 K20 K80
Number of GPUs 1 1 2
CUDA Capability 3.0 3.5 3.7

Global memory 2 GB 5 GB 24GB
Number of SMX Units 8 13 26

CUDA Cores 1536 2496 4992
GPU Clock rate 1059 MHz 706 MHz 560 MHz

Memory Bus Width 256-bit GDDR5 320-bit GDDR5 384-bit GDDR5
Memory Bandwidth 192.2 GB/s 208 GB/s 480 GB/s

Graphics Card Power 195W 225W 300W
Performance (single precision) 3090 Gflops 3.52 Tflops 8.74 Tflops

Shared memory per block 48KB 48KB 48KB
Max Registers available 64 255 255

per thread
Warp size 32 32 32

Max. threads per block 1024 1024 1024
Unit price CAD 566 CAD 3650 CAD 13094

Table 3.2: Device specifications for GeForce GTX 680, Tesla K20 and Tesla K80.

3.3 GPU Specifications

NVIDIA’s GeForce GTX 680 is used in this thesis. Table 3.2 shows the detailed technical

specification of the GeForce GTX 680, Tesla K20 and Tesla K80. From the comparative

table, it is clear that K80 has more resources for parallelism compare to the two other GPU

models. The unit price is taken from the amazon.ca on September 13, 2017.

41

Chapter 4

System Model and The Path Planner

This chapter discusses the proposed UAV path planner for WSN deployment. The proposed

planner consists of two functional blocks: a TSP (travelling salesman problem) solver and

a PRM (probabilistic roadmap) solver. The high-level TSP solver computes an optimum

global path for the UAV to follow across all network nodes while the low-level PRM solver

ensures safe, obstacle-free, node-to-node routes. Preceding a detailed discussion on the

proposed path planner, background information on the UAV’s operating environment and

software/hardware system models are given.

4.1 Environment Description

A rural environment is considered in this thesis for the network construction. The motivat-

ing assumption here is that the need for automated WSN deployment is more likely in such

locales rather than heavily resourced urban areas. Further, the environment under consider-

ation is assumed to be a cluttered one, meaning that it has many obstacles and thus requires

more than a rudimentary point-to-point plan of any autonomous vehicle operating therein.

Generally speaking, the obstacles may be trees, mountains, forests, electrical transmission

apparatus, etc.

Due to the obstacles in the environment, the UAV requires an effective path planner

42

and control system so that the UAV will not hit any of the obstacles on the way to its

destination. The size and the shape of the obstacles vary, for example, [112] used square

shaped obstacles in a grid map, [140] used circle shaped obstacle in a 2D environment, [141]

used cylinder shaped obstacle in a 3D environment. In this thesis, sphere-shaped obstacles

are used in a 3D environment as abstractions of realistic environmental features. In this

study, less than 5% of the total volume is occupied with obstacles. The size of the area

(on the ground) where the network is constructed is assumed to be 10,000 m2. Assuming

sensor nodes with a 2-m communications range(as in [79]), approximately 2500 nodes are

required to build a network over this space. The maximum flying height is assumed to be

50 m. The spatial dimensions, the number of sensor nodes, and altitude of the UAV are

inspired by [142] where a new communication protocol is proposed for the communication

system between a large WSN and a UAV. Though for the considered space 2500 nodes are

required, the experimental section of Chapter 5 and 6 includes the result for 4096 nodes to

show the reader the work capability of the planner.

4.2 System Model

This section provides background information on the possible UAV and its load for the

aforementioned deployment challenge. A popular autonomous helicopter model, the Yamaha

RMAX [143] is considered as the UAV in this thesis. This UAV can carry a payload maximum

of 28-kg and itself has a maximum takeoff weight of 94-kg. This weight capacity allows the

UAV to load a complicated control system that can be coarsely subdivided into the hardware

and the software blocks. A simplified example of the control system model is given in Fig. 4.1.

In this figure, the hardware devices are presented with blue boxes, and the software blocks

are presented with green boxes. The data flow is presented with arrows. The white boxes

show the parameters measured by the sensors.

As shown in Fig. 4.1, the UAV is assumed to be equipped with camera, radar, sonar,

43

Figure 4.1: Control system of a UAV.

inertial measurement unit (IMU), global positioning system (GPS), pressure measurement

unit to generate the 3D map of the environment, computation devices (CPU and GPU) etc.

An Intel Core i7 with 3.4 GHz is used as the central processor and assumed to run a Linux

operating system. The data collected from the input devices are processed in the processing

units, i.e, the software blocks, with multiple algorithms and the resultant data is sent to the

output devices to control the UAV physically. The output devices include the actuators for

the UAV’s critical movement modalities: yaw, pitch, roll, speed control. These actuators

receive a signal from the software blocks to control the vehicle physically and to direct the

vehicle towards the goal locations.

However, in the process of a UAV flight, the three most important steps are perception,

path planning and control of the vehicle according to a plan. Perception refers to the act of

generating and updating the map used by the robot to effectively describe its environment.

The path planner computes the flight’s path from the map (as updated by the mapping

block as shown in Fig. 4.1). The control refers to the steering control of the UAV. In short,

this block controls the actuators responsible for physically propelling the helicopter and

maintaining stable flight. In Fig. 4.1, flight control and route correction works as a control

block.

44

4.3 The Proposed Path Planner

As mentioned earlier, the proposed planner consists of a TSP block and a PRM block which

are implemented separately in this thesis. A global distance matrix is considered where the

distance between two waypoints is listed. Before the path planner starts working, distances

are initialized with the diagonal distance between the two waypoints. In this thesis, it is

considered that the 3D waypoints which the UAV must visit are given.

The TSP considers only 2D (x-y) values to calculate the distance. As a simple visual ex-

ample, the TSP finds the sequence (A-B-C-D-E-F-G-H-I) of the given waypoints in Fig. 4.2a.

In its calculations, the TSP considers the distance listed in the distance matrix but does not

consider the obstacles in the environment.

In practice, a diagonal path might not be a safe for the flight due to the obstacles.

Thus, as soon as the TSP completes computing the sequence of waypoints, the PRM takes

environmental obstacles into account and starts computing a realistic obstacle-free path

between connected waypoints (i.e., waypoints linked by the TSP step) as shown in Fig. 4.2b.

Essentially, the PRM finds a detour path and the distance of the safe path between two

waypoints will be longer than the TSP identified the diagonal path. The PRM considers the

given waypoints in 3D-space.

Although the sensor network is built on the ground, it is assumed that instead of landing

on the ground, the UAV will deploy its sensors nodes while hovering. The given z coordinate

parameter for the waypoint is interpreted as the hovering height.

The PRM updates the global distance matrix with its newly calculated distances. The

distance is considered infinite when there is no path found between two waypoints. As soon

as the distance matrix is updated, the TSP starts calculating again to find a better solution

in Fig. 4.2c. In the new solution from the TSP, if there is any new pair of waypoints whose

actual flying path is not calculated yet by the PRM block, then the PRM calculates those

paths (in Fig. 4.2d). This process continues two or three times to find the final shortest

path. The iteration stops when there is no update on the sequence generated by the TSP.

45

(a) The sequence found by the TSP. Initially, the global distance matrix has the diag-
onal distances. So TSP finds the shortest path considering the diagonal distances.

(b) The PRM finds a flying path of the sequence generated by the TSP. The PRM
make detours so that the UAV will not hit any obstacles, if required.

46

(c) The TSP again search the shortest path after the PRM updating the realistic
flying distance between two waypoints. In the new path, C-D-E-F path is updated as
C-E-D-F.

(d) In the recent updated sequence by the TSP, the flying path C-E and D-F are
unknown. The PRM finds the path between C-E and D-F.

47

(e) For the new update by the PRM, the TSP finds the path again and generates the
final shortest path.

Figure 4.2: The proposed path planner generates the shortest path among the given way-
points. The UAV starts from the base station and fly through all of the waypoints before
returning the base station again.

Algorithm 1 presents the pseudocode for the proposed path planner (motivated by [86])

that is described in the above paragraphs. Here, Dmatrix is the distance matrix, vi is the

i-th waypoint and i = 1, 2, . . . n, n is the number of total waypoints. {vi} is the set of

waypoints. V is the path which is a set of sequenced waypoints, i.e., V = {vi}. {obj} is the

set of obstacles in the environment and j = 1, 2 . . . q, q is the total number of obstacles. In

this piece of code, the function TSP 7 finds the shortest path, V according to the distance

matrix. It returns the calculated path and a boolean variable whether the path has been

updated or not. The function PRM 10 finds the path between the waypoints according to

the sequence generated by the TSP and updates the distance matrix. The boolean variable

UpdateTSP and UpdatePRM becomes true when there is an update made in the process of

the TSP and the PRM respectively. The TSP and the PRM block has been implemented

and will be discussed in detail in Chapters 5 and 6.

48

Algorithm 1 The Path Planner

1: function PathPlanner({vi}, {obj})
2: Initialize: Dmatrix;
3: bool UpdateTSP ← true;
4: bool UpdatePRM ← true;
5: while UpdateTSP or UpdatePRM do
6: if UpdatePRM then
7: UpdateTSP , V ← TSP(Dmatrix);
8: end if
9: if UpdateTSP then

10: UpdatePRM , Dmatrix ← PRM(V);
11: else
12: UpdatePRM ← false;
13: end if
14: end while
15: return V
16: end function

4.3.1 Performance Measure

Let us consider that 512 waypoints are given to a network deployment system. The TSP

takes 4.27 sec to generate the sequence of waypoints (the detail experimental results are

shown in Chapter 5). In the next step, the PRM constructs 511 paths in 1.32 sec (from

Chapter 6). The iterative process continues until the final result does not change more than

5%. I am assuming that this iterative process will converge quickly. Though the number of

iteration will vary depending on the number of obstacles present in the environment. The

more number of obstacles are present in the environment, the initial Euclidian distances

stored in the distance matrix will be less accurate. In this iterative process, TSP will take

the same computational time in each iteration, but the PRM will require less computational

time after the first iteration. The reason for taking less time for the PRM from the second

iteration is that PRM requires finding only the new edges updated in the TSP generated

sequence. So, we can consider another 1.5 sec for the PRM calculation for the second iteration

and so on.

The maximum theoretical performance of a parallel computation can be measured by

49

Amdahl’s law [144]. In general, when multiprocessors are used to run a program in parallel,

a part of the program is executed parallelly, and the rest of the program is executed serially.

Depending on the percentage of code that can be executed in parallel, Amdahl’s law helps

to calculate maximum theoretical speedup of the given program regardless of the number of

processors. For example, a program takes 1 hour to execute, and 20% of the code can be

executed in parallel. That means 80% of the code will be executed serially which will take

48 min and the remaining 20% of the code will be executed parallelly. So regardless of the

number of processors, the total execution time will be higher than 48 min. According to

Amdahl’s law, the maximum theoretical speedup is calculated using (4.1).

Slatency(s) ≤
1

(1− p)
(4.1)

where Slatency is the theoretical speedup of the execution of the program, s is the speedup of

the part of the program that benefits from improved system resources, p is the proportion

of execution time that the part benefiting from improved resources originally occupied. For

the above-stated example, p=0.2, so the maximum theoretical speedup will be 1.25×.

50

Chapter 5

Sequence Generator for The Path

Planner

The sequence generator is the part of the path planner tasked with finding the shortest

flying path through a set of given waypoints. This chapter details the sequence generator

implementation and the results recorded from the sequence generator during this study. A

description of the sequence generator as designed for standard CPU-based serial execution is

first given followed by a description of its design for parallel execution on a GPU. The parallel

design works 4.82× faster than its serial counterpart. The sequence generator presented can

operate on sequences of up to 4096 waypoints.

5.1 Problem Definition

The problem addressed in this chapter is that of quickly finding the shortest path through a

large number (1000s) of waypoints using an on-board computational system suitable for the

UAV under consideration (UAV specifics are outlined in Chapter 4). This thesis assumes

that, besides some standard central processing unit, the UAV’s on-board computational

system also hosts a graphics processing unit.

For UAVs, as well as many autonomous robot systems, finding a sequence of multiple

51

destinations or waypoints through physical space is a common challenge and may be suitably

addressed in the context of the travelling salesman problem (TSP) [145]. The TSP refers

to the challenge of finding the shortest route through all vertices in a graph. The goal of

aerially deploying wireless sensor nodes using a UAV conforms to this problem statement

as well. In this thesis, the number of waypoints is assumed to equal the number of sensor

nodes required for deployment.

The parameters given in a TSP consist of a set of waypoints plus the costs associated with

travelling from one waypoint to any other waypoint. The cost can be the spatial distance

or the fuel consumption or any other metric that needs to be optimized in the context of

full graph traversal. As a result, the TSP has been applied to many problems beyond those

seeking to minimize travel distance.

The TSP is an NP-hard problem that can be solved in two basic ways: via an exact

algorithm or an approximate (heuristic) algorithm [28]. The former finds the global opti-

mum at the expense of computation time which increases exponentially with the number of

waypoints. Conversely, the heuristic approach solves the problem faster but cannot guaran-

tee the best optimal solution although nearly optimal results are possible. Researchers have

solved the TSP using a number of different algorithms and demonstrated computation in

both serial and parallel manners.

Most of the serial-computing approaches to the TSP essentially serve as offline solutions

due to the relatively long computational time required. To date, the best TSP solver is

the Concorde TSP [93] which finds the optimal result for all of the problem instances in

the reference TSP library, TSPLIB [94] (the largest problem in the TSPLIB contains 85,900

cities/nodes).

In Concorde TSP, multiple heuristic algorithms are used including the cutting-plane

method, the minimum spanning tree, the nearest neighbour, the branch and bound method [93].

Depending on the number of cutting planes and the structure of the search tree, the exe-

cution time varies markedly for different problems with nearly identical node counts in

52

Concorde TSP. For example, the computation times for 1000 waypoints and 1002 waypoints

(from the TSPLIB files named dsj1000 and pr1002, respectively) are listed as 410.32 sec and

34.30 sec [93] respectively on a 500-MHz Compaq XP1000 workstation.

Although Concorde TSP is generally recognized as the best available tool, it is inappro-

priate for use in online settings due to its unpredictable execution time. Other important

serial TSP solvers using hybrid algorithms (discussed in Chapter 2) suitable for offline use

are described in [95, 96, 97].

Due to the large computational workload presented by it, parallel computational solu-

tions based on CPU [98] and GPU threads [99, 100, 101, 104] are often used for near optimal

solution. For example, O’Neil et al. [99] implemented a TSP solution using a GPU em-

ploying the iterative hill climbing (IHC) method. This solution runs 60× faster than its

CPU-only counterpart on 100 waypoints. Rocki and Suda [100], working with an improved

IHC technique, managed to solve a 6000-waypoint problem using a GPU, but their parallel

implementation is two times slower than their serial implementation.

Rocki and Suda [101] also worked on a parallel implementation of the TSP using an

iterative local search method that achieves 10× to 50× faster time-to-solution than their

serial implementation for thousands of waypoints. Fu et al. [102] used the “ant colony”

algorithm for a parallel implementation of the TSP and achieved a 30× speed-up for the

problem over serial with 1000 waypoints.

Another approach, the genetic algorithm (GA), has achieved 24.2× speed-up over serial

for only 512 waypoints [146]. Although the nature of the GA maps well to the GPU’s

single-instruction-multiple-data (SIMD) nature, GA has not been used for solving the TSP

using GPU with thousands of waypoints by 2013. There were research works solving TSP

with thousands of waypoints using GPU with algorithms other than GA at 2013. This

presented an attractive opportunity to exploit the GA’s properties for GPU-enabled online

path planning on large network deployment problems. So, this thesis solves the TSP with

4096 waypoints using the GA for the first time using GPU in 2013 [147], and the parallel

53

Figure 5.1: Travelling salesman problem: graph representation, G(V,E).

implementation executes 4.8× faster than the serial implementation. Later, in 2014, a 2932

waypoint, GA-based, the solution was described in [18]. In [18], the authors reported up

to 51026× speed-up of their parallel implementation over their CPU-only implementation

using 2-opt local search with GA. But the time for parallel implementation presented in the

paper [18] is 10× to 60× higher than this research study (the same GPU model is used in

both studies) which essentially relegates the approach for offline use.

Sections 5.1.1, and 5.1.2 detail the TSP and the GA, respectively.

5.1.1 Travelling Salesman Problem

The classic TSP states that the salesman wants to travel through a collection of cities,

visiting each only once, using the shortest possible path. The TSP may be studied in terms

of a weighted graph as exemplified by the illustration in Fig. 5.1. In Fig. 5.1, the graph,

G(V,E) has two parameters V and E; V is the set of all waypoints present in the problem

(in this example the individual waypoints are denoted with vi with index i = 1, 2, . . . , 5). E

is the set of all possible edges connecting two different waypoints. All of these edges have a

cost (weight). Spatially speaking, longer edges correspond to higher costs.

Considering a problem with n waypoints, the binary variable, xij (i = 1, 2, . . . , n and

j = 1, 2, . . . , n) denotes the presence (xij = 1) or not (xij = 0) of an edge from waypoint vi

to waypoint vj.

54

Formally, (5.1) states the objective of the optimization problem:

min
n∑
i=1

n∑
j=1,j 6=i

cijxij (5.1)

Such that,
n∑
j=1

xij = 1, i = 1, 2, . . . , n; i 6= j (5.2)

n∑
i=1

xij = 1, j = 1, 2, . . . , n; j 6= i (5.3)

xij ∈ 0, 1 (5.4)

Here cij is the cost associated for travelling from waypoint vi to vj. In this work, the

cost is considered as the spatial distance between the two waypoints. So for every different

pair of waypoints, the corresponding cij is different. Eq. (5.1) indicates that the value of

xij needs to be selected in such a way that the summation of costs, cij will be minimized.

The first constraint (5.2) makes sure that each waypoint will be entered only once and the

second constraint (5.3) makes sure that each waypoint will be exited only once.

5.1.2 Genetic Algorithm

The genetic algorithm is used to solve the TSP as mentioned in Section 5.1. In the field of

artificial intelligence, the GA is a search heuristic that mimics the process of natural selec-

tion. This heuristic is routinely used to generate useful solutions to optimization and search

problems. The GA belongs to the larger class of evolutionary algorithms (EA), which gener-

ate solutions to optimization problems using techniques inspired by natural evolution. The

GA finds application in many fields including bioinformatics, phylogenetics, computational

science, engineering, economics, chemistry, manufacturing, mathematics, physics, etc. [148].

The working principle of the GA algorithm can be divided into five steps that are dis-

cussed in the following sections. These steps continue until the final result is found. The

55

Figure 5.2: Flowchart for the genetic algorithm.

steps are presented in flowchart form in Fig. 5.2.

