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ABSTRACT
A simplified “block Lanczos” algorithm is presented and its
correctness established. While its efficiency in the general
case is not proved, preconditioning used for similar algo-
rithms is also sufficient here. Results concerning reliability
and efficiency may be of more general interest because they
may serve to (somewhat) better explain the performance of
other block algorithms, including block Wiedemann algo-
rithms and algorithms that use rectangular blocking.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—computations
in finite fields, computations in matrices; I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms—algebraic al-
gorithms, analysis of algorithms

General Terms
Algorithms, Performance, Reliability

Keywords
Block Lanczos algorithms, computations in finite fields, worst-
case expected performance and reliability

1. INTRODUCTION
Block “Krylov-based” algorithms — including block Lanc-

zos and block Wiedemann algorithms — have been used
in sieve-based factorization algorithms and various other
number-theoretic computations since Coppersmith’s devel-
opment of a block Lanczos algorithm [1].

Unfortunately the block Lanczos algorithms that were orig-
inally developed for these applications are provably unreli-
able in the worst case: They begin with a symmetrization of
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the input matrix that is provably correct for computations
over the real numbers but that can significantly reduce the
rank of the input matrix and, furthermore, fail to achieve
the matrix conditions needed to ensure reliability (the be-
ginning of the report [3] provides further details). Conse-
quently subsequent work (including the development of all
block Wiedemann algorithms, including the one proposed
by Coppersmith [2]) has concerned biconditional algorithms
which do not require the input matrix to be symmetric and
double the number of vectors to be managed.

A biconditional Block Lanczos algorithm, whose efficiency
and reliability could be proved for suitably conditioned in-
put matrices over small finite fields, was first presented and
analyzed by Bradford Hovinen in his Master’s thesis [7]; a
subsequent paper [8] summarizes the key results and is more
readily available. A rectangular variant (which uses differ-
ent block sizes on the left and right) has subsequently been
proposed by the author of this report [3].

As noted above, one can prove that block Lanczos al-
gorithms that symmetrize the input matrix are provably
unreliable, in the worst case, for computations over finite
fields. Nevertheless, a review of the development of these
algorithms suggests improvements that might be made to
the biconditional algorithms that have more recently been
developed. In particular, Montgomery [10] proposed a con-
siderable simplification of the management of vectors, in a
block Lanczos algorithm, that has inspired the present work.
An algorithm that simplifies the management of vectors in a
biconditional block Lanczos computation in a similar way —
and that, therefore, might be more easily implemented and
maintained than its predecessors — is described in Section 2.
Since block sizes can be selected for a variety of reasons, in-
cluding efficient use of storage, it might also be of interest
that all restrictions on the block sizes that can be used have
been removed. The algorithm is provably correct for any
block size k ≥ 2 and (like Hovinen’s) it is provably efficient
as long as the block size exceeds the number of nontrivial
invariant factors of the input matrix.

Now, unless these block Krylov matrices are used in sig-
nificantly different (and presently unknown) ways than they
currently are, some sort of conditioning of the input ma-
trix is necessary if the computations are to be reliable in
the worst case: The number of nontrivial invariant factors
should be less than the block size if the algorithm is being
used to determine the rank of the input matrix, in order to
ensure that the Krylov space being generated is equal to the
column (or row) space of the matrix. If one wishes to solve
a linear system (or certify that it is inconsistent) or sample



uniformly from the null space, then the block size should ex-
ceed the number of invariant factors that are divisible by x2.

On the other hand, some computations — including the
solution of a linear system when the the minimal polynomial
of the input matrix is not divisible by x2, or the computation
of a nonzero vector in the null space (making no guarantees
about its distribution) — do not necessarily require any ad-
ditional conditions on the input matrix, or the use of pre-
conditioners, at all. Indeed, both of the above problems can
be solved for arbitrary input matrices using Weidemann’s
scalar algorithm [12]. This suggests the question (still, to
my knowledge, open) of whether conditioning of the input
is required when block algorithms are used to solve these
problems. Some modest progress on this is reported in Sec-
tion 6. In particular, the efficiency of the algorithm is also
established when it is applied to input matrices having arbi-
trarily many nontrivial invariant factors, provided that (for
block size k) the degree of the kth invariant factor is small.

This part of the work being reported is quite “curiosity
based:” Algorithms that use different sizes on the left and
right are available, have been more completely analyzed, and
(at least, for block Wiedemann algorithms) may be more effi-
cient because the number of applications of the input matrix
can be reduced — see Kaltofen [9] and Villard [11] for de-
tails. That noted, the results of Section 6 are also applicable
to block Wiedemann algorithms (rectangular or otherwise)
that employ “early termination” heuristics and might there-
fore be of more general interest — they establish that, with
high probability, breakdowns can only occur near the end
of a computation. Regardless of badly “conditioning” has
failed (and, no matter how pathological the input matrix
might be) things will go well until the number of vectors
generated, in a Krylov space being traversed, approaches
the sum of the degrees of the first k − 1 invariant factors of
the input matrix.

This report omits proofs of a variety of claims. A more
complete report that includes these proofs is now available [4].

2. A BLOCK LANCZOS ALGORITHM
Suppose one wishes to solve a system Ax = b for a given

matrix A ∈ Fn×nq and vector b ∈ Fn×1
q .