Initialize Population

The GA starts with an initializing population phase. The population is often referred

as combinations in this thesis. Here, a combination refers to a possible sequence of all

waypoints (the optimal sequence being indicative of the shortest route and hence the solution

sought). The sequence of the waypoints is chosen randomly in this step. The total number

of combinations depends on the size of the problem and how the program is designed.

Evaluation

Next, the evaluation step is executed whose function is to compute the total distance of each

combination identified in the previous step. Then, the combinations are sorted in ascending

order (according to the total distance).

Selection

The selection step comes after the evaluation phase. Specifically, combinations with shorter

paths are selected as parent combinations. New combinations are then generated from the

parent combinations with the anticipation that combinations of superior waypoint sequences

will themselves lead to be better waypoint combinations. Combinations other than the

56

Figure 5.3: Flipping.

Figure 5.4: Swapping.

selected parents are then replaced by the newly generated combinations which are called

child combinations.

Regeneration

Regeneration is the process of generating new combinations from the parent combinations,

defined above as the combination selected in the previous selection step. In this thesis, three

different actions are taken to achieve regeneration: flip, swap and slide. The next three

paragraphs detail these actions.

Flip: During the regeneration process, a part of a parent combination is flipped to generate

a child combination. In the code, any two positions between 1 to n are randomly selected. For

example, 2 and 5 are selected randomly (in Fig. 5.3). After applying the flipping instruction,

the waypoints in the 2nd position to the 5th position will be flipped. Fig. 5.3 shows an

example of the flipping action. The first row shows the given parent combination and the

second row shows the child combination after the flipping action.

Swap: In the swapping process, a new combination is generated by swapping two waypoints

randomly. Fig. 5.4 shows the swap action assuming the random positions are 2 and 5.

57

Figure 5.5: Sliding.

Slide: The last technique used for regeneration is combination sliding. In this step one

position is selected randomly and the waypoints from the selected position to the end are

shifted one position to the right from their original position. Fig. 5.5 shows the sliding action

with the same example as considered above.

Stopping Criteria

The combination with the shortest distance from the evaluation step is reported as the final

result when the stopping criteria is satisfied. In general, the stopping criteria is set either

as a fixed number of iterations or when only marginal result improvements are noted over a

few consecutive iterations. A fixed number of such criteria-defined iterations will make sure

that the program will not run for an infinite time.

5.2 Serial Execution

This section discusses the process of solving the waypoint sequencing problem serially in this

thesis on a CPU using the GA discussed above in Section 5.1.2.

The pseudo code for implementing the TSP with GA is given in Algorithm 2. The process

starts with reading the set of waypoints {vi}, where i = 1, 2, . . . n and n is the total number of

waypoints, from an input file. It is assumed that the input file contains the list of waypoints

which are generated and written by the sensor network constructor. The start location for

the UAV is the base station.

The first step towards solving the TSP is to generate the initial combinations or paths

randomly which traverse all of the waypoints. Here, {Vj} is the set of generated paths in

58

line 2, where j = 1, 2, . . . k, k is the total number of generated paths, and V is the complete

path through the set of sequenced waypoints (vi : i = 1, 2, . . . n).

Then the iterative process starts and continues until the stopping criteria are satisfied.

In each iteration, the total distance C for each path is calculated; a part of the GA’s

evaluation step. The best path out of every four combinations is selected and the rest of

the three combinations are replaced by regenerating the three remaining paths from the

selected best combination. {V ′} denotes the set of best paths and {V ′′} denotes the set

of regenerated paths shown in line 6. By selecting the best path in every four paths, the

algorithm might select a path which is worse than a replaced path in some other group. As

a result, the algorithm does not follow the greedy approach. At the end, the best path, P ,

a set of sequenced waypoints, (vi : i = 1, 2, . . . n), is selected.

Algorithm 2 Pseudo code for the serial computation

1: Input: {vi} where i = 1, 2, . . . n
2: Initialize {Vj} where j = 1, 2, . . . k
3: while !stopping condition do
4: {Cj} ← {Vj}.
5: {V ′} ← {Vj}.
6: {Vj} ← ({V ′}, {V ′′})
7: end while
8: P ← {Vj}
9: return P

5.3 Parallel Execution

In this thesis, the TSP has been implemented in a parallel form using a novel algorithm and

memory architecture on a commercial GPU. In general, GPUs have limited on-chip shared

memory (the high-speed counterpart to the large, but the relatively slow off-chip memory).

Using the on-chip shared memory, one can solve a limited number of waypoints only as

is discussed in Section 5.3.1. For a more effective parallel implementation, the waypoint

sequencing problem is divided into smaller sub-problems to accommodate sufficient data

59

distribution to the shared memory. In other words, waypoints are divided into small groups,

and the shortest paths through the waypoints in the same small group are calculated using

the GPU. At the end, all of the shortest paths from different small groups are connected

together to find the final shortest path through all of the waypoints.

For dividing the problem into several sub-problems or small groups, clustering and nearest

neighbour techniques have been used in this thesis. The next sections first describe the

limitations of implementing a larger problem in the GPU and then discuss how the larger

problem is divided into multiple sub-problems and how each of the smaller problems is solved

using a GPU.

5.3.1 Challenges/Limitation

Generally speaking, the main challenge to distributing a problem across a GPU is the issue

of providing enough memory space for the problem as a whole. This limitation is illustrated

with a simple quantification below.

The GPU has both off-chip and on-chip memory components. Naturally, the off-chip

global memory is larger but slower than its on-chip shared memory counterpart. So it is

a better idea to bring the combinations and the n-by-n distance matrix (whose elements

represent distances between two waypoints) to the faster shared memory.

Fig. 5.6 shows an example distance matrix for a problem with four waypoints. The di-

agonal elements of the table are zero. The upper and the lower triangular matrix elements

(highlighted with dotted outlines in the figure) contain the same value assuming symmetric

distance metrics (an ongoing assumption in this thesis). Therefore, the upper triangular

matrix contains all the necessary problem information in n(n − 1)/2 elements. A sepa-

rate distance matrix is required to calculate the total distance for each combination being

processed by the GA.

As mentioned earlier in this section, it is a better idea to bring the GA waypoint combi-

nations and the distance matrix to the faster shared memory; now I will discuss how many

60

Figure 5.6: A distance matrix example for a four-node waypoint combination.

waypoints can be fit within the shared memory. The on-chip shared memory has very lim-

ited memory space. For example, the size of the shared memory is 49152 bytes per block, in

NVIDIA’s GeForce GTX 680, as well as in high-end GPUs like the Tesla K80. Thus, if we

assume that each waypoint requires 2 bytes of memory (unsigned integer types are used to

hold sequence number waypoints) and each element of the distance matrix is 4 bytes (float

type is used), then, as detailed below, the TSP algorithm outlined above encounters several

critical limitations.

Generally, problem size and shared memory must adhere to the following inequality

n · t · (2 [bytes]) +
n(n− 1)

2
(4 [bytes]) ≤ 49152 [bytes] (5.5)

The left side of (5.5) presents the total shared memory required per block where n is the

number of waypoints, t is the number of threads and n(n− 1)/2 is the number of elements

in the symmetric distance table. The right side of (5.5) presents the total amount of shared

memory available per block that should not be exceeded by the left side of (5.5). In (5.5), the

variables are t and n. The value of t should be in the range of 32 to 1024 as the warp size is 32

threads (as discussed in Ch.3, a group of 32 threads makes full use of the resource), and the

maximum limit of threads per block is 1024. So, a widely available GPU can accommodate

only n = 142 (when t = 32) or n = 23 (when t = 1024) waypoints in its shared memory.

61

In these cases, the combinations and distance matrix will occupy 49132 and 48116 bytes of

memory respectively. Again, relying on maximized shared memory usage is not advisable

due to the communication delay imposed by regular exchanges with this off-chip component.

5.3.2 Clustering

A clustering technique is used to divide the problem into several smaller problems. In this

process, closer waypoints are grouped together, and each group is generally referred to as

a cluster. Each cluster is formed around uniformly seeded cluster heads. Specifically, after

selecting a set of evenly distributed positions for cluster head locations, a pre-determined

number of waypoints are selected to form a cluster around each head. The waypoints are se-

lected according to those whose total distance to the cluster head is a minimum. Algorithm 3

presents the pseudo code used for clustering in this thesis.

The total number of clusters is decided at the beginning. The number of clusters is set

in such a way that each cluster will have the same number of waypoints. But if the total

number of waypoints is not evenly divisible, then there will be two types of cluster groups

defined by their waypoint count. That is, a cluster group type will contain the same number

of waypoints. For example, if there are 64 waypoints and 8 clusters, each cluster can contain

8 waypoints. But if there are 67 waypoints and 8 clusters, 5 clusters will contain 8 waypoints

each and 3 clusters will contain 9 waypoints each (5× 8 + 3× 9 = 67). Maintaining an equal

number of waypoints per cluster helps to distribute the workload of threads in the GPU

evenly.

The waypoints inside the clusters are tagged with a sequence number between 0 and

n/m − 1, where n is the number of waypoints, and m is the number of clusters. So, the

combinations of waypoints for each cluster should consist of 0 to n/m−1 waypoints (though

their locations: x and y coordinates are different). The advantage of tagging a generic

sequence number to the waypoints inside all clusters is that the waypoint combination for

one cluster can be used by all other clusters. In this way, the waypoint combination data

62

that needs to be transferred from CPU to GPU is reduced by a factor of m.

Another advantage to using clusters is that the data transferred from the CPU to the

GPU for the distance table is also reduced. Without the clustering techniques, for an n-

waypoint symmetric problem, the size of the distance table is 4n(n− 1)/2-bytes considering

float data types. After applying the clustering techniques, the size of the distance table

becomes 4 n
m

(n
m
− 1)/2-bytes, where the 4-factor accounts for the use of the float data type.

As outlined above, in the process of clustering, the cluster heads are placed (with an equal

distance from one another) in the area where the waypoints exist at the beginning. Then

the waypoints are assigned to their closest cluster head, and the location of the cluster heads

are updated in each step so that the total distance from the head to each of the waypoints

in that cluster will be minimized.

Algorithm 3 shows the pseudo code for the clustering algorithm where {CHj} is the set

of cluster heads, CHj is the jth cluster head, j = 1, 2, . . .m, m is the total number of cluster

heads. In line 3, the ith waypoint, vi is assigned to a cluster head CHvi . Then the position

of cluster heads are updated in line 4. The process stated in line 3 and 4 iterates q times.

The work complexity of the algorithm is O(n+m+ nm). Fig. 5.7 shows an example of the

clustering technique.

Algorithm 3 Pseudo code for the clustering

1: Initialize: {CHj : j = 1, 2, . . .m}
2: for l = 1 to q do
3: CHvi ← ∀vi
4: Update CHj∀j
5: end for

5.3.3 Nearest Neighbour Technique

A nearest neighbour technique is used for finding the start and the end waypoints for each

cluster. Using this approach, the number of waypoints participating in the generation of

combinations reduces by two since the start, and the end point are fixed. This approach

63

Figure 5.7: An example of clustering.

also reduces the amount of data required to transfer from CPU to GPU. Fig. 5.8 shows an

example of using the nearest neighbour technique on top of the clustering method.

5.3.4 GPU Implementation

After dividing the problem into multiple smaller problems, the GA is applied to each of the

smaller problems, and a part of the algorithm is executed on the GPU. The initial waypoint

combinations for the smaller problem are generated by the CPU and transferred to the global

memory of the GPU. The combinations are then brought to the on-chip shared memory.

The program is designed in such a way that each thread is made responsible for a single

combination of a cluster. For example, if the number of waypoint combinations for a cluster

is u and there are m clusters, there will be m · u threads in total.

The number of threads per block is kept as an integer multiple of the warp size for better

efficiency. Each block is assigned to a single cluster, but a single cluster is distributed among

multiple blocks. The data are kept in the shared memory in such a way that the read and

write operation on the shared memory will be coherent.

The evaluation step is applied next where distance for the corresponding combination is

calculated. A bitonic sort [149] (discussed in Appendix A) is applied to sort the combinations

64

Figure 5.8: Example of clustering in combination with nearest neighbour identification.

Figure 5.9: Combination for 8 waypoints.

according to the calculated distances within a block.

The regeneration step is applied only when the number of waypoints per cluster is greater

than 8. Conversely, when the number of waypoints per cluster is 8, the waypoints inside

a cluster are tagged as 0 to 7, and the start and the end points are 0 and 7 respectively

as shown in Fig. 5.9. The rest of the 6 positions (2nd to 7th) will be filled out by the

other waypoints inside the cluster. The maximum number of possible combinations for these

empty spots (in Fig. 5.9) is the factorial of 6, which is 720. If we want to check all possible

combinations of such a case, 720 threads per cluster are required. Using 720 threads per

cluster is affordable for a GPU like the GeForce GTX 680, if the number of total blocks will

not exceed its maximum limit. In such situations, the regeneration step is skipped, and all

possible combinations are checked.

When the number of waypoints per cluster exceeds 8, it is not possible to use all com-

binations. In this case, the regeneration is made inside the threads within the same block

which reduces the memory access time (as it is not accessing the off-chip global memory).

65

At the end, the best result from the block is written to the global memory so that

the results from the other blocks for the same cluster can be compared. At this step, a

barrier is used to keep the blocks waiting while other blocks are lagging behind. I have used

separate barriers for different clusters. Atomic instruction [137] has been used for the barrier

calculation. The clusters are independent of each other. Using separate barriers for different

clusters also reduces the waiting time. The results are compared using bitonic sort, and the

best result is sent to the CPU.

After getting the result from the GPU, the final path is generated by combining the paths

inside the cluster by maintaining the sequence of cluster heads generated in the previous step.

Finally, the GA algorithm is applied for the recently calculated path for a few iterations.

Algorithm 4 shows the pseudo code for the TSP implementation as described above.

The input of the TSP is the set of waypoints, {vi} and the distance matrix, Dmatrix. A set

of cluster heads are initialized and sequenced, (CHj : j = 1, 2, . . .m) using GA. The set

of waypoints under CHj cluster head is presented as {vi : i = 1, 2, . . . u}CHj
. The start,

vstart,CHj
and the end, vend,CHj

waypoint inside each cluster is defined using the nearest

neighbour technique. Line 5 has been implemented on a GPU. The sequenced path, inside

the cluster, is V
′
. So the GPU returns a set of sequenced path for all the clusters. Finally,

all paths from the cluster are combined, and a few iterations of the GA are applied to find

the final result, the sequenced path (vi : i = 1, 2, . . . n).

Algorithm 4 Pseudo code for the parallel TSP

1: Input: {vi : i = 1, 2, . . . n}, Dmatrix

2: Initialize: {CHj : j = 1, 2, . . .m}
3: (CHj : j = 1, 2, . . .m)← {CHj : j = 1, 2, . . .m}using GA.
4: (vstart,CHj

, vend,CHj
)← {vi}CHj

5: {V ′

l : l = 1, 2, . . .m} ← GPU({{vi}CHj
}, {vstart,CHj

}, {vend,CHj
}, Dmatrix)

6: (vi : i = 1, 2, . . . n)← {V ′

l : l = 1, 2, . . .m}
7: return (vi : i = 1, 2, . . . n)

66

5.4 Analytic Model of Communication

As is well known, for effective parallel programming the communication load must be min-

imized. The critical communications in this context include the data transfer between the

CPU and GPU as well as between the different memory spaces inside the GPU.

The communication from the CPU to the GPU is influenced by the combination of

waypoints (which is (n
m
−2)·u), the distance matrix (which is n

m
(n
m
−1)/2 or n(n−m)

2·m), and the

vector for barrier m. By summing up all the values and considering bw, bd and bb as the bytes

required by each waypoint, distance matrix, and barrier vector element respectively, the data

required to transfer from the CPU to the GPU is expressed as (5.6). In this mathematical

expression, 2 is deducted as a result of assuming a fixed start and end waypoint.

(n
m
− 2
)
· u · bw +

n(n−m)

2 ·m
· bd +m · bb (5.6)

Inside the GPU, data was copied from the global memory to the shared memory. Consid-

ering u as the number of combinations per cluster, ntrd as the number of threads per block,

and nblock as the total number of blocks, the total data copied to shared memory is:

[(n
m
− 2
)
· ntrd · bw +

n(n−m)

2 ·m2
· bd
]
· nblock (5.7)

Similarly, data are copied back from the shared memory to the global memory. It copies

the best result among the threads to the global memory. The expression (5.8) shows the

data transferred from the shared memory to the global memory. Here the bd refers to the

distance of the best combination considering the data size of the distance is same as the

elements in the distance matrix.

[(n
m
− 2
)
· bw + bd

]
· nblock (5.8)

Finally, the best combinations for each cluster are sent to the CPU. In this time, the

67

least amount of data are transferred which is equal to:

[(n
m
− 2
)
· bw
]
·m (5.9)

5.5 Experimental Results

Table 5.1 shows the simulation results. The algorithm has been implemented for 128, 256,

512, 1024, 2500, and 4096 waypoints. The data set was generated randomly in a 100× 100

area where the wireless sensor network is constructed (as discussed in Chapter 4).

For the serial implementation, Algorithm 2 has been used where combinations are gen-

erated first. Each combination contains all of the waypoints, and the child combination

is generated from the parent combinations. The process of regeneration and searching for

better results repeats iteratively.

The execution time for the serial CPU codes (in Table 5.1) is the time spanning initial-

ization of the random combinations to the generation of the final path result. This time does

not include reading or writing the data to any memory.

In the parallel code, additional steps (clustering, preparing and transferring data to the

GPU and the CPU) are required on top of the core GA functions. The execution time

calculated for the parallel code includes these additional steps. Similarly, the execution time

for the parallel TSP code, listed in Table 5.1 starts from the clustering step and ends after

the final result.

Reading from Table 5.1, it can be seen that both the serial and the parallel codes give

similar results. As mentioned earlier that the sequence generator can generate the near

optimal result, the result from the serial implementation is not same as the result from the

parallel implementation. For larger problems like 4096 waypoints, the serial implementation’s

solution is 1.4× longer than that found by the parallel implementation. The reason is that

inside each cluster, better paths are generated compare to the serial implementation.

68

Serial implementation Parallel implementation
Number of Result Time Result Time Speed
waypoints (in sec) (in sec) up

128 6917.08 5.1 6869 1.08 4.72
256 13635.74 10.1 14414.1 2.1 4.81
512 24952.67 20.51 21418.6 4.27 4.8
1024 57514.28 44.79 45465.83 9.39 4.78
2500 145098.36 112.3 110939.95 23.4 4.8
4096 246057.18 184.59 174756.52 38.3 4.82

Table 5.1: Results from serial and parallel implementation for different number of waypoints.

Fig. 5.10 shows the percent difference between the tour distance calculated using the

serial and parallel implementations. The percent difference is calculated using the following

equation where Cserial and Cparallel is the length of the paths found from the serial and

parallel implementation respectively.

Cserial − Cparallel
Cserial

× 100% (5.10)

From Fig. 5.10, it can be seen that the parallel implementation finds a better path as

the number of waypoints becomes larger. The parallel code also runs 4.82× faster compared

to its serial counterpart. The bar graph in Fig. 5.11 shows the execution time for the serial

and the parallel code. After investigating the executed serial code, 80% of the serial code

executed in parallel. So according to Amdahl’s law as stated in Chapter 4, the maximum

theoretical speedup will be (1/(1−0.8)) = 5×, which is very close to our experimental result.
For the parallel execution, the execution time on the GPU is in the range of milliseconds.

The rest of the time is required to execute the processing in the CPU. Table 5.2 shows

the GPU execution time for different combinations of problem parameters. 128 threads were

considered for each block for the results listed in Table 5.2. The results show that the parallel

TSP calculation works 5.4× to 14.9× faster when the waypoints used per cluster is reduced.

The occupancy of the shared memory is low when the number of waypoints per cluster

is small. This result also proves that the performance of the GPU execution decreases when

69

Figure 5.10: Percent difference between the CPU-based serial implementation and the GPU-
based parallel implementation.

the occupancy of the shared memory is high. Fig. 5.12 graphically presents the results from

Table 5.2. When the number of waypoints per cluster increases, it is not possible to find

the exact solution for each cluster as the number of all possible combinations exceeds the

limit of our computational system. In that time, the heuristic approach is used. In the

heuristic approach, the chance of finding an optimal solution may be increased by increasing

the number of combinations. The increased number of combinations require more blocks per

cluster. As a result, this increases the execution time nonlinearly for the GPU.
To validate the performance of the algorithm, the parallel code is implemented for mul-

tiple TSPLIB problems. The parallel code can solve problems with thousands of waypoints

but the average percent of errors compared to the known optimal solution (listed in [93])

increases with the size of the problem. Table 5.3 presents the execution time for the parallel

version of the code. The percentage of error for a 280-waypoint problem is 0.8%. The per-

centage of error compared to the known optimal value increases by up to 38% for the larger

70

Figure 5.11: Computation time required by the serial and the parallel implementation for
different waypoint settings.

Waypoints Number Shared
Number of Number of per of memory Time
waypoints clusters cluster blocks size (in ms)

(in bytes)

256 32 8 192 2416 0.53
256 16 16 5040 4832 2.42
256 8 32 2520 10432 2.87

512 64 8 384 2416 0.55
512 32 16 10080 4832 4.44
512 16 32 5056 10432 5.84

1024 128 8 768 2416 0.79
1024 64 16 20160 4832 8.87
1024 32 32 10080 10432 11.78

Table 5.2: GPU execution results.

71

Figure 5.12: GPU execution time varies with the number of waypoints per cluster.

Problem Execution Average
instance time (in sec) Error

a280 2.3 0.8%
att532 4.67 12%
fl3795 38.59 38%

Table 5.3: GPU execution results for TSPLIB problems.

problem with 3795 waypoints.

5.6 Conclusion

This chapter discussed GPU-based sequence generator implementations that can easily be

used in UAVs and hence impose a limited contribution to their payload budget. The sequence

generator has been implemented using a genetic algorithm and a customized clustering tech-

nique. The data transfer rate from the CPU to the GPU has been reduced by using clusters

with the same number of waypoints. Using the clustering approach, the memory size re-

quired in the on-chip GPU has also been reduced resulting in faster computations. Although

72

the parallel implementation requires some computational overhead like, clustering, searching

the sequence of cluster heads, etc., the simulation time is still reduced by 4.82×, and the

generated path is 1.4× shorter relative to the CPU-only execution. The main advantage of

using the algorithm is that it can find a path for large problems with approximately 4096

waypoints using the genetic algorithm. The implemented planner can also generate paths for

larger problems consisting of more than 4096 waypoints. In those cases, we should use more

clusters and multiple levels of clustering, e.g., generating clusters with the cluster heads.

For future work, using a high-end GPU for the sequence calculation, the implemented

sequence generator will be able to generate faster results as the number of available CUDA

cores and the memory bandwidth is higher which reduces the time required for read/write

instructions for the threads. With a high-end GPU like Tesla K80 (weights 2.2 lbs), we

cannot increase the number of waypoints per cluster per block used in this research as the

size of shared memory remains constant for all Nvidia GPUs. As a result, instead of shared

memory, other memories (e.g., texture memory and global memory) need to be explored for

storing the distance matrix so that larger problem can be solved. The drawback of using

such high-end GPU is higher energy consumption. For example, the power rating of Geforce

GTX 680 and K80 is 195 W and 300 W respectively. The weight difference between these

two GPU is not high, e.g., the weight of Geforce GTX 680 and K80 are 3 lbs and 2.2 lbs

respectively

73

Chapter 6

Path Explorer: Probabilistic

Roadmap

In this chapter, the algorithmic design and implementation of the UAV’s local path planner

are discussed. This planner is based on the probabilistic roadmap (PRM) technique which is

outlined herein. PRM-based planners designed for serial and parallel execution, respectively,

are described. The parallel execution is specifically targeted for GPUs. As key performance

demonstrations, the execution times of parallel and serial planner implementations are com-

pared and discussed.

6.1 Problem Definition

The global path planner for a UAV, discussed in Chapter 4, is proposed in this thesis which

generates the flight path through all of the waypoints given to the planner. The sequence

generator, as discussed in Chapter 5, is studied for finding the sequence of waypoints for

the global path planner. This chapter has described a local path planner that constructs a

safe and short flying path between each pair of sequenced waypoints. A safe path between

two waypoints refers to a route calculation that does not overlap with any obstacles. In the

process of building the flying path, the local path planner also calculates the flying distance

74

between the pair of waypoints.

Constructing a flight path between a pair of waypoints, which is done by the local path

planner, is typically done using one of three main approaches [108]: the skeleton approach

(a graph is created and searched), cell decomposition (each cell is assigned with a weight

depending on the weight of its neighbouring cells), and the potential field approach (the

gradient of the potential field is used) as discussed in Chapter 2.

Among these approaches, the skeleton approach is more suitable to implement in parallel

as in the skeleton approach multiple “sample nodes” (as discussed in the next paragraph),

generated between the start and the destination location, execute the same set of instructions

independently. In case of the cell decomposition method, each cell in the grid executes the

same set of instructions but the data depends on the neighbouring cells which is not a good

fit for parallel execution. In this research, the probabilistic roadmap (PRM) algorithm, a

skeleton approach, is used as the local planner.

The local planner is required due to the presence of obstacles in the environment. In other

words, the UAV might not be able to fly in a straight line from the start to the destination

due to obstacles and hence requires a local planner to find an obstacle-avoiding path. In

the process of constructing a path from the start to the destination, the PRM generates so-

called non-weighed sample nodes, which serve as intermediate waypoints from the start to

the destination. To start, the sample nodes are randomly spread over an area encompassing

the start and the destination nodes. A list of “neighbour nodes” for each sample node is

calculated using the k-nearest neighbour technique [107]. In this thesis, a node is considered

as a neighbour node only, if there exists an uninterrupted euclidean path between the node

and the neighbouring node. The distance of the Euclidean path is recorded too. After

building a graph over the generated sample nodes, a graph search algorithm is used to find

the path between the start and the destination by optimally connecting the intermediate

sample waypoints.

The process discussed above constructs the flying path between two waypoints only. In

75

the proposed global planner the total number of considered waypoints is 4096 as in Chapter

5. For that problem, the local planner needs to be applied to 4095 pairs of waypoints,

an extensive computational workload. Moreover, the proposed path planner should find the

shortest path quickly thus requiring the PRM to work fast too. Again, a GPU-based parallel

computing approach, with a number of customizations, is introduced in this thesis to arrive

at a PRM suitable for large UAV navigation problems.

6.2 PRM Algorithm

The PRM algorithm studied in this chapter has the following inputs: the start location, the

destination location and a map with its obstacles. The output of the algorithm is a path

running from the start to the destination that is theoretically negotiable by the machine

tasked with traversing it; that is, it is a path that does not intersect obstacles. More

specifically, the PRM-generated path is a set of sequential sample nodes. The algorithmic

mechanism behind this path generation can be divided into four main steps:

1. sample node generation

2. milestone calculation

3. nearest neighbour search

4. graph search

These steps are discussed in the following sections.

6.2.1 Sample Node Generation

The PRM’s objective is to compute a path from the start to the destination through inter-

mediate waypoints. Considering the presence of obstacles, I have assumed that the UAV

may not be able to fly in a straight line from the start to the destination. Instead, the UAV

76

Figure 6.1: A space is separated where the PRM will build a path from the start, S to the
destination, D. The sample nodes are placed in the separated (highlighted in red) space.

will fly through intermediate waypoints located between the start and the destination. For

the intermediate waypoints, sample nodes are generated and placed in the area where WSN

need to be built. The sample nodes can be generated randomly or organized in a grid or

over any custom designated spots of the user’s choosing.

In this thesis, instead of placing the sample nodes anywhere in the space where the WSN

needs to be built, the nodes are placed around the local start and the destination points (i.e.

the node couples found by the TSP global planner) where the PRM will find a path as shown

in Fig. 6.1. Placing the sample nodes around the start and the destination will prevent us

searching for a shorter path far from the destination which also optimizes the calculation

process. The number of total sample nodes is defined by the user. Some of these sample

nodes are placed in a grid, and the remainder of the sample nodes are placed randomly

within the identified space. There will be more discussion on sample node distribution in

the next section.

6.2.2 Milestone Calculation

The milestone calculation step checks if any sample nodes generated in the previous step

collide with any of the obstacles. Sample nodes colliding with obstacles are discarded.

Naturally, the total number of sample nodes is reduced after this step.

77

Figure 6.2: An example of how the samples are distributed.

During parallel execution on a GPU, multiple paths are built at the same time using the

GPU, i.e., multiple threads work together as discussed in Chapter 3. For balanced work-load

distribution to the threads, the number of sample nodes for all the paths are kept equal in

this experiment. To keep the number of sample nodes equal for all the paths, the sample

node generation step and the milestone calculation step are combined together.

In detail, the confined space (as previously discussed in section 6.2.1) is divided into grids.

The size of the grids depends on the total number of samples. Then, the sample nodes are

placed on those grid locations if the grid locations are free of any obstacle or far enough

from any obstacle for the UAV to execute a safe flight. After placing the sample nodes on

the appropriate grid locations, there might be remaining sample nodes that have not been

placed yet. For those nodes, random locations are iteratively assigned until placement is

achieved in unobstructed space.

Fig. 6.2 shows an example of sample node distribution. In the implementation, a three-

dimensional space is considered. But for simpler visualization, a two-dimensional space is

shown in Fig. 6.2.

78

(a) An example of the path search problem with 6
sample nodes and 3 nearest neighbours.

(b) An example of the path search problem with 13
sample nodes and 3 nearest neighbours.

Figure 6.3: An example of how the number of sample nodes and the number of nearest
neighbour affects the final path

6.2.3 Nearest Neighbour

After the sample generation and the milestone calculation steps, the nearest neighbouring

nodes are calculated. In this step, the k closest nodes are listed for each node. The criterion

used for this calculation is the un-obstructed euclidean distance between two nodes. The

number of neighbouring nodes considered depends on the number of sample nodes. Fig. 6.3

shows how the number of nearest neighbours affects the final result. After this step, all

nodes will have a list of neighbouring nodes and the corresponding distances which creates

a graph.

79

6.2.4 Dijkstra Graph Search

The Dijkstra graph search [107] is used after the construction of the graph from the nearest

neighbour search step. The final path search starts from the start location and continues

until the shortest path to the destination is found. The search also terminates when there

is no path found from the start location to the destination. In the Dijkstra graph search,

the search starts from the start location. Then all the neighbours of the start location with

their distance from the start node are kept in a list named frontier. In the next step, from

the frontier, the closest node towards the start node is taken. If the taken node is not the

destination, the neighbouring nodes of the taken nodes with their distances towards the start

node are brought to the frontier. This process continues until the destination is taken from

the frontier.

Fig. 6.4 shows an example of a graph. In the graph, four nearest neighbours are con-

sidered. The blue solid lines are used for connecting neighbours. The distances are noted

beside the solid line. The blue dotted line shows the closer nodes that are not considered

as neighbours because there is no safe flying path between them. This kind of graph is

generated from the nearest neighbour step.

During the path search process, as discussed above, the min heap algorithm is used to

implement the frontier. In the min heap, a tree data structure is used. In the tree data

structure, a parent node can have a maximum of two children, and the parent node must

be smaller than its children. The advantage of using min heap over searching the smallest

value is the work complexity. The work complexity of searching the smallest value among

n numbers is O(n). But the work complexity of getting the smallest number from the min

heap is O(log n). Fig. 6.5 shows the frontier implemented with the min heap algorithm for

the graph search example shown in Fig. 6.4.

80

Figure 6.4: Graph for the path search

6.3 PRM: Serial Implementation

A conventional serial implementation of the PRM for a standard CPU has been realized as

part of this thesis following the algorithm discussed in Section 6.2. In short, the process

starts by reading the start and destination node location as well as the obstacles. Then, the

sample nodes are generated within a cubic area whose two, diagonally opposing, corners are

set at the start and destination nodes, respectively. To keep the number of sample nodes

constant, the milestone calculation and the sample node generation steps are combined in

this thesis. After generating the sample nodes, the k-nearest neighbours are calculated.

The built-in approximate nearest neighbour (ANN) library [150] is used to find the nearest

neighbour for each node. In the ANN library, the confined space containing the sample nodes

is divided into smaller groups using a kd tree [151] and the neighbouring nodes are searched

in the tree structure. The library returns the neighbouring nodes, and the Dijkstra graph

search algorithm is used to find the final path.

Algorithm 5 shows the serial-PRM pseudocode. The input for the PRM is a set of

sequenced waypoints, (vi : i = 1, 2 . . . n) generated by the TSP. n is the total number of

waypoints. Another input is the set of obstacles obj and q is the total number of obstacles.

81

Figure 6.5: Min heap used for the graph search.

82

The sequential waypoints are segmented into n − 1 pairs where the first waypoint is the

start location and the second waypoint is the destination. p is the path for each segment. s

denotes the sample nodes, {sr} is the set of sample nodes, where r = 1, 2 . . . w, and w is the

total number of sample nodes for each segmented path where the PRM is applied. d is the

distance of the segmented path, p, from the start to the destination.

Algorithm 5 The PRM

1: function PRM((vi : i = 1, 2 . . . n), {obj : j = 1, 2 . . . q})
2: {pa : a = 1, 2 . . . (n− 1)} ← (vi : i = 1, 2 . . . n);
3: for l = 1 to (n− 1) do
4: {sr : r = 1, 2 . . . w} ← SampleGeneration(pl, {obj : j = 1, 2 . . . q})
5: {sr : r = 1, 2 . . . w} ← k-nn({sr : r = 1, 2 . . . w})
6: ((sr : r ∈ [1, w]), dl)← GraphSearch({sr : r = 1, 2 . . . w})
7: Update Dmatrix ← dl
8: end for
9: return Dmatrix, {(sr : r ∈ [1, w])}a

10: end function

Before executing the PRM in parallel, its serial execution has been analyzed closely. The

time required for each block of codes are observed. It was found that 96% to 99% of the

total execution time is elapsed for finding the k nearest neighbour (k-nn). The block of code

calculating the sample generation and the milestone takes 1% to 3% of the total time. The

final path search takes 0.1% of the total time. Reading data and the rest of the code takes

less than 0.1% of the total time execution time for the serial execution.

6.4 PRM: Parallel Implementation

For faster execution of the PRM algorithm, considering the execution time of the serial code,

the k-nn search and the step combining the sample generation and the milestone calculation

has been implemented on the GPU. Fig. 6.6 shows the program execution pattern with

time. The data regarding the waypoints and the obstacles is read by the CPU. Then, the

main program in the CPU or the host code calls the GPU to calculate the sample nodes for

each pair of waypoints. The GPU then returns the sample data to the CPU. In the next

83

Figure 6.6: The blocks of code executed either CPU or GPU.

step, the required data is sent to GPU to calculate the k-nearest neighbour nodes and the

corresponding distances. The host code in the CPU starts searching the final paths once the

GPU returns the results to the CPU. The sample generation and the k-nn implementation

are discussed in sections 6.4.1 and 6.4.2, respectively.

6.4.1 Parallel Sample Generation and Milestone

The sample generation in the GPU is relatively straight forward. In general, when the

total number of waypoints is n, the PRM finds the (n − 1) paths. In each of these (n − 1)

paths, there is a start location and a destination location. The PRM finds the intermediate

waypoints to reach the destination from the start location. The sample nodes are considered

as intermediate waypoints. If there are w sample nodes for each path, w × (n − 1) sample

nodes are generated in total for the (n − 1) paths in the GPU. In this process, (n − 1)

number of GPU blocks are used. Threads in the block generate sample nodes either on the

grid locations or randomly using curand function [152] provided by CUDA.

84

6.4.2 Parallel k-Nearest Neighbour

The input for this block is the obstacles and the sample nodes as well as the start and

destination for all of the (n− 1) paths. As discussed in section 6.4.2, for the (n− 1) paths,

there are w× (n−1) sample nodes. During the implementation of the parallel k-nn, for each

sample node, a block is assigned which requires in total w× (n− 1) blocks. Every w blocks

work for a single path. As each block works for a single sample node, threads in the block find

the distance from that single sample node to all other sample nodes (w − 1) from the same

path. The distances with the corresponding sample node numbers are kept in shared memory.

After the distance calculation, a bitonic sort is applied to find the k-nearest neighbour nodes.

The description of the bitonic sort is given the Appendix A. The final results are copied to

the global memory and sent back to the CPU. During the implementation, when n− 1 gets

larger than 100, the k-nn is calculated iteratively on the GPU. The k-nn for every 100 paths

are calculated on the GPU at a single kernel call.

6.5 Experimental Results

The section includes the experimental results recorded from both the serial and the parallel

local-path planner PRM implementation. The dimension of the considered environment

is 100×100×50 m3. Three different obstacle-infused environment types are studied. Each

environment contains different amounts of obstacles. In this thesis, the environments are

named: En.1, En.2, and En.3. Approximately 0.35%, 2.58%, and 5.3% of the total volume

is obstructed in En.1, En.2, and En.3 respectively. Fig. 6.7 shows En.2. The obstacles are

modeled as spheres and shown in red.

The PRM algorithm is implemented for the three different environments as well as dif-

ferent numbers of waypoints. As discussed in Section 6.3, the k-nn block, and the sample

generation block take 96% to 99% and 1% to 3% of the total execution time for the serial

implementation. Based on this observation and according to Amdahl’s law, the theoretical

85

Figure 6.7: The environment, En.2 with the obstacles.

speedup will be (1/(1− 0.99)) = 100×.

In this thesis, both the sample generation and the k-nn blocks are implemented in parallel.

The times are taken for sample generation, k-nn calculation, and the whole program for both

the serial and parallel implementations are listed in Table 6.1. The corresponding speed ups

for the parallel implementation with regards to sample generation, k-nn calculation, and the

total execution time are also listed in Table 6.1. The unit of the listed time in the table is

seconds. The number of total sample nodes is 64, and 40 sample nodes are considered as k

in the k-nn calculation.
From the results listed in the Table 6.1, the execution time increases as the number of

obstacles increases. Naturally, this is not surprising, but the nature of the problem is such

that the parallel implementation is far less sensitive to this parameter. As an example, for

128 waypoints, the serial implementation takes 7.521 sec, 33.832 sec, and 61.161 sec in total

for En.1, En.2, and En.3 respectively. On the other hand, for 128 waypoints, the parallel

implementation takes, 0.205 sec, 0.309 sec, and 0.455 sec in total for En.1, En.2, and En.3

respectively. So in both cases, the execution time increases because when the number of

86

N
u
m

b
e
r

S
e
ri

a
l

P
a
ra

ll
e
l

S
a
m

p
le

k
-n

n
T

o
ta

l
o
f

S
a
m

p
le

k
-n

n
to

ta
l

S
a
m

p
le

k
-n

n
to

ta
l

sp
e
e
d

sp
e
e
d

sp
e
e
d

w
a
y
p

o
in

ts
ti

m
e

ti
m

e
ti

m
e

ti
m

e
ti

m
e

ti
m

e
u
p

u
p

u
p

(s
e
c)

(s
e
c)

(s
e
c)

(s
e
c)

(s
e
c)

(s
e
c)

E
n
.1

2
0.

00
2

0.
07

4
0.

07
7

0.
05

5
0.

00
7

0.
06

3
0.

03
×

10
×

1.
21
×

10
0.

00
8

0.
53

6
0.

54
8

0.
06

3
0.

01
4

0.
08

3
0.

13
×

37
.1

8×
6.

64
×

12
8

0.
14

7.
32

8
7.

52
1

0.
07

5
0.

07
2

0.
20

5
1.

86
×

10
1.

83
×

36
.7
×

25
6

0.
21

5
14

.7
16

15
.0

35
0.

09
0.

13
3

0.
33

7
2.

4×
11

0.
31
×

44
.5

7×
51

2
0.

32
29

.4
61

29
.9

9
0.

07
8

0.
25

8
0.

56
3

4.
1×

11
4.

24
×

53
.3

1×
10

24
0.

53
2

58
.9

55
59

.9
07

0.
07

8
0.

50
3

1.
03

6.
78
×

11
7.

21
×

58
.1

9×
25

00
1.

32
3

14
3.

99
14

6.
34

0.
11

8
1.

21
2.

38
9

11
.1

9×
11

9×
61

.2
5×

E
n
.2

2
0.

00
9

0.
26

8
0.

27
9

0.
05

5
0.

02
2

0.
08

6
0.

16
×

11
.9

7×
3.

24
×

10
0.

03
7

2.
36

4
2.

40
5

0.
05

5
0.

02
6

0.
08

8
0.

67
×

90
.9
×

27
.2

9×
12

8
0.

45
4

33
.3

32
33

.8
32

0.
07

07
0.

18
5

0.
30

9
6.

42
×

18
0.

47
×

10
9.

52
×

25
6

0.
77

6
66

.9
76

67
.8

44
0.

08
7

0.
36

0.
55

5
8.

91
×

18
6.

1×
12

2.
28
×

51
2

1.
26

6
13

4.
23

13
5.

68
0.

07
1

0.
70

4
0.

98
8

17
.8

5×
19

0.
75
×

13
7.

32
×

10
24

2.
29

4
26

8.
72

27
1.

38
0.

08
3

1.
39

9
1.

91
1

27
.7

5×
19

2.
05
×

14
2.

04
×

25
00

5.
94

65
6.

99
66

3.
82

0.
13

1
3.

37
2

4.
54

3
45

.4
6×

19
4.

81
×

14
6.

13
×

40
96

9.
97

4
10

82
.6

3
10

95
.3

9
0.

16
5.

44
7.

36
62

.3
4×

19
9.

01
×

14
8.

83
×

E
n
.3

2
0.

01
8

0.
48

7
0.

50
8

0.
05

6
0.

01
5

0.
07

4
0.

33
×

32
.8

8×
6.

88
×

10
0.

07
4.

26
4

4.
34

0.
05

9
0.

03
5

0.
10

1
1.

19
×

12
0.

36
×

43
.1

9×
12

8
0.

98
1

60
.1

41
61

.1
61

0.
07

6
0.

32
6

0.
45

5
12

.9
7×

18
4.

76
×

13
4.

33
×

25
6

1.
58

9
12

1.
44

4
12

3.
11

0.
09

0.
64

9
0.

84
3

17
.7
×

18
7.

28
×

14
6.

05
×

51
2

2.
56

2
24

3.
46

6
24

6.
18

0.
08

1
1.

27
1.

56
31

.7
8×

19
1.

73
×

15
7.

8×
10

24
4.

75
8

48
6.

94
4

49
2.

01
0.

09
6

2.
52

6
3.

03
8

49
.7

5×
19

2.
8×

16
1.

93
×

25
00

12
.2

56
11

93
.3

6
12

06
.3

6
0.

15
1

6.
18

7.
35

6
81

.1
8×

19
3.

11
×

16
4×

Table 6.1: PRM execution time for the serial and the parallel implementation.

87

Figure 6.8: The PRM execution time changes with the increase of obstacles in the environ-
ment.

obstacles increases, the program needs to check more obstacles for path blocking. Fig. 6.8

shows how the total execution time changes with the change of the percentage of area covered

by the obstacles. For the serial implementation, the time increases linearly. For the parallel

implementation, the execution time increases as well but remains almost flat compared to

the serial implementation.

In any environment, the execution time also increases with the increase of the number

of waypoints. As the number of waypoints n increases, the PRM needs to find more (n− 1)

paths. Fig. 6.9, 6.10, and 6.11 shows how the execution time for the sample generation,

the k-nn calculation, and the total execution time for the PRM changes with the number

of waypoints in both the serial and the parallel implementations for all three environments.

For the sample node generation, for a limited number of waypoints (less than about 150) the

serial code works faster than the GPU. The reason is that the GPU does not have enough

work to utilize its maximum capability.

Finally, the speed-up of the parallel implementation is calculated and recorded in the

last three columns of Table 6.1. The speed-up of the parallel implementation over its serial

complement is more pronounced as the number of waypoints and the density of obstacles

88

(a) sample generation time for EN1.

(b) k-nn time for EN1.

(c) The PRM time for En1.

Figure 6.9: The execution time increases with the number of waypoints in En.1

89

(a) sample generation time for EN2.

(b) k-nn time for EN2.

(c) The PRM time for En2.

Figure 6.10: The execution time increases with the number of waypoints in En.2

90

(a) sample generation time for EN3.

(b) k-nn time for EN3.

(c) The PRM time for En3.

Figure 6.11: The execution time increases with the number of waypoints in En.3

91

increase. The maximum speed ups recorded for the sample generation, the k-nn calculation,

and the total time for PRM are 81.18×, 194.81×, and 164× respectively which are close

to theoretical speed ups (which was calculated 100× earlier in this section) calculated by

Amdahl’s law. Fig. 6.12 shows the bar plots for the speedups of the parallel implementation.

From the peak of the bars in Fig. 6.12 the readers can see that there is a tremendous speed

up for 2 waypoints to 128 waypoints. But for the number of waypoints higher than 128,

the speed up gets linear. The reason is when the number of waypoints gets more than 100

waypoints, the parallel implementation solves every 100 waypoints on GPU iteratively. In

other words, if there are 1000 waypoints, the device code is called 10 times from the host

code to solve the 1000 waypoints problem.

Using the parallel PRM implementation, the total execution time reduces. Table 6.2

shows the distance calculated in En.2. The results are not very different as most of the

segments of the paths generated from the serial and the parallel implementation are the

same. Fig. 6.13 shows an example of the paths generated from the serial and the parallel

implementation. In both cases, the same set of sample nodes and the same number of

nearest neighbours are used. But the results found from the two implementations are not

the same. The difference between the distances calculated during the serial and parallel

implementations are varied by less than 0.7% (according to Table 6.2). During the parallel

implementation, due to the presence of more processors, more intermediate waypoints are

considered to find a path. As the more intermediate waypoints are considered, the better

results are found during the parallel implementation.

6.6 Conclusion

In this chapter the PRM is implemented for the proposed path planner and used to find a

safe flying path between all waypoints couples provided by the global TSP-based planner. At

first, the PRM is implemented in serial form on the CPU with three different environments.

The density of the obstacles in these environments are different. From the results of the

92

(a) PRM speed up for EN.1.

(b) PRM speed up for EN.2.

(c) PRM speed up for EN.3.

Figure 6.12: PRM speed ups in different environment.

93

Number of Distance (m) Distance (m)
waypoints (serial) (parallel)

2 61.637 61.756
10 492.943 491.593
128 7173.99 7125.79
256 14090.2 14043.2
512 29168.6 29108.8
1024 59018.8 58855.2
2500 143050 142321
4096 287280 285842

Table 6.2: The quality of the parallel implementation over the serial implementation.

(a) The path from the serial implementation

(b) The path from the parallel implementation

Figure 6.13: A comparison of the paths generated from the serial and the parallel implemen-
tation using the same set of sample nodes (64) and the same number of nearest neighbour
(40).

94

serial implementation it was found that 96% to 99% of the total program execution time is

spent for the k-nn calculation and 1% to 3% time is spent for the sample generation step;

that is, the milestone calculation is merged with the sample generation step in this thesis.

A parallel GPU implementation of the PRM for accelerated flying path calculation is

described. Guided by the above serial execution profile, the parallel implementation is

focused on the PRM algorithm’s k-nn calculation block and the sample generation block.

The performance of the parallel implementation relative to its serial counterpart increases

as the number of waypoints and the number of environmental obstacles is increased. The

total execution time falls in the range of a few milliseconds to less than 10 s. Finally, the

maximum speed ups recorded for the sample generation, the k-nn calculation, and the total

time for the PRM are 81.18×, 194.81×, and 164× respectively.

95

Chapter 7

Sequence Analysis: DNA Sequencing

This chapter extends the thesis investigation into parallel-accelerated sequential problems

by considering DNA sequencing. A miniaturized sequencing process is discussed that can

sense and analyze DNA in a continuous fashion at the rate of 7242-base pairs per second. A

GPU-enhanced sequence analyzer capable of operating in a streaming fashion, at-rate with

the DNA sensor is discussed. An overview of DNA sequencing, an explanation of the GPU

accelerator, and the presentation of the experimental results are given in this chapter.

7.1 DNA Sequencing: an Overview

As already discussed in Chapter 1, DNA is a biological macromolecule present in the cells

of all known cellular organisms. A segment of this molecule is illustrated in Fig. 7.1, the

double-helix famously identified by Watson and Crick [153]. The ladder-like structure of the

DNA molecule is distinguished by its twisted outer support, made of phosphate and sugar

molecules, and ladder “rungs” corresponding to a sequence of smaller molecules called bases.

In fact, each rung is made out of two bases, a base pair (bp), bonded to one another along

the central axis of the helix. There are only four different types of base molecules, each

typically referred to by the first letter of its chemical label, namely, A, C, G, T. Although any

sequence of bases can make up a DNA molecule, the bases pair according to complementary

96

Figure 7.1: A schematic diagram of DNA and nucleobases of DNA : Adenine (A), Thymine
(T), Guanine (G), and Cytosine (C) [1].

bonding rules such that, unless otherwise damaged, DNA base pairs consist of A-T couples

or C-G couples.

DNA is commonly referred to as the “blueprint of life” because it is used by other tran-

scription/translation mechanisms within the cell to generate complex molecules (proteins)

needed to execute the biochemical functions necessary for life. The type of proteins coded

by DNA (by certain intervals within the molecule called genes), as well as a number of other

functions, are fundamentally defined by the sequence of bases that comprise the DNA poly-

mer. Identifying the sequence of bases that comprise a DNA molecule defines the goal of

the sequencing process. More generally, our ability to sequence the whole of an organism’s

intrinsic DNA identifies its genome and thus results in a record of its entire set of genes. Of

course, extracting actionable information (e.g., susceptibility to disease) from such a record

requires substantial scientific insights and research from fields such as molecular and popu-

97

lation genetics. These latter issues are not the concern of this thesis, indeed only an early,

but computationally intensive part of the so-called sequencing pipeline is the focus of this

work, this step is called basecalling. Keeping this in mind, and for simplicity, I will occasion-

ally refer to any component of the sequencing pipeline (e.g., chemistry, measurement, signal

processing, basecalling, bioinformatics, etc.) as simply “sequencing” although it should be

clear that the process itself consists of many steps.

Basecalling is the step of translating signals from sensors operating on DNA molecules

into a sequence of text labels (i.e. from the set {A, C, G, T}) identifying the measured

DNA’s base sequence. The reader should appreciate that current technological limits prevent

sequencers from handling entire genomes without interruption. In practice, these molecules

need to be randomly partitioned into much smaller “samples” before they can be robustly

measured in a sequencing machine. For example, it is very common to randomly partition

the chromosomes of the human genome (i.e., a continuous segment of DNA roughly 150

million bp long) into minute segments of only 100 bp. It is the job of the basecaller to label

such measured segments. Ensuing processes then correct and re-assemble these samples back

into complete genomes.

In the vast majority of today’s sequencing technologies, optical sensing techniques are

used, and the basecaller is then left to sift through a sequence of recorded light pulses in

order to identify (i.e., sequence) the DNA from which such signals originated. In March

2014 a new sequencing technology (based on decades of research) entered the market with

profound implications for the field [154]. This is a method wherein DNA is threaded through

a very small molecular opening, a sensor called a nanopore, resulting in the generation of an

electrochemical time-series signature of the DNA that is converted into an electronic signal

directly processed by microelectronic components. This method arguably sets the stage

for the next major advance in sequencing technologies (there have been at least three such

innovations in the last 40 years [155]).

A number of benefits accrue due to this nanopore-based sequencing advance. Most ob-

98

Figure 7.2: MinION: nanopore-based sequencing device [2].

vious is the physical scales achievable by such a device (an example is pictured in Fig. 7.2,

a hand-sized machine weighing 100 grams) which are orders of magnitude smaller than the

mainframe or desktop-sized sequencing units established in the market today.

This size reduction is largely due to the implementation of an electronic sensing modality

in place of an optical one. The ability to translate DNA directly into electronic time-series

makes these signals amenable to direct handling by semiconductor microelectronics compo-

nents. With integrated circuits present very close to the sensing site, significant downsizing

is achieved with the promise of substantial computing resources traditionally associated with

microelectronic chips.

Another major benefit of the nanopore-based approach is the dynamic nature of its

measurement process. Whereas arduous laboratory methods are needed to load and measure

DNA samples in legacy sequencers, the nanopore-based approach allows continuous loading

and sequencing of molecules. In effect, the sequencing process has been turned into a real-

time sensing technology.

The attributes listed above, coupled with other advantages, make nanopore-based se-

quencing highly promising for a multitude of applications detailed elsewhere [156, 157, 158].

However, new engineering challenges are also presented by this technology and one of these,

99

namely basecalling, is the main concern of this chapter. Specifically, the nanopore-based

sequencers can achieve their “raw” sensor measurements extremely economically. Quanti-

tatively, for roughly 1 W of power consumption, a hand-held sequencer can operate over

512 simultaneous DNA measurement channels processing nearly 500 bp per second (bp/s)

and offering their signals for downstream analysis such as basecalling. This throughput is

roughly equivalent to 1 entire human genome every 3.5 hours. Keeping in mind that this

rate is already a 10× improvement over this sequencer’s performance levels only three years

ago and that at least a 100× increase in sensor speed is theoretically possible, the potential

for this technology is immense.

But as efficient as this data gathering is, it happens that its raw measured signal has

a relatively low signal-to-noise ratio (SNR) compared to established sequencing methods.

This presents a substantial statistical signal processing challenge that is first encountered

by the basecalling step of the broader sequencing pipeline. Numerous algorithms exist to

deal with such an SNR problem, but they all require intense computing resources. Thus,

one is faced with an incongruity, a small portable sequencer capable of gathering real-time

data within a 1-W power budget, but requiring follow-up computation approaching 1000 W

to keep up. This scenario exactly parallels the UAV discussions explored earlier, and once

again I consider the utility of GPUs for dealing with it; in this case the application of GPUs

for basecalling. I detail this approach next.

7.2 Problem Definition

As outlined above, basecalling is essentially a sequence labeling problem: a time-series is

converted to a sequence of letters from the alphabet {A,C,G,T}. The aim of this research is

to make the conversion faster and more power efficient to enable embedded operations. The

serial execution of basecalling is discussed in Section 7.3. Section 7.4 discusses two different

methods used for the parallel execution of basecalling where the first method executes a

100

single file at any instance and the second method executes multiple files at any instance.

7.3 Serial Basecalling

A well established sequence detection method, the hidden Markov model (HMM), is used for

the basecalling calculation [159] in this thesis. In general, this method seeks to identify the

“hidden states” (of some hypothesized state-space) that a system under study traverses by

observing only a noisy signal probabilistically related to the underlying hidden states. In

the case of basecalling, the hidden states essentially denote the string, or “sub-sequence”

of DNA bases (a so-called k-mer, a string of k bases, depending on the nanopore sensor

realistic values of k may vary between about 3 to 6) in the nanopore sensor at any one time.

Hence, if the states are identified from the observations so are these base k-mer strings, and

consequently so are the bases comprising these k-mers. Thus, the process of basecalling is

achieved.

In a Markov model, the states of a system under study, are directly visible to the ob-

server, and therefore the state transition probabilities, a model of the chances that one state

transitions into some other state of the system during some instant, are the only parameters

required for the probability calculation. But, as noted, in the HMM formalism, the state

occupied by the system under study is not directly visible, it may only be inferred from

the noisy observations/outputs. Each state has a probability distribution over the possible

output. Therefore, the sequence of outputs generated by an HMM gives some information

about the sequence of underlying (hidden) states.

In this research study, the measured data from the sensor is the observed output and the

hidden states are the aforementioned k-mer sub-sequences (k = 6 in this work), assumed to

contribute to the measured signal at any observation instant. That is, the nanopore is not

precise enough to produce a signal proportional to a single base, but rather, according to

some models, a string of k = 6 bases. Given that there are four possible bases, the number

101

of states accounting for all possible k-mers is 4k.

In this thesis, the HMM is solved in a dynamic programming fashion using the Viterbi

algorithm (VA) [160]. Further discussion on the HMM and the Viterbi algorithm is in

Sections 7.3.1 and 7.3.2.

7.3.1 HMM-Based Basecalling

A succinct expression of the basecaller’s underlying detection strategy is

ŝ = arg max
s

f(s, e) (7.1)

where s and e denote the sequence of states and N observed events respectively. The

read length N depends on the DNA length (the strand length, L), in terms of bases, of

the molecular sample that translocates through the nanopore sensor. Ideally the sensor’s

observation sequence e will correspond to the actual DNA base sequence in a one-to-one

manner making N = L. However, as discussed in Section 7.3.1 complications arise in practice

resulting in N ≈ L. The value of L is randomly distributed around a mean dependent on

how the DNA samples to be sequenced are prepared. A typical experiment [161] may achieve

median L ≈ 5 kbp with some lengths easily exceeding 50 kbp.

In a maximum a posteriori (MAP) sense, the basecaller constructs estimates, ŝ, of the

underlying state sequence s by considering the joint probability density model (pdf), f(s, e).

Rephrasing (7.1) via Bayes’s formula gives

ŝ = arg max
s

f(e|s)P (s) (7.2)

where the likelihood f(e|s) models the dependence of event observation sequences on under-

lying nanopore state sequences with prior, P (s).

Assuming a Markovian state progression property, the basecalling mechanism can be

102

Figure 7.3: The HMM expressing the translocation of a molecule through a nanopore sensor.

further distilled to the product series

f(e|s)P (s) =
N∏
i=1

f(ei|si)
N∏
i=2

τ(si−1, si)P (s1) (7.3)

=
N∏
i=1

vi(ei, si)

where f(ei|si) denotes the emission probability: the pdf of an event ei in response to a

nanopore state si and where τ(si−1, si) denotes the transition probability: the probability of

si−1 transitioning to si between consecutive observations. The sequence posterior at each

index i is denoted with vi(ei, si).

The decision metric summarized by (7.3) assumes the familiar HMM approach and can be

pictured in terms of the trellis diagram sketched in Fig. 7.3. As illustrated, the trellis nodes

represent all the possible M = 4k states that the nanopore can assume at any particular

measured event ei. The edges between states in the trellis denote the transition probabilities;

the undulating vectors emerging from each node denote the emission probabilities. Fig. 7.3

employs a more compact notation; states, si, are denoted with labels j, j′ ∈ {0, . . . ,M − 1}

and the emission probability is denoted with fi(j) = f(ei|si). Similarly, the posterior can

more succinctly be denoted with vi(j) = v(ei, si).

103

In the context of the trellis, and as implied by (7.2), the goal of basecalling is to find the

optimum sequence of states, an optimum path, through the trellis (i.e., highlighted path in

Fig. 7.3). This effort requires a more detailed consideration of the HMM’s component parts,

the transition and emission characteristics and I turn to these now.

Transitions

Ideal nanopore sequencing operation would imply that only one of four transitions are pos-

sible from si−1 to si. This ideal scenario is based on the anticipation that each new event ei

corresponds to the entry of a new base bi ∈ {A,C,G,T} into the sensor and hence a transition

into state si = bi−k+1 . . . bi from state si−1 = bi−k . . . bi−1. Such step transitions should be

the most common transition-type in a well designed system, but, practically-speaking, they

cannot be assumed to be the only one.

In alignment with the transition mechanisms outlined in [38], two more transition types

should also be considered: 1.) the possibility that a new event observation ei corresponds to

the previously determined state (a stay transition) where s′i = bi−k . . . bi−1; 2.) the possibility

that a base observation was missed and hence that ei corresponds to a state si which was

preceded by s′i−1 = bi−k−1 . . . bi−2 (a skip transition).

An example of the transition types outlined above is illustrated in Fig. 7.4 for changes

from a state si−1 = AAAAAC. As indicated, accounting for step, stay, and skip mechanisms

results in 21 possible transitions per state. I denote the labels of states that transition to a

state j with ν belonging to the set of such states ω(j).

Emissions

While the transitions τ(j, j′) quantify state progression through the trellis, the emissions,

fi(j) allow the basecaller to measure the association between measurements and those states.

Depending on the measurements acquired, a variety of associations can be made.

Among these, the measurement process can extract events from noisy data (e.g. as shown

104

Figure 7.4: One model of possible transitions from one state to another. Stays, steps, and
single base skips are the transitions accounted for. In this model a total of 21 transitions
form the state at i are possible.

in Fig. 7.5) in terms of the pair ei = (xi, yi) where xi is the mean event level and yi is its

standard deviation. Treating these components as independent metrics, one can associate

them with an underlying sensor model via appropriate pdfs. Following [38] I consider

fi(j) = N (xi;µj, σj) · IG(yi; ηj, λj) (7.4)

where N denotes the Guassian (normal) distribution and IG denotes the inverse-Gaussian

distribution and µj, σj, ηj, and λj represent nanopore model settings. Specifically, these

settings parameterize the pdfs

N (xi;µj, σj) =
1√

2πσ2
j

e−(xi−µj)
2/2σ2

j (7.5)

and

IG(yi; ηj, λj) =

[
λj

2πy3i

]1/2
e−λj(yi−ηj)

2/2η2j yi (7.6)

105

360 380 400 420 440 460 480
−6

−4

−2

0

2

4

6

8

10

t ime [ms]

si
g
n
a
l
c
u
rr
e
n
t
[p
A
]

Figure 7.5: Nanopore-based electronic current (around a mean) generated by the movement
of DNA through a nanopore sensor. Shown is the raw (noisy) time-series and a piecewise-
constant approximation extracted from it [3].

7.3.2 Viterbi Algorithm for Basecalling

The transition and emission components of the HMM as discussed in Sections 7.3.1 and 7.3.1

complete (7.3) and hence the basecaller’s decision criterion (7.2). In its most general sense,

this calculation calls for the identification of ŝ through the analysis of all possible paths of

length N through the trellis, a computationally daunting problem given the scales at play.

However, this process is amenable to solution via the Viterbi algorithm (VA).

The VA, as appropriate for the basecaller’s state identification goal, is summarized in

Algorithm 6.

Algorithm 6 Viterbi Serial Base Caller Calculation

1: Initialize:
2: v0(j)← f0(j) ∀ j ∈ {0, . . . ,M − 1}
3: Iterate: . Update posterior and traceback ∀ j
4: for i← 1, N − 1 & ∀ j do
5: vi(j)← fi(j) maxν∈ω(j)[vi−1(ν)τ(ν, j)]
6: ptri(j)← arg maxν∈ω(j)[vi−1(ν)τ(ν, j)]
7: end for
8: Optimal End State:
9: ŝn−1 ← arg maxj[vj(n− 1)]

10: Traceback:
11: for i← n− 1, 1 do
12: ŝi−1 ← ptri(ŝi)
13: end for

106

The VA basecaller computes M posteriors {vi(j)} over N event indexes (line 5 of Al-

gorithm 6). Generally speaking, the VA’s iterations occur over the event index i. At each

increment of i, the posterior probability of all M states is updated. This running posterior

is vi(j), the probability of state j having occurred at i (given the event ei). This update (see

line 5 of Algorithm 6) is

vj(i)← fj(ei) max
ν∈ω(j)

[vν(ei−1)τ(ν, j)]

This line considers all transitions from states ν into the state j weighted by the transition’s

probability to that state, τ(ν, j). The product of τ(ν, j) and the accumulated sequential

posterior probability, vi−1(ν), of its origin state (i.e. the origin state ν at index i − 1) is

proportional to the probability of transitioning to state j at index i. Note that among |ω(j)|

products vi−1(ν)τ(ν, j) just one maximum is chosen. This maximum is the key in ultimately

extracting the most likely path, ŝ. To complete the net likelihood of the sequence to state

j, the maximum product is multiplied by the posterior of that state (alone); that is, one

multiplies by fi(j).

Line 5 only enumerates the maximal sequence state probabilities. The solution algorithm

also has to keep track of which states ν at i−1 connect to states j at i. Line 6 of Algorithm 6,

ptri(j)← arg max
ν∈ω(j)

[vi−1(ν)τ(ν, j)],

is responsible for this. This line assigns to the pointer ptri(j) the state ν that maximizes the

product vi−1(ν)τ(ν, j) for all ν ∈ ω(j).

After the VA’s iterative procedure completes, the terminal state of the most likely path

is identified by choosing the state j corresponding to the maximum value of the sequential

probability. This is calculated by line 9 in Algorithm 6, that is:

ŝi−1 ← arg max
j

[vj(n− 1)].

107

Finally, the rest of the states of ŝ, from ŝn−2 to ŝ0, making up the most likely sequence

are recovered by applying a traceback procedure relying on the pointers accumulated during

the iteration phase.

The core implementation outlined above is suitable for offline post processing of se-

quencer measurements. Given the nascent status of market-ready nanopore sequencers and

the arrested clock frequency scaling demonstrated by commodity microprocessor technol-

ogy, however, it is clear that this approach is not suitable for the massive real-time analysis

requirements of nanopore sequencers.

7.4 Parallel Basecaller

This research study now proposes means by which the VA nanopore basecaller may be imple-

mented in a parallel processing architecture that can enhance the computational throughput

and allow the computational system to keep pace with advances in the sequencer’s measure-

ment technology. The GPU’s parallel architecture provides direct opportunities to achieve

this [162].

In the VA nanopore basecaller algorithm, there are a number of components that can be

executed independently. Identifying these elements and porting their execution to the GPU

in an efficient manner affords immediate and substantial improvements in throughput. The

acceleration of these algorithm aspects and the complications imposed by their translation

into GPU procedures are elaborated upon in the following sections.

At first one file, containing the measured output of a DNA sample, is executed in par-

allel which is discussed in Section 7.4.1. In the next Section 7.4.2, multiple files (each file

containing the measured output of a DNA sample) are executed in parallel.

108

7.4.1 Parallel Basecaller: Single File

The first step in porting to a parallel implementation involves identifying the algorithm

components that can be executed independently. So, a re-phrasing of the VA (i.e. line

numbers 4 to 7 of Algorithm 6) is presented in Algorithm 7.

Algorithm 7 A Part of Viterbi Serial Basecaller Calculation

1: for strand← 0, 1 do
2: for model← 0, 1 do
3: for i← 1, N − 1 do
4: for j ← 0,M − 1 do
5: vi(j)← maxν [vi−1(ν)τ(ν, j)]
6: vi(j)← fi(j)vi(j)
7: ptri(j)← arg maxν∈ω(j)[vi−1(ν)τ(ν, j)]
8: end for
9: end for

10: end for
11: end for

Before embarking on a parallel implementation of this code it is clear that a logarithmic

implementation of the update function will reduce the computational burden. That is, the

implementation

ln vi(j)← ln fi(j) + max
ν∈ω(j)

[ln vi−1(ν) + ln τ(ν, j)] (7.7)

will substitute additions for costly multiplications. Although the multiplicative exposition is

retained, throughout the remainder of the chapter, for consistency with the VA as outlined

initially, it is to be understood that the logarithmic equivalent of the posterior is computed.

As noted earlier, the total number of states M = 4096 for a 6-mer nanopore sensor

model. This makes the posterior calculation iterate M times in Algorithm 7. Again, the

total number of events N (the read length), represents the number of samples generated

from the sequencer per read of a DNA. Given that events are observations of bases as the

DNA translocates through the sensor, they (the events) are approximately (accounting for

stays and skips) equal to the length L of the DNA (in terms of bases).

The average number of events per read N̄ is approximately 5k with the possibility of

109

some reads exceeding 10× or 20× this value. For all these events, the posterior calculation

iterates N times in line 3 in Algorithm 7.

As seen in Algorithm 7, there are two more outer loops (in lines 1 and 2) present for the

posterior calculation. The outer loop at 1 iterates either one or two times depending the

input file. This strand variable refers to the two strands of a DNA molecule: complement and

template strand (as shown in Fig. 7.1). In most event input files handled by the basecaller,

the measured data from both strands are given (i.e., the nanopore manages to unfurl the

DNA and measure each of its two strands in sequence). Also, in the input file, one or two

trained data set or models are given for each strand which explains the remaining loop in

line 2.

Considering L = 5000, M = 4096, two strands, and two models per strand, the total

number of serial iterations becomes 5000 × 4096 × 2 × 2 ≈ 82 million. Roughly, the total

number of basic operations per event (M states per event are included) is 1,523,714 OP [33].

The basic operations include addition, subtraction, division, etc. Thus, for a single file with

L = 5000 the total number of operations will be 5000× 2× 2× 1,523,714 ≈ 3× 1010 OP.

Now, considering a miniature sequencer working with a channel rate of 250-bp/s and 250

operational channels, the total number of operation per second becomes 1,523,714 × 250 ×

250 = 9.5×1010 OPS ≈ 95 GOPS. To estimate the execution time, one may consider a Core

i7 4820K (based on a 22-nm Ivy Bridge-E) running overclocked at 3.9 GHz which achieves

about 12×109 DIPS (Dhrystone instructions-per-second) on Dhrystone 2.1 [163]. Assuming

2 OPS = 1 DIPS [33] these approximations predict that a Core i7 4820K requires at least

3.97 sec (excluding the read/write, scaling operations) to complete the computation tasks

for the data generated by the sequencer in one second.

This speed disparity strongly suggests the importance of using parallel computational

architecture for basecalling. Indeed, aspects of this computational load can be handled quite

adeptly by a massively parallel device such as a GPU. Mapping the problem onto the GPU

and efficiently managing the workload is now discussed.

110

In this section, a parallel basecaller is described that solves a single measured DNA file

at-a-time. Line 3 to line 9 from Algorithm 7 are executed on the GPU with multiple kernel

calls. In each kernel call q = 32 events are calculated on the GPU and all the threads

calculate the probability, vi(j) in parallel for different states j ∈ {0, . . . ,M − 1} of the same

i-th event ei. Once the calculations for the ith event are complete, ensuing threads start the

calculation for (i + 1)th event. Threads cannot be assigned to calculating the probabilities

for the ith and (i + 1)th events in parallel because the probabilities of the (i + 1)th event

depend on the probabilities of ith event. Global memory is used to store the calculated

probabilities, vi(j) so that vi(j)s are accessible during the probability calculation of (i+1)th

event.

A detailed discussion on how the threads are distributed in the blocks is included later in

this section. Events ei consist of two components: the mean xi, and standard deviation yi; for

a given event index i. At any time instant, threads in the GPU work in parallel calculating

different states probabilities for the same event. During these calculation, threads use the

same mean and standard deviation values (as each event has a unique value of mean and

standard deviation). As a result, for parallel implementation, the GPU’s constant memory

block is the best option for retaining these event components.

The variable ω(j), contains the set of transition probabilities denoting the chance of

moving from one state from to another state. The pore model data (i.e. µj, σj, λj, and

ηj as present in (7.5) and (7.6)) is used for the emission probability calculation. This data

structure contains M elements, and each element has multiple variables. Global memory is

used for keeping both ω(j) and the pore model data in this design.
Given the above considerations, the code is implemented and executed in parallel on a

GPU using CUDA C++ [164]. Fig. 7.6 shows the CPU and GPU threads executing host

and device codes respectively with time. The pseudo code is provided in Algorithm 8 where

q is the number of events calculated in a single kernel call. In this experiment q = 32, as

the traceback step (line 10 of Algorithm 6) is applied every 32 events. In the device code,

111

Figure 7.6: CPU and GPU threads working within a single-file basecaller design.

Algorithm 8 Viterbi Parallel Basecaller Calculation

1: procedure Device code
2: vi(id)← maxν [vi−1(ν)τ(ν, id)]
3: vi(id)← fi(id)vi(id)
4: ptri(id)← arg maxν∈ω(j)[vi−1(ν)τ(ν, id)]
5: end procedure
6: procedure Host code
7: for strand← 0, 1 do
8: for model← 0, 1 do
9: for i← 1, N − 1 for every q do

10: Call Device code
11: end for
12: end for
13: end for
14: end procedure

112

id refers to the global thread number which is expressed in (7.8) for 1D blocks.

id = threads per block× block.Idx + thread.Idx (7.8)

For each event calculation, the highest emission probability f(i−1)(j) from the previous

event is required during line 3 in Algorithm 8. Finding the highest value of a data set on

a GPU is challenging when the data set is distributed in several blocks. In such case, the

easiest implementation involves calculating all the states (4096 states) of one event in a single

kernel call, transferring the results to the CPU and then finding the maximum value on the

CPU itself. This scenario would be repeated for each event. The main drawback for such an

implementation is clearly the large memory traffic between the CPU and the GPU compared

to the GPU workload.

To solve the problem, instead of one event, multiple events are calculated in a kernel call,

and line 3 is implemented on the GPU which requires the highest emission probability from

the previous event. At the beginning, I tried 4096 threads distributed in multiple blocks

works for each state. But threads from different block cannot be synchronized, i.e., one

thread will wait for another thread. Again using the lock option like mutex, makes the code

serialize. In general, in parallel implementation when multiple threads wants to access the

same variable, a race condition arises. Mutex is used to prevent such race condition. Using

mutex only one thread can access to the variable at a single instant and rest of the threads

wait to access to the variable.

Ultimately the problem was handled by using 1024 threads from one block to 4096 states

where each thread is responsible for calculating four states. For example, Thread# 0 calcu-

lates fi(0), fi(1024), fi(2048), and fi(3072) first, then the thread finds the maximum value

among these four values and copies its local maximum value into the shared memory. Up to

this point, a thread works independently. Globally, threads wait until all the threads copy

their local maxima to shared memory (i.e. the GPU forces the threads to synchronize) and

113

Figure 7.7: Block diagram for multi file basecaller.

Figure 7.8: CPU and GPU threads working simultaneously for multi file basecaller.

finally a reduction method (discussed in Appendix A, Section A.2.1) is used to find the global

maximum value which is subsequently used in the (i+ 1)th event and allows the threads to

start working independently again.

7.4.2 Parallel Basecaller: Multiple Files

Using only 1024 threads is not the best solution (as in Section 7.4.1) when the number of

cores is higher than 1024. In this section, I have increased the workload for GPU and used

additional CPU thread to preprocess data for GPU use, as shown in Fig. 7.7 and 7.8.

In Fig. 7.7, the CPU thread#1 reads the input file, scales the input data with the given

model, and copies the scaled data to a file which is later accessed by the CPU thread#2. As

mentioned in Section 7.4.1, the input file might have data for two strands and two models

114

Figure 7.9: GPU threads accessing memory locations during multi files basecaller.

per strand. The term dataset is used denote data corresponding to one strand scaled by one

model. For example, if there are two stands and two models per strand are given, then CPU

thread#1 will generate four datasets after preprocessing.

CPU thread#1 keeps working until all of the input files is read. CPU thread#2 waits for

one second in the beginning so that CPU thread#1 can preprocess at least one file before

CPU thread#2 starts working on the final probability calculation. CPU thread#2 never

needs to wait for CPU thread#1, as the preprocessing time for a file is less than the final

probability calculation time.

The Calculate the probability block denoted in Fig. 7.7 is executed on the GPU. The mem-

ory arrangement and concepts of kernel call remain the same as discussed in Section 7.4.1.

The only difference is that instead of one dataset, multiple datasets are executed in a single

kernel call. 32 events from each dataset are executed in a single kernel call, and one block

with 1024 threads is assigned for each dataset. Fig. 7.9 shows 1024 threads from the same

block accessing memory for one dataset.

7.5 Experimental Results

The sample and the training data used in this study is available at [165]. The training data set

used in this thesis is independent of any specific sequencing device like MinION as European

Nucleotide Archive uses data from different sources (i.e., submissions of raw data, data

provision from the major European sequencing centers and routine, etc) to train a dataset.

115

Read Number Nanocall VA Basecaller VA Basecaller
Serial Serial Parallel

Implementation Implementation Implementation
(in bp/sec) (in bp/sec) (in bp/sec)

Read 1 1033 1695 2653
Read 2 1171 2048 3496
Read 3 1152 2234 3472
Read 4 1003 1873 3026
Read 5 1061 1754 2814

Average 1080 +/- 70 1900 +/- 200 3100 +/- 400

Table 7.1: Parallel basecalling with single file.

Table 7.1 shows the experimental results of basecalling as discussed in Section 7.4.1. An

open-source serial nanopore basecaller implementation (“Nanocall”) described in [38] is used

for comparison to the GPU implementation (in Table 7.1). The GPU computations presented

in this section match the results computed by Nanocall which operates with roughly an 80%

accuracy. In the last column of the Table 7.1, results from the parallel implementation are

presented for a single file scenario as discussed in Section 7.4.1 and named as VA basecaller

parallel implementation. Results using five different input files are presented in the Table 7.1.
The VA basecaller parallel implementation is capable of generating 3100 bp/sec which is

≈ 2.9× more bp than Nanocall.

Table 7.2, presents the results from the implementation of the basecaller with multiple

files. In each kernel call, two datasets are used. As discussed earlier, 1024 threads are used

for one data set, 2048 threads are used for two datasets here. Using 2048 threads on a GPU

with 1536 CUDA cores is reasonable to keep the cores busy. In Table 7.2, the speed for

single-file execution is shown in the first row, and the rate of calling bp is higher than the

rate listed in Table 7.1 due to executing multiple datasets in one kernel call.

For higher numbers of files, the bp generation rate saturates to around 7.2 kbp/s as the

number of datasets executed in each kernel call remains constant. The bp calling rate for

one file and 100 files are different though the number of datasets executed in the kernel for

both cases are the same. The reason could be that the initial delay time applied to CPU

116

Number of files Parallel VA basecaller
(in bp/sec)

1 5683
100 7283
500 7203
1000 7242

Table 7.2: Parallel basecalling with multiple files.

thread#2, as discussed in Section 7.4.2, has a bigger effect on the total execution time of

one file only. Conversely, the one second time delay has less effect on the total execution

time of hundreds of files.

7.6 Summary and Conclusion

In this chapter, the basecalling step in an emerging DNA sequencing pipeline is implemented

on a GPU. At first, one file is executed in parallel, and the bp calling rate is recorded as 3100

bp/s. In the next step, two CPU threads are used where the first CPU thread preprocessed

the input file and the second CPU thread completes the remaining computational tasks

including kernel calls. In each kernel call, two datasets are executed with 32 events each,

and the implemented basecaller is capable of calling 7283 bp/sec. With high-end GPUs

consisting of more CUDA cores, faster bp calling can be achieved. For example, with a

Nvidia K80, which contains 3.25× more CUDA cores than GeForce GTX 680 and 12×

larger memory, it should be possible to call at least 4× to 5× faster than the experimental

results presented in this chapter, by executing more dataset in a kernel call.

117

Chapter 8

Conclusion and Future Work

In this thesis, GPU based sequencers have been implemented as key parts in a planner for a

miniature unmanned aerial vehicle and a basecaller for a miniature real-time DNA sequencer.

In the following sections, the results from the experiments in this thesis are summarized

followed by a discussion of prospective future works related to the current research.

8.1 Global Path Planner

A global path planner for a UAV is proposed in this thesis where the UAV deploys wireless

sensor nodes from the air to the ground for the purpose of constructing wireless sensor

network in remote locations. The global path planner consists of two building blocks: a

TSP solver as the sequencer and a PRM as the path explorer. A global distance matrix is

considered which contains distances between each pair of waypoints.

At the beginning of a mission, Euclidean distances are inserted in the global distance

matrix. The distance matrix is considered as global because the matrix is made accessible

to both the TSP and the PRM. The TSP generates the shortest (or near optimal) sequence

of waypoints considering the distances from the distance matrix. Next, the PRM constructs

the paths between each pair of sequenced waypoints generated by the TSP. As there are ob-

stacles in the environment, the PRM finds a safe flying path between all waypoints connected

118

by the TSP. This effectively modifies the initially anticipated distance between waypoints.

Therefore, the PRM updates the calculated distance in the distance matrix so that the TSP

can use the accurate distances in the next iteration. In the experiments, the TSP takes

4.27 sec to generate a sequence of 512 waypoints, and the PRM block takes 1.32 sec to con-

struct paths between 511 pairs of waypoints. The iteration continues until the error becomes

less than 5%. In the following sections, the TSP and the PRM blocks are summarized along

with suggestions for future works, and at the end of this section, the future tasks related to

the global planner are discussed.

8.1.1 Sequence Generator

For sequence generation, the travelling salesman problem is solved using a heuristic employ-

ing the genetic algorithm (GA), clustering, and nearest neighbour techniques, to find the

near optimal solution. The TSP is solved for sequence generation over 4096 waypoints. A

manycore GPU is used to accelerate the computational process. Due to the GPU’s limited

on-chip shared memory, and to reduce the data traffic between CPU and GPU, the problem

is divided into multiple subproblems using the clustering technique. The GA is applied indi-

vidually to the waypoints inside each cluster which are executed inside the GPU. When the

number of waypoints inside the cluster is less than or equal to 8, instead of applying GA,

all possible combinations are checked to find the best sequence among the waypoints in that

cluster. Finally, the sequenced paths for each block are transferred to the CPU and the GA

is applied to all of the waypoints using the CPU to generate the final sequence.

The parallel sequence generator executed 4.8× faster to a solution than its serial coun-

terpart. The generator in both cases (serial and parallel) finds near optimal results although

these are not necessarily identical with each run. The serial implementation generates 1.4×

longer path. The execution time also varies with the cluster size. Experimental results show

that the parallel TSP calculation works 5.4× to 14.9× faster when the waypoints used per

cluster are reduced. The reason for this is that the data for clusters are kept in on-chip shared

119

memory, and the occupancy of the shared memory is low when the number of waypoints

per cluster is small. As a result, the performance of the GPU execution decreases when the

occupancy of the shared memory is high. The main advantage of using the algorithm is that

it can find a path for a significant number (up to 4096) of waypoints.

The implemented planner can also generate paths for more significant problems consisting

of more than 4096 waypoints. But the error rate compared to the optimal solution of the

sequenced path increases. In such cases, we should use more clusters and multiple levels

of clustering, e.g., generating clusters with the cluster heads themselves. We should also

try not to overload the shared memory by using read-only memories. Another option to

explore is to use a high-end GPU for the sequence calculation. The implemented sequence

generator will be able to generate faster results as the number of available CUDA cores, and

the memory bandwidth is higher which reduces the time required for read/write instructions

for the threads. With a high-end GPU like Tesla K80 (weights 2.2 lbs), we cannot increase

the number of waypoints per cluster per block used in this research as the size of shared

memory remains constant for all NVIDIA GPUs. As a result, instead of shared memory,

other memories (e.g., texture memory and global memory) need to be explored for storing

the distance matrix so that more extensive problem can be solved. The drawback of using

such high-end GPU is higher energy consumption.

8.1.2 Path Explorer

A sample-based probabilistic roadmap algorithm is used to find an obstacle-free flying path

for the UAV. In short, the PRM process starts by reading the start and destination node

locations as well as the record of obstacles followed by the four major steps: sample node

generation, milestone calculation, nearest neighbour search, and graph search. The sample

nodes are generated within a cubic area whose two, diagonally opposing, corners are set as

the start and destination nodes, respectively. The number of sample nodes is kept constant

by combining the milestone calculation and the sample node generation steps in this thesis.

120

For the nearest neighbour search, ANN library is used for serial implementation, and a cus-

tomized nearest neighbour algorithm is used for parallel implementation which was executed

on a GPU. A Dijkstra graph search is used for finding the final result. During the graph

search, instead of sorting, a min-heap data structure is used to find the shortest path from

the frontier which reduces the time complexity.

The execution of the k-nearest neighbour search and the sample node generation steps

take 96% to 99% and 1% to 3% of the total execution time during the serial implementation.

So these two steps are executed in parallel using a GPU. Three different obstacle-infused

environment types are studied in this thesis. Each environment contains varying amounts

of obstacles: 0.35%, 2.58%, and 5.3% of the total volume. The entire execution time for

the parallel implementation falls in the range of a few milliseconds to less than 10 sec. The

maximum speedups recorded for the sample generation, the k-nn calculation, and the total

time for the PRM are 81.18×, 194.81×, and 164× respectively.

For the future work on the local planner, PRM, in the current implementation, for finding

the k-nn nodes, all nodes are examined to see the nn nodes. For example, if there are 60

nodes and 30 nearest neighbour nodes are required, in the current code, a node finds the

distances from itself to the remaining 59 nodes and then uses bitonic sort for selecting the

30 closest nodes. But considering more intermediate sample nodes, this process can be

cumbersome. So additional features like Voronoi diagrams, BVH, clustering, etc. can be

applied to separate the plane which will reduce the complexity of the k-nn procedure, with

some added computational cost.

Now I will discuss the future tasks related to the global path planner. The global planner

can be implemented and examined for the number of iterations it takes to converge to the

final path. In the proposed planner, the TSP block executes first, then the PRM block is

engaged. The process continues iteratively until the result does not change by more than 5%

(a reasonable choice for the scale of delivery problems considered herein). The convergence

rate to the final result can be examined when the global planner is ultimately implemented.

121

Alternatively, one may explore the possibility of executing the PRM first then the TSP.

In such cases (implementing PRM first), PRM needs to calculate all possible edges first; then

one needs to call the TSP once. Another option when executing the PRM first, instead of

calculating all possible edges, limited edges will be calculated first. The limited edges refer

to the edges that might have a higher probability to exist in the final sequenced path. Then

TSP block will generate the path. The working loop of the TSP and the PRM will continue

until the result does not change by more than 5%.

To measure the probable edges for the PRM, as mentioned in the previous paragraph,

clustering can be used, i.e., there is a high chance that nodes close to each other will be

connected directly to the final path. If one prefers to use clustering, he/she can also combine

the TSP and the PRM block. In more details, the given waypoints will be divided into

smaller groups or clusters. The coordinate values of the waypoints will be transmitted and

stored in the GPU’s shared memory. One block of threads inside the GPU will be assigned

to one cluster. So for multiple clusters, several blocks will be allocated. Threads will execute

PRM for all the waypoints of the designated cluster first; then the GA may be applied. After

the kernel calculation, the sequenced path should be transferred to the CPU.

8.2 DNA Sequencing

Basecalling, one of the critical steps in the DNA sequencing pipeline, is implemented in

this thesis which gets the event signal as input and generates a series of equivalent letters

representing the four bases comprising the molecular alphabet. The uncertainty of the bases

can be expressed using a hidden Markov model, and a Viterbi algorithm is used to solve the

problem. In the sequencing process, each event depends on its previous event, and there are

4096 probably states for each event assuming a 6-mer sensitive DNA sensor.

As each event depends on its last event, two adjacent events cannot be calculated in

parallel which limits the proper usage of the computational ability of the GPU. So in this

122

thesis, two DNA strands: the template and the compliment, are solved in parallel which

means 2×4096 states are calculated in parallel on the GPU. The basecalling requires ad-

ditional scaling before the state calculation which is computed using CPU threads. Using

the CPU threads, the GPU does not need to wait for the next DNA strand’s scaling and

works as a pipeline configuration. The implemented basecaller is capable of generating 7283

bp/sec.

With high-end GPUs consisting of more CUDA cores, faster basecalling can be achieved.

For example, with a NVIDIA K80, which contains 3.25× more CUDA cores than GeForce

GTX 680 and 12× larger memory. By handling more datasets in a kernel call, the NVIDIA

K80 should execute basecalling at least 4× to 5× faster than the experimental results pre-

sented in this thesis. Such implementation requires more complex code as the events in each

file are not the same, and the code must keep track of the source file of every event.

Finally, the accuracy of the basecalling does not precisely depend on how fast the result

is computed, rather it depends on the quality and the volume of training data. To improve

accuracy, we can add more training data when it is possible. We can also apply anomaly

detection techniques to identify any erroneous data. Anomaly detection techniques allow

identifying data items that differ significantly from the majority of the records in a given

dataset.

123

Bibliography

[1] S. Magierowski, “Hmm-based basecalling for nanopore systems,” York University,

Tech. Rep., July 2016.

[2] S. Magierwski, “Minion notes,” York University, Tech. Rep., July 2016.

[3] R. Hossain, R. Mittmann, E. Ghafar-Zadeh, G. G. Messier, and S. Magierowski, “Gpu

base calling for dna strand sequencing,” in 2017 IEEE 60th International Midwest

Symposium on Circuits and Systems (MWSCAS), Aug 2017, pp. 96–99.

[4] “Android 4.2 apis.” [Online]. Available: https://developer.android.com/about/

versions/android-4.2.html

[5] B. B. Gear, “Apple’s making its own gpu to control its own destiny,”

[Online], March 4, 2017. [Online]. Available: https://www.wired.com/2017/04/

apples-making-gpu-control-destiny/

[6] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on Ap-

proach, ser. Applications of GPU Computing Series. Elsevier Science, 2010.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436–444, 2015.

[8] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks,

vol. 61, pp. 85–117, 2015.

124

https://developer.android.com/about/versions/android-4.2.html
https://developer.android.com/about/versions/android-4.2.html
https://www.wired.com/2017/04/apples-making-gpu-control-destiny/
https://www.wired.com/2017/04/apples-making-gpu-control-destiny/

[9] “What is gpu accelerated computing?” [Online]. Available: http://www.nvidia.ca/

object/what-is-gpu-computing.html

[10] “Opencl overview.” [Online]. Available: https://www.khronos.org/opencl/

[11] “Opencl.” [Online]. Available: https://en.wikipedia.org/wiki/OpenCL

[12] W. Hwu, GPU Computing Gems Jade Edition. Morgan Kaufmann, 2011.

[13] X. Zha, S. Y. Lim, and S. Fok, “Integrated knowledge-based assembly sequence plan-

ning,” The International Journal of Advanced Manufacturing Technology, vol. 14, no. 1,

pp. 50–64, 1998.

[14] P. Gu and X. Yan, “Cad-directed automatic assembly sequence planning,” Interna-

tional Journal of Production Research, vol. 33, no. 11, pp. 3069–3100, 1995.

[15] W. Hui, X. Dong, and D. Guanghong, “A genetic algorithm for product disassembly

sequence planning,” Neurocomputing, vol. 71, no. 13-15, pp. 2720–2726, 2008.

[16] T. Cao and A. C. Sanderson, “Task sequence planning using fuzzy petri nets,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 25, no. 5, pp. 755–768, 1995.

[17] P. Perazzo, K. Ariyapala, M. Conti, and G. Dini, “The verifier bee: A path planner for

drone-based secure location verification,” in World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2015 IEEE 16th International Symposium on a. IEEE, 2015,

pp. 1–9.

[18] U. Çekmez, M. Özsığınan, M. Aydın, and Ö. K. Şahingöz, “Uav path planning with

parallel genetic algorithms on cuda architecture,” 2014.

[19] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang, “Multiobjective evolutionary optimiza-

tion of dna sequences for reliable dna computing,” IEEE transactions on evolutionary

computation, vol. 9, no. 2, pp. 143–158, 2005.

125

http://www.nvidia.ca/object/what-is-gpu-computing.html
http://www.nvidia.ca/object/what-is-gpu-computing.html
https://www.khronos.org/opencl/
https://en.wikipedia.org/wiki/OpenCL

[20] C. Trapnell and M. C. Schatz, “Optimizing data intensive gpgpu computations for dna

sequence alignment,” Parallel Computing, vol. 35, no. 8, pp. 429–440, 2009.

[21] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer, A. Beyer,

O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald et al., “The kuka-dlr lightweight

robot arm-a new reference platform for robotics research and manufacturing,” in

Robotics (ISR), 2010 41st international symposium on and 2010 6th German con-

ference on robotics (ROBOTIK). VDE, 2010, pp. 1–8.

[22] L. R. Kavoussi, R. G. Moore, J. B. Adams, and A. W. Partin, “Comparison of robotic

versus human laparoscopic camera control,” The Journal of urology, vol. 154, no. 6,

pp. 2134–2136, 1995.

[23] H. J. Tovey, K. Ratcliff, K. E. Toso, and P. W. Hinchliffe, “Robotic arm dlus for

performing surgical tasks,” Dec. 7 2004, uS Patent 6,827,712.

[24] S. Zimmerman and A. Abdelkefi, “Review of marine animals and bioinspired robotic

vehicles: Classifications and characteristics,” Progress in Aerospace Sciences, 2017.

[25] Z. Tao, P. Bonnifait, V. Frémont, J. Ibanez-Guzman, and S. Bonnet, “Road-centered

map-aided localization for driverless cars using single-frequency gnss receivers,” Jour-

nal of Field Robotics, 2017.

[26] F. Vanegas, D. Campbell, N. Roy, K. J. Gaston, and F. Gonzalez, “Uav tracking and

following a ground target under motion and localisation uncertainty,” in Aerospace

Conference, 2017 IEEE. IEEE, 2017, pp. 1–10.

[27] R. R. Selmic, V. V. Phoha, and A. Serwadda, Wireless Sensor Networks: Security,

Coverage, and Localization. Springer, 2016.

[28] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The traveling salesman

problem: a computational study. Princeton University Press, 2007.

126

[29] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE trans-

actions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[30] M. Jain, I. T. Fiddes, K. H. Miga, H. E. Olsen, B. Paten, and M. Akeson, “Improved

data analysis for the minion nanopore sequencer,” Nature methods, vol. 12, no. 4, pp.

351–356, 2015.

[31] B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-calling of automated sequencer

traces usingphred. i. accuracy assessment,” Genome research, vol. 8, no. 3, pp. 175–185,

1998.

[32] “Oxford nanopore technologies,” [Online]. [Online]. Available: https://nanoporetech.

com/

[33] S. Magierowski, “Nanopore basecaller analysis: Computations, comparisons, costs,”

York University, Tech. Rep., December 2016.

[34] R. Longbottom, “Roy longbottom’s pc benchmark collection. [online].” 2016. [Online].

Available: http://www.roylongbottom.org.uk/dhrystone%20results.htm

[35] (2018) Amazon emr pricing. [Online]. Available: https://aws.amazon.com/emr/

pricing/

[36] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp.

268–278, 1973.

[37] G. Bonaccorso, Machine Learning Algorithms. Packt Publishing Ltd, 2017.

[38] M. David, L. J. Dursi, D. Yao, P. C. Boutros, and J. T. Simpson, “Nanocall: An Open

Source Basecaller for Oxford Nanopore Sequencing Data.” Bioinformatics (Oxford,

England), pp. 1–8, Sep. 2016.

127

https://nanoporetech.com/
https://nanoporetech.com/
http://www.roylongbottom.org.uk/dhrystone%20results.htm
https://aws.amazon.com/emr/pricing/
https://aws.amazon.com/emr/pricing/

[39] J. M. Tendler, J. S. Dodson, J. Fields, H. Le, and B. Sinharoy, “Power4 system mi-

croarchitecture,” IBM Journal of Research and Development, vol. 46, no. 1, pp. 5–25,

2002.

[40] W. J. Kaufmann and L. L. Smarr, Supercomputing and the Transformation of Science.

WH Freeman & Co., 1992.

[41] “The true cost of building a data warehouse,” September 2017. [Online]. Available:

https://www.cooladata.com/cost-of-building-a-data-warehouse/

[42] T. Gneiting and A. E. Raftery, “Weather forecasting with ensemble methods,” Science,

vol. 310, no. 5746, pp. 248–249, 2005.

[43] D. Menemenlis, C. Hill, A. Adcrocft, J.-M. Campin, B. Cheng, B. Ciotti, I. Fukumori,

P. Heimbach, C. Henze, A. Köhl et al., “Nasa supercomputer improves prospects for

ocean climate research,” Eos, Transactions American Geophysical Union, vol. 86, no. 9,

pp. 89–96, 2005.

[44] A. Ganesan, M. L. Coote, and K. Barakat, “Molecular ‘time-machines’ to unravel key

biological events for drug design,” Wiley Interdisciplinary Reviews: Computational

Molecular Science, 2017.

[45] “World’s fastest supercomputer now has chinese chip technology.”

[Online]. Available: https://www.bloomberg.com/news/articles/2016-06-20/

world-s-fastest-supercomputer-now-has-chinese-chip-technology

[46] D. Pricea, M. Clarka, B. Barsdella, R. Babichb, and L. Greenhilla, “Optimizing per-

formance per watt on gpus in high performance computing: temperature, frequency

and voltage effects,” arXiv preprint arXiv:1407.8116, 2014.

128

https://www.cooladata.com/cost-of-building-a-data-warehouse/
https://www.bloomberg.com/news/articles/2016-06-20/world-s-fastest-supercomputer-now-has-chinese-chip-technology
https://www.bloomberg.com/news/articles/2016-06-20/world-s-fastest-supercomputer-now-has-chinese-chip-technology

[47] J.-P. Farrugia, P. Horain, E. Guehenneux, and Y. Alusse, “Gpucv: A framework for

image processing acceleration with graphics processors,” in Multimedia and Expo, 2006

IEEE International Conference on. IEEE, 2006, pp. 585–588.

[48] J. E. Cates, A. E. Lefohn, and R. T. Whitaker, “Gist: an interactive, gpu-based level

set segmentation tool for 3d medical images,” Medical Image Analysis, vol. 8, no. 3,

pp. 217–231, 2004.

[49] Y. Heng and L. Gu, “Gpu-based volume rendering for medical image visualization,” in

Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual

International Conference of the. IEEE, 2006, pp. 5145–5148.

[50] Z. Yang, Y. Zhu, and Y. Pu, “Parallel image processing based on cuda,” in Computer

Science and Software Engineering, 2008 International Conference on, vol. 3. IEEE,

2008, pp. 198–201.

[51] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Gpu-based video feature track-

ing and matching,” in EDGE, Workshop on Edge Computing Using New Commodity

Architectures, vol. 278, 2006, p. 4321.

[52] A. Tumeo and O. Villa, “Accelerating dna analysis applications on gpu clusters,” in

Application Specific Processors (SASP), 2010 IEEE 8th Symposium on. IEEE, 2010,

pp. 71–76.

[53] M. Griebel and P. Zaspel, “A multi-gpu accelerated solver for the three-dimensional

two-phase incompressible navier-stokes equations,” Computer Science-Research and

Development, vol. 25, no. 1-2, pp. 65–73, 2010.

[54] J. Mielikainen, B. Huang, H. Huang, and M. Goldberg, “Gpu acceleration of the up-

dated goddard shortwave radiation scheme in the weather research and forecasting

(wrf) model,” Selected Topics in Applied Earth Observations and Remote Sensing,

IEEE Journal of, vol. 5, no. 2, pp. 555–562, 2012.

129

[55] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and

E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint

arXiv:1410.0759, 2014.

[56] H. Zhang, Z. Hu, J. Wei, P. Xie, G. Kim, Q. Ho, and E. Xing, “Poseidon: A system

architecture for efficient gpu-based deep learning on multiple machines,” arXiv preprint

arXiv:1512.06216, 2015.

[57] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng, “Convolutional-recursive

deep learning for 3d object classification,” in Advances in Neural Information Process-

ing Systems, 2012, pp. 656–664.

[58] N. Ganesan, R. D. Chamberlain, J. Buhler, and M. Taufer, “Accelerating hmmer on

gpus by implementing hybrid data and task parallelism,” in Proceedings of the first

ACM international conference on bioinformatics and computational biology. ACM,

2010, pp. 418–421.

[59] R. Li, Y. Dou, and D. Zou, “Efficient parallel implementation of three-point viterbi

decoding algorithm on cpu, gpu, and fpga,” Concurrency and Computation: Practice

and Experience, vol. 26, no. 3, pp. 821–840, 2014.

[60] N. C. McGinty, R. A. Kennedy, and P. Hocher, “Parallel trellis viterbi algorithm for

sparse channels,” IEEE Communications Letters, vol. 2, no. 5, pp. 143–145, 1998.

[61] C.-S. Lin, W.-L. Liu, W.-T. Yeh, L.-W. Chang, W.-M. W. Hwu, S.-J. Chen, and P.-

A. Hsiung, “A tiling-scheme viterbi decoder in software defined radio for gpus,” in

Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th

International Conference on. IEEE, 2011, pp. 1–4.

[62] J. Chong, E. Gonina, and K. Keutzer, “Efficient automatic speech recognition on the

gpu,” in GPU Computing Gems Emerald Edition. Elsevier, 2011, pp. 601–618.

130

[63] M. H. Radfar, R. M. Dansereau, and W. Wong, “Speech separation using gain-adapted

factorial hidden markov models,” arXiv preprint arXiv:1901.07604, 2019.

[64] Z. Du, Z. Yin, and D. A. Bader, “A tile-based parallel viterbi algorithm for biological

sequence alignment on gpu with cuda,” in Parallel & Distributed Processing, Work-

shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on. IEEE,

2010, pp. 1–8.

[65] J. P. Walters, V. Balu, S. Kompalli, and V. Chaudhary, “Evaluating the use of gpus

in liver image segmentation and hmmer database searches,” in Parallel & Distributed

Processing, 2009. IPDPS 2009. IEEE International Symposium on. IEEE, 2009, pp.

1–12.

[66] “Us military to launch fastest-ever plane.” [Online]. Available: https://www.

theguardian.com/world/2011/aug/10/us-military-fastest-plane-falcon

[67] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying fast and low among

obstacles: Methodology and experiments,” The International Journal of Robotics Re-

search, vol. 27, no. 5, pp. 549–574, 2008.

[68] D. D. V. Pandit and A. Poojari, “A study on amazon prime air for feasibility and

profitability–a graphical data analysis,” IOSR Journal of Business and Management,

vol. 16, no. 11-1, pp. 06–11, 2014.

[69] A. Glaser, “One of china’s biggest online retailers is building a delivery

drone that can carry 2000 pounds of cargo,” May 2017, [Online; posted

22-May-2017]. [Online]. Available: https://www.recode.net/2017/5/22/15666446/

jd-china-drone-delivery-two-thousand-2000-pounds

[70] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Springer, 2008.

[Online]. Available: http://www.libreka.de/9783540239574/

131

https://www.theguardian.com/world/2011/aug/10/us-military-fastest-plane-falcon
https://www.theguardian.com/world/2011/aug/10/us-military-fastest-plane-falcon
https://www.recode.net/2017/5/22/15666446/jd-china-drone-delivery-two-thousand-2000-pounds
https://www.recode.net/2017/5/22/15666446/jd-china-drone-delivery-two-thousand-2000-pounds
http://www.libreka.de/9783540239574/

[71] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in Robotics

and Automation. Proceedings. 1985 IEEE International Conference on, vol. 2. IEEE,

1985, pp. 116–121.

[72] P. E. Agre and D. Chapman, “Pengi: An implementation of a theory of activity.” in

AAAI, vol. 87, no. 4, 1987, pp. 286–272.

[73] E. Gat, “Integrating planning and reacting in a heterogeneous asynchronous architec-

ture for controlling real-world mobile robots,” in AAAi, vol. 1992, 1992, pp. 809–815.

[74] K. Doganay, H. Hmam, S. P. Drake, and A. Finn, “Centralized path planning for

unmanned aerial vehicles with a heterogeneous mix of sensors,” in Intelligent Sen-

sors, Sensor Networks and Information Processing (ISSNIP), 2009 5th International

Conference on. IEEE, 2009, pp. 91–96.

[75] W. Li and C. G. Cassandras, “Centralized and distributed cooperative receding hori-

zon control of autonomous vehicle missions,” Mathematical and computer modelling,

vol. 43, no. 9, pp. 1208–1228, 2006.

[76] A. Ryan, X. Xiao, S. Rathinam, J. Tisdale, M. Zennaro, D. Caveney, R. Sengupta, and

J. K. Hedrick, “A modular software infrastructure for distributed control of collabo-

rating uavs,” in Proceedings of the AIAA Conference on Guidance, Navigation, and

Control, 2006.

[77] M. Quaritsch, K. Kruggl, D. Wischounig-Strucl, S. Bhattacharya, M. Shah, and B. Rin-

ner, “Networked uavs as aerial sensor network for disaster management applications,”

e & i Elektrotechnik und Informationstechnik, vol. 127, no. 3, pp. 56–63, 2010.

[78] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske, and S. Singh, “River

mapping from a flying robot: state estimation, river detection, and obstacle mapping,”

Autonomous Robots, vol. 33, no. 1-2, pp. 189–214, 2012.

132

[79] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme, “Deployment

and connectivity repair of a sensor net with a flying robot,” in Experimental Robotics

IX. Springer, 2006, pp. 333–343.

[80] ——, “Deployment and repair of a sensor network using an unmanned aerial vehicle,”

in Proc. IEEE Int. Conf. Robots and Auto., Apr. 2004, pp. 3602–3608.

[81] A. Ollero, M. Bernard, M. La Civita, L. Van Hoesel, P. Marron, J. Lepley, and E. de An-

dres, “Aware: Platform for autonomous self-deploying and operation of wireless sensor-

actuator networks cooperating with unmanned aerial vehicles,” in Safety, Security and

Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop on, sept. 2007, pp.

1 –6.

[82] D.-T. Ho, E. I. Gr, P. Sujit, T. A. Johansen, J. B. Sousa et al., “Cluster-based com-

munication topology selection and uav path planning in wireless sensor networks,”

in Unmanned Aircraft Systems (ICUAS), 2013 International Conference on. IEEE,

2013, pp. 59–68.

[83] D. Tian and N. D. Georganas, “A coverage-preserving node scheduling scheme for large

wireless sensor networks,” in Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications. ACM, 2002, pp. 32–41.

[84] H. Yu and M. Guo, “An efficient oil and gas pipeline monitoring systems based on

wireless sensor networks,” in Information Security and Intelligence Control (ISIC),

2012 International Conference on. IEEE, 2012, pp. 178–181.

[85] I. Jawhar, N. Mohamed, and K. Shuaib, “A framework for pipeline infrastructure mon-

itoring using wireless sensor networks,” in Wireless telecommunications symposium,

2007. WTS 2007. IEEE, 2007, pp. 1–7.

133

[86] S. N. Spitz and A. A. Requicha, “Multiple-goals path planning for coordinate mea-

suring machines,” in Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE

International Conference on, vol. 3. IEEE, 2000, pp. 2322–2327.

[87] F. Adolf, A. Langer, L. d. M. P. e Silva, and F. Thielecke, “Probabilistic roadmaps

and ant colony optimization for uav mission planning,” IFAC Proceedings Volumes,

vol. 40, no. 15, pp. 264–269, 2007.

[88] F.-M. Adolf and A. Müller, “Asymmetric 2-opt scheduling for roadmap-based task

planning in urban terrain,” AIAA Infotech@ Aerospace, 2013.

[89] B. Englot and F. Hover, “Multi-goal feasible path planning using ant colony optimiza-

tion,” in Robotics and Automation (ICRA), 2011 IEEE International Conference on.

IEEE, 2011, pp. 2255–2260.

[90] S. J. Russell, P. Norvig, E. Davis, S. J. Russell, and S. J. Russell, Artificial intelligence:

a modern approach. Prentice hall Upper Saddle River, NJ, 2010.

[91] S.-G. Choi, W.-J. Jung, and J.-H. Choi, “3d-based uav path-planning algorithm con-

sidering altitude and reconnaissance areas,” 2017.

[92] S. A. Bortoff, “Path planning for uavs,” in American Control Conference, 2000. Pro-

ceedings of the 2000, vol. 1, no. 6. IEEE, 2000, pp. 364–368.

[93] “Concorde tsp solver.” [Online]. Available: http://www.math.uwaterloo.ca/tsp/

concorde/index.html

[94] “Discrete and combinatorial optimization.” [Online]. Available: http://www.iwr.

uni-heidelberg.de/groups/comopt/software/TSPLIB95/

[95] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning ap-

proach to the traveling salesman problem,” Evolutionary Computation, IEEE Trans-

actions on, vol. 1, no. 1, pp. 53–66, 1997.

134

http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

[96] T. Stutzle and H. Hoos, “Max-min ant system and local search for the traveling sales-

man problem,” in Evolutionary Computation, 1997., IEEE International Conference

on. IEEE, 1997, pp. 309–314.

[97] R. Baraglia, J. I. Hidalgo, and R. Perego, “A hybrid heuristic for the traveling salesman

problem,” Evolutionary Computation, IEEE Transactions on, vol. 5, no. 6, pp. 613–

622, 2001.

[98] N. Özalp and O. K. Sahingoz, “Optimal uav path planning in a 3d threat environment

by using parallel evolutionary algorithms,” in Unmanned Aircraft Systems (ICUAS),

2013 International Conference on. IEEE, 2013, pp. 308–317.

[99] M. A. O’Neil, D. Tamir, and M. Burtscher, “A parallel gpu version of the travel-

ing salesman problem,” in 2011 International Conference on Parallel and Distributed

Processing Techniques and Applications, 2011, pp. 348–353.

[100] K. Rocki and R. Suda, “An efficient gpu implementation of a multi-start tsp

solver for large problem instances,” in Proceedings of the fourteenth international

conference on Genetic and evolutionary computation conference companion, ser.

GECCO Companion ’12. New York, NY, USA: ACM, 2012, pp. 1441–1442. [Online].

Available: http://doi.acm.org/10.1145/2330784.2330978

[101] K. M. Rocki and R. Suda, “Brief announcement: a gpu accelerated iterated local

search tsp solver,” in Proceedinbgs of the 24th ACM symposium on Parallelism in

algorithms and architectures, ser. SPAA ’12. New York, NY, USA: ACM, 2012, pp.

188–189. [Online]. Available: http://doi.acm.org/10.1145/2312005.2312041

[102] J. Fu, L. Lei, and G. Zhou, “A parallel ant colony optimization algorithm with gpu-

acceleration based on all-in-roulette selection,” in Advanced Computational Intelligence

(IWACI), 2010 Third International Workshop on, 2010, pp. 260–264.

135

http://doi.acm.org/10.1145/2330784.2330978
http://doi.acm.org/10.1145/2312005.2312041

[103] H. Bai, D. Ouyang, X. Li, L. He, and H. Yu, “Max-min ant system on gpu with cuda,”

in Innovative Computing, Information and Control (ICICIC), 2009 Fourth Interna-

tional Conference on, 2009, pp. 801–804.

[104] N. Fujimoto and S. Tsutsui, “A highly-parallel tsp solver for a gpu computing plat-

form,” in International Conference on Numerical Methods and Applications. Springer,

2010, pp. 264–271.

[105] S. Chen, S. Davis, H. Jiang, and A. Novobilski, “Cuda-based genetic algorithm on

traveling salesman problem,” in Computer and Information Science 2011. Springer,

2011, pp. 241–252.

[106] J. Li, L. Zhang, and L. Liu, “A parallel immune algorithm based on fine-grained model

with gpu-acceleration,” in Innovative Computing, Information and Control (ICICIC),

2009 Fourth International Conference on, 2009, pp. 683–686.

[107] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[108] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, “A fast path planning by path graph

optimization,” IEEE Transactions on systems, man, and cybernetics-part a: systems

and humans, vol. 33, no. 1, pp. 121–129, 2003.

[109] A. R. Soltani, H. Tawfik, J. Y. Goulermas, and T. Fernando, “Path planning in con-

struction sites: performance evaluation of the dijkstra, a*, and ga search algorithms,”

Advanced engineering informatics, vol. 16, no. 4, pp. 291–303, 2002.

[110] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field techniques

for robot path planning,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. 22, no. 2, pp. 224–241, 1992.

[111] J. Pan, C. Lauterbach, and D. Manocha, “g-planner: Real-time motion planning and

global navigation using gpus.” in AAAI, 2010.

136

[112] J. Kim, S. Shin, J. Wu, S.-D. Kim, and C.-G. Kim, “Obstacle avoidance path planning

for uav using reinforcement learning under simulated environment,” in IASER 3rd

International Conference on Electronics, Electrical Engineering, Computer Science,

Okinawa, 2017, pp. 34–36.

[113] S. Mittal and K. Deb, “Three-dimensional offline path planning for uavs using mul-

tiobjective evolutionary algorithms,” in Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on. IEEE, 2007, pp. 3195–3202.

[114] C. Zhang, Z. Zhen, D. Wang, and M. Li, “Uav path planning method based on ant

colony optimization,” in Control and Decision Conference (CCDC), 2010 Chinese.

IEEE, 2010, pp. 3790–3792.

[115] Y. V. Pehlivanoglu, “A new vibrational genetic algorithm enhanced with a voronoi

diagram for path planning of autonomous uav,” Aerospace Science and Technology,

vol. 16, no. 1, pp. 47–55, 2012.

[116] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning algorithms from the

perspective of autonomous uav guidance,” Journal of Intelligent & Robotic Systems,

vol. 57, no. 1, pp. 65–100, 2010.

[117] P. Sujit and R. Beard, “Multiple uav path planning using anytime algorithms,” in

American Control Conference, 2009. ACC’09. IEEE, 2009, pp. 2978–2983.

[118] M. Kothari, I. Postlethwaite, and D.-W. Gu, “Multi-uav path planning in obstacle

rich environments using rapidly-exploring random trees,” in Decision and Control,

2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009.

Proceedings of the 48th IEEE Conference on. IEEE, 2009, pp. 3069–3074.

[119] Y.-h. Qu, Q. Pan, and J.-g. Yan, “Flight path planning of uav based on heuristically

search and genetic algorithms,” in Industrial Electronics Society, 2005. IECON 2005.

31st Annual Conference of IEEE. IEEE, 2005, pp. 5–pp.

137

[120] J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor computation

for gpu-based motion planning,” in Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on. IEEE, 2010, pp. 2243–2248.

[121] J. Pan and D. Manocha, “Gpu-based parallel collision detection for fast motion plan-

ning,” The International Journal of Robotics Research, vol. 31, no. 2, pp. 187–200,

2012.

[122] J. Yoon, J. Park, and M. Baeg, “Gpu-based collision detection for sampling-based

motion planning,” in Ubiquitous Robots and Ambient Intelligence (URAI), 2013 10th

International Conference on. IEEE, 2013, pp. 215–218.

[123] F. Sanger, S. Nicklen, and A. R. Coulson, “Dna sequencing with chain-terminating

inhibitors,” Proceedings of the national academy of sciences, vol. 74, no. 12, pp. 5463–

5467, 1977.

[124] L. H. Harwell, L. Hood, and M. L. Goldberg, Genetics from genes to genomes.

McGraw-Hill,, 2004, no. 576.5 G328g.

[125] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell, C. Heiner,

S. B. Kent, and L. E. Hood, “Fluorescence detection in automated dna sequence anal-

ysis,” Nature, vol. 321, no. 6071, p. 674, 1986.

[126] M. Marsh, O. Tu, V. Dolnik, D. Roach, N. Solomon, K. Bechtol, P. Smietana, L. Wang,

X. Li, P. Cartwright et al., “High-throughput dna sequencing on a capillary array

electrophoresis system.” Journal of capillary electrophoresis, vol. 4, no. 2, pp. 83–89,

1997.

[127] S. Magierowski, Y. Huang, C. Wang, and E. Ghafar-Zadeh, “Nanopore-cmos interfaces

for dna sequencing,” Biosensors, vol. 6, no. 3, p. 42, 2016.

138

[128] N. J. Loman, R. V. Misra, T. J. Dallman, C. Constantinidou, S. E. Gharbia, J. Wain,

and M. J. Pallen, “Performance comparison of benchtop high-throughput sequencing

platforms,” Nature biotechnology, vol. 30, no. 5, p. 434, 2012.

[129] S. Balasubramanian, “Polynucleotide sequencing,” Dec. 21 2004, uS Patent 6,833,246.

[130] P. Nyren, “Method of sequencing dna based on the detection of the release of pyrophos-

phate and enzymatic nucleotide degradation,” Jul. 10 2001, uS Patent 6,258,568.

[131] J. Clarke, H.-C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley, “Continuous base

identification for single-molecule nanopore dna sequencing,” Nature nanotechnology,

vol. 4, no. 4, p. 265, 2009.

[132] C. L. Ip, M. Loose, J. R. Tyson, M. de Cesare, B. L. Brown, M. Jain, R. M. Leggett,

D. A. Eccles, V. Zalunin, J. M. Urban et al., “Minion analysis and reference consortium:

Phase 1 data release and analysis,” F1000Research, vol. 4, 2015.

[133] V. Boža, B. Brejová, and T. Vinař, “Deepnano: Deep recurrent neural networks for

base calling in minion nanopore reads,” PloS one, vol. 12, no. 6, p. e0178751, 2017.

[134] M. Ratković, “Deep learning model for base calling of minion nanopore reads,” Ph.D.

dissertation, Fakultet Elektrotehnike i Računarstva, Sveučilǐste u Zagrebu, 2017.

[135] H. Jiang, N. Ganesan, and Y.-D. Yao, “Cudampf++: A proactive resource exhaus-

tion scheme for accelerating homologous sequence search on cuda-enabled gpu,” IEEE

Transactions on Parallel and Distributed Systems, 2018.

[136] “Social impact of the gpu: Energy efficiency,” NVIDIA, http://www.nvidia.ca/object/

gcr-energy-efficiency.html.

[137] CUDA C PROGRAMMING GUIDE, http://docs.nvidia.com/cuda/pdf/CUDA C

Programming Guide.pdf, NVIDIA, October 2012, ver. 4.2.

139

http://www.nvidia.ca/object/gcr-energy-efficiency.html
http://www.nvidia.ca/object/gcr-energy-efficiency.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[138] “Nvidia geforce gtx 680,” NVIDIA, whitepaper. [Online]. Avail-

able: http://www.nvidia.com/content/PDF/product-specifications/GeForce GTX

680 Whitepaper FINAL.pdf

[139] “Geforce gtx 680.” [Online]. Available: http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-680/specifications

[140] A. Pandey and D. R. Parhi, “Matlab simulation for mobile robot navigation with

hurdles in cluttered environment using minimum rule based fuzzy logic controller,”

Procedia Technology, vol. 14, pp. 28–34, 2014.

[141] K. Yang and S. Sukkarieh, “3d smooth path planning for a uav in cluttered natu-

ral environments,” in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ

International Conference on. IEEE, 2008, pp. 794–800.

[142] D.-T. Ho and S. Shimamoto, “Highly reliable communication protocol for wsn-uav

system employing tdma and pfs scheme,” in GLOBECOM Workshops (GC Wkshps),

2011 IEEE. IEEE, 2011, pp. 1320–1324.

[143] The high performance unmanned helicopter designed for a wide range of

industrial uses: RMAX Type II G/ Type II, Yamaha. [Online]. Available:

http://rmax.yamaha-motor.com.au/sites/rmax/files/pdf/RMAX Brochure.pdf

[144] G. M. Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer

conference. ACM, 1967, pp. 483–485.

[145] R. Soleymani-Fard, C.-Y. Shih, M. Baudewig, and P. J. Marron, “Coplanner: A wire-

less sensor network deployment planning architecture using unmanned vehicles as de-

ployment tools,” in SENSORCOMM 2012, The Sixth International Conference on

Sensor Technologies and Applications, 2012, pp. 73–76.

140

http://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
http://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-680/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-680/specifications
http://rmax.yamaha-motor.com.au/sites/rmax/files/pdf/RMAX_Brochure.pdf

[146] N. Fujimoto and S. Tsutsui, “A highly-parallel tsp solver for a gpu computing plat-

form,” in Numerical Methods and Applications. Springer, 2011, pp. 264–271.

[147] R. Hossain, S. Magierowski, and G. G. Messier, “Gpu enhanced path finding for an

unmanned aerial vehicle,” in Parallel & Distributed Processing Symposium Workshops

(IPDPSW), 2014 IEEE International. IEEE, 2014, pp. 1285–1293.

[148] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[149] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger, “Fast in-place sorting with

cuda based on bitonic sort,” in International Conference on Parallel Processing and

Applied Mathematics. Springer, 2009, pp. 403–410.

[150] D. M. Mount and S. Arya, “Ann: A library for approximate nearest neighbor

searching.” [Online]. Available: https://www.cs.umd.edu/∼mount/ANN/

[151] H. Samet, The design and analysis of spatial data structures. Addison-Wesley Reading,

MA, 1990, vol. 199.

[152] C. Toolkit, “4.2: Curand guide,” NVIDIA Corporation, Santa Clara, 2012.

[153] J. D. Watson, F. H. Crick et al., “Molecular structure of nucleic acids,” Nature, vol.

171, no. 4356, pp. 737–738, 1953.

[154] K. Dolan and C. WRIGHT, “Analysis of a polymer from multi-dimensional

measurements,” 2015, priority: Mar. 12, 2014, wO Patent App. PCT/GB2015/050,776.

[Online]. Available: https://www.google.com/patents/WO2015140535A1?cl=nl

[155] J. M. Heather and B. Chain, “The sequence of sequencers: the history of sequencing

dna,” Genomics, vol. 107, no. 1, pp. 1–8, 2016.

[156] P. M. Ashton, S. Nair, T. Dallman, S. Rubino, W. Rabsch, S. Mwaigwisya, J. Wain,

and J. O’grady, “Minion nanopore sequencing identifies the position and structure of a

141

https://www.cs.umd.edu/~mount/ANN/
https://www.google.com/patents/WO2015140535A1?cl=nl

bacterial antibiotic resistance island,” Nature biotechnology, vol. 33, no. 3, pp. 296–300,

2015.

[157] E. Karlsson, A. Lärkeryd, A. Sjödin, M. Forsman, and P. Stenberg, “Scaffolding of

a bacterial genome using minion nanopore sequencing,” Scientific reports, vol. 5, p.

11996, 2015.

[158] A. Kilianski, J. L. Haas, E. J. Corriveau, A. T. Liem, K. L. Willis, D. R. Kadavy, C. N.

Rosenzweig, and S. S. Minot, “Bacterial and viral identification and differentiation by

amplicon sequencing on the minion nanopore sequencer,” Gigascience, vol. 4, no. 1,

p. 12, 2015.

[159] P. Boufounos, S. El-Difrawy, and D. Ehrlich, “Basecalling using hidden markov mod-

els,” Journal of the Franklin Institute, vol. 341, no. 1, pp. 23–36, 2004.

[160] W. Timp, J. Comer, and A. Aksimentiev, “Dna base-calling from a nanopore using a

viterbi algorithm,” Biophysical journal, vol. 102, no. 10, pp. L37–L39, 2012.

[161] P. M. Ashton, S. Nair, T. Dallman, S. Rubino, W. Rabsch, S. Mwaigwisya, J. Wain,

and J. O’Grady, “MinION nanopore sequencing identifies the position and structure of

a bacterial antibiotic resistance island,” Nat. Biotechnol., vol. 33, no. 3, pp. 296–300,

Dec. 2014.

[162] R. Farber, CUDA application design and development. Elsevier, 2011.

[163] R. Longbottom, “Roy longbottom’s pc benchmark collection,” 2016. [Online].

Available: http://www.roylongbottom.org.uk/dhrystone%20results.htm

[164] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose

GPU programming. Addison-Wesley Professional, 2010.

[165] “European nucleotide archive.” [Online]. Available: https://www.ebi.ac.uk/ena

142

http://www.roylongbottom.org.uk/dhrystone%20results.htm
https://www.ebi.ac.uk/ena

[166] “Cuda memory types.” [Online]. Available: http://www.math-cs.gordon.edu/courses/

cps343/presentations/CUDA Memory.pdf

[167] M. Harris, “How to overlap data transfer in cuda c/c++,” NVIDIA

Developer Zone, December 2012, https://developer.nvidia.com/content/

how-overlap-data-transfers-cuda-cc.

[168] “Nvidia gf100: World’s fastest gpu delivering great gaming, performance with true

geometric realism,” NVIDIA, whitepaper.

143

http://www.math-cs.gordon.edu/courses/cps343/presentations/CUDA_Memory.pdf
http://www.math-cs.gordon.edu/courses/cps343/presentations/CUDA_Memory.pdf
https://developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc
https://developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc

Appendix A

GPU: Performance Optimization and

Algorithms

A.1 Performance Optimization

For faster execution, parallel programming requires several optimizing methods. All of them

are not controlled by the programmer. But a programmer can write a program that will

utilize the optimizing approaches. Few of such methods will be discussed in the following

sections.

A.1.1 Coalesced Memory Access

For better performance, it is recommended that the memory access should be coalesced.

Fig. A.1 shows an example of coalesced and non-coalesced memory access. In Fig. A.1a,

adjacent threads or threads in the same warp are reading/writing the data from the adja-

cent memory which is considered as coalesced memory access. In contrast Fig. A.1b shows

the non-coalesced memory access where adjacent threads or threads in the same warp read-

ing/writing data spreaded over the total memory space. Misaligned, discontinuous, random

memory accesses serialize the program [6, 137].

144

Figure A.1: Example of coalesced (a) and non-coalesced (b) memory access.

Variable Declaration Memory Scope Performance Penalty

int locakVar; register thread 1×
int localArray[5]; local thread 100×

shared int sharedVar; shared block 1×
device int globalVar; global grid 100×

constant int constantVar; constant grid 1×

Table A.1: GPU’s memory description

A.1.2 CUDA Memory Types

Table A.1 shows multiple variable declarations that resides in different types of memo-

ries [166]. The table also shows the performance penalty for different types of memory.

A.1.3 Data Transfer Parallelism / Asynchronous Data Transfer

Typically, a CUDA program sends data from host to device, executes the instructions in the

device and then sends data back from the device to the host. It is suggested that instead of

sending several variables’ data (say three integers as three different variables), it is better to

send them as a matrix or an array [6]. Apart from that, for large size of data, it is better

to chop the data into several pieces and do the data transfer and execution simultaneously

using asynchronous method [167].

This step also depends on the number of available copy engines. If the device has 2 copy

engines (one is responsible for transferring data from host to device and another copy engine

is responsible for transferring data from device to host), then it can both send and receive

data to and from GPU simultaneously. But the some device has single copy engine. For

those devices, that copy engine is responsible for the both way data transfers (host to device

and device to host). In general, when a part of code is executed in device the main three

145

Copy data from host to device synchronously
Execute the instructions in device
Copy the back to host from device synchronously

Table A.2: Algorithm for synchronous data transfer.

Figure A.2: Device with two (a) and one (b) copy engines and synchronous operation.

steps are shown in Table A.2.

Fig. A.2 shows how the operations are executed in time frame. In synchronous execution

the pointer does not move to the next command until it finishes the current execution. In

this thesis, the data are divided into groups and asynchronous data transfer is used. In

asynchronous operation, the pointer will move to the next command while it is executing

the current command. The device that is used for this research has single copy engine. So

the code was updated for single copy engine machine and shown in Table A.3. With this

update the performance of the device increases and the performance updates are shown in

Fig. A.3. In Fig. A.3, it is assumed that the data is divided into 3 small groups. The blue

outlined boxes represent the data transfer from the host to device. The red outlined boxes

represent the parallel execution of the device codes for the 3 small sets of the data. The

green outlined boxes represent the data transfer from the device to the host.

146

Divide the data into n pieces
For n pieces of data

Copy data from host to device asynchronously
End for loop
For n pieces of data

Execute the instructions in device
End for loop
For n pieces of data

Copy the back to host from device asynchronously
End for loop

Table A.3: Algorithm for asynchronous data transfer for a device with single copy engine.

Figure A.3: Updated asynchronous operation for single copy engine.

A.1.4 Warp Schedulers Pipeline

Warp scheduler is another pipelining option which is mostly not controlled by the user.

Instructions wait in the warp scheduler pipeline. And dispatch unit coupled with the warps

schedulers distribute the work to the Cores or SFUs [168].

Blocks are assigned to a fix SM. Then blocks are divided into warps (a group of 32

threads). Now warps are assigned to warp schedulers without maintaining any sequence.

Warp scheduler works as a pipeline. Instructions from the same warp waits in the pipeline.

Instructions from of the next warp also waits in the pipeline after the current warp (in

Fig. A.4, in the first row blue box warp instruction is waiting after the red box instructions

which instructions are from the current warp). The Dispatch unit works as a supervisor for

the warp schedulers and the execution units (cores, SFU). If any cores or SFUs are available

for computation, the dispatch unit assign the warp instructions from the scheduler pipeline

to the cores or SFUs depending on the type of the instruction. Note that, in the GeForce

147

Figure A.4: Warp scheduler pipeline.

GTX 680 GPU, there is a similar pipelining option is available for SFUs.

A.2 Algorithm

This section includes two algorithms: reduction and bitonic sort that are used in this thesis.

A.2.1 Reduction

Reduction is one of the common algorithms used in device codes. Reduction is used for

finding the maximum/ minimum value, summation of a large data set etc. In general, for

large data set, threads responsible for the data set are distributed over the blocks. Threads

in the same block can wait of each other if requires. Threads need to wait for another threads

in the same block when an updated data from previous step is used. A detail example of

finding maxima is included in the next paragraph.

Instead of employing a pure serial loop for finding maximum value in large dataset,

the GPU can search for its maximum using a reduction method in K threads compare K

number-pairs from an array of size 2K. Applied iteratively this procedure can obtain its

answer in O(log 2K) steps. An example of this is illustrated in illustrated in Fig. A.5 for

2K = 10. In Fig. A.5, there are 10 numbers in a block and we need to find the maximum

148

Figure A.5: Reduction method is used for searching maximum value within a block

number among them. In every step half of the threads will work. At Step 1, first 5 threads

is pointing to the first 5 numbers in the row. These 5 threads will compare the pointing

number to another number from the rest of the half numbers (same color is used to show

which two numbers are compared). After step 1, there will be 5 numbers to consider. In

the step 2, three threads will work and get 3 numbers for the next step and so on. At the

final step the highest number will come to the first cell. The reduction process is executed

independently in every block. Finding maximum value among the blocks requires lock option

so that threads from different block will wait for each other.

A.2.2 Bitonic Sort

Bitonic sort is one of the most common parallel sorting algorithms. Fig. A.6 shows an

example of bitonic sort. In every step two numbers are compared and each black straight

line represents a thread. So in this example, 16 threads are used to sort a list numbers

ranging from 0 to 15. The algorithm was implemented manually (no library was used) in

this thesis.

149

Figure A.6: An example of bitonic sort.

150