2.1 Objectives
Consider a positive integer k and a sequence of vectors

~v = v1, v2, . . . , vk ∈ Fn×1
q ; let KS~v denote the“Krylov space”

defined using these vectors with A as an operator — that is,
KS~v is the subspace of Fn×1

q spanned by the vectors Arvs for
r ≥ 0 and 1 ≤ s ≤ k. Similarly, for k as above and vectors

~u = u1, u2, . . . , uk ∈ Fn×1
q , let K̂S~u denote the Krylov space

defined using these vectors with AT as an operator.
A secondary — but key— objective of virtually any“block

Lanczos” algorithm is to construct a basis for KS~v for a
given set of vectors v1, v2, . . . , vk. If the goal is to solve a
system Ax = b then one searches for a solution χ as a linear
combination of v1, v2, . . . , vk. Modifications needed to cer-
tify the inconsistency of systems, sample from the null space,
and solve various related problems have been described else-
where (see, for example, Eberly [3] for details) and will not
be discussed further here.

2.2 Details of the Lanczos Phase

2.2.1 Objectives and Invariants
The computation begins with a “Lanczos phase:” Vectors

u1, u2, . . . , uk, w, w2, w3, . . . , wk are chosen uniformly and in-
dependently from Fn×1

q , w1 is set to be A ·w+ b, and Gram-
Schmidt orthogonalization is applied to try to construct dual

orthogonal bases for K̂S~u and KS~v, where vr = A · wr for
1 ≤ r ≤ k and ~v = v1, v2, . . . , vk.

The Lanczos phase will proceed in a sequence of “stages”
(beginning with a “stage 0”). By the end of stage i, for
i ≥ 0, vectors ur,s, vr,s ∈ Fn×1

q will have been constructed,
for 0 ≤ r ≤ i and 1 ≤ s ≤ k, such that the following property
is satisfied.

• Invariant #1 The vectors ur,s such that 0 ≤ r ≤ i and
1 ≤ s ≤ k span the same subspace of Fq as the vectors
(AT )aub such that 0 ≤ a ≤ i and 1 ≤ b ≤ k. The
vectors vr,s such that 0 ≤ r ≤ i and 1 ≤ s ≤ k span
the same subspace of Fq as the vectors Aavb such that
0 ≤ a ≤ i and 1 ≤ b ≤ k, as well.

At each point of the computation one has constructed a
sequence of vectors

µ1, µ2, . . . , µ` ∈ {ur,s | 0 ≤ r ≤ i and 1 ≤ s ≤ k} (1)

and

ν1, ν2, . . . , ν` ∈ {vr,s | 0 ≤ r ≤ i and 1 ≤ s ≤ k} (2)

such that the following properties are satisfied at the end of
each stage of the Lanczos phase:

• Invariant #2: For 1 ≤ r, s ≤ `, µTr · νs = 1 if r = s
and µTr · νs = 0 otherwise.

Henceforth we will say that a vector ur,s (respectively,
vr,s) is matched if ur,s ∈ {µ1, µ2, . . . , µ`} (respectively, if
νr,s ∈ {ν1, ν2, . . . , ν`}), and we will say that ur,s (respec-
tively, vr,s) is unmatched, otherwise. The following addi-
tional invariants should be satisfied at the end of each stage
of the Lanczos phase as well.

• Invariant #3: If 0 ≤ r ≤ i, 1 ≤ s ≤ k, and ur,s is
unmatched, then uTr,s · νt = 0 for 1 ≤ t ≤ `, and if
0 ≤ r′ ≤ i, 1 ≤ s′ ≤ k, and vr′,s′ is unmatched, then
µTt · vr′,s′ = 0 for 1 ≤ t ≤ ` as well.

• Invariant #4: If 0 ≤ r, r′ ≤ i, 1 ≤ s, s′ ≤ k, and ur,s
and vr′,s′ are both unmatched, then uTr,s · vr′,s′ = 0.

The next property concerns a positive integer ∆n,k de-
pending only on the order n of the input matrix and the
block size k in use. The Lanczos phase will be terminated
at the end of the first stage where the following property
does not hold.

• Invariant #5: If i ≥ ∆n,k then the vectors ur,s and vr,s
are both matched, for all r and s such that 0 ≤ r ≤
i−∆n,k and 1 ≤ s ≤ k.

A final pair of invariants are needed for a version of this
algorithm that solves a linear system. The first of these
concerns an additional set of vectors wr,s ∈ Fn×1

q , for 0 ≤
r ≤ i and 1 ≤ s ≤ k, that will be maintained.

• Invariant #6 : vr,s = A · wr,s for all integers r and s
such that 0 ≤ r ≤ i and 1 ≤ s ≤ k.



The second concerns four vectors σ,w, χ, ρ ∈ Fn×1
q :

• Invariant #7 : σ = A ·w+ b, χ is a linear combination
of ν1, ν2, . . . , ν`, µ

T
r · A · χ = µTr · σ for 1 ≤ r ≤ `, and

A · χ+ ρ = σ.

The bulk of the processing during the Lanczos phase con-
cerns matching and orthogonalization steps.

In a matching step, one begins with a subset û1, û2, . . . , ûa
of the currently unmatched vectors ur,s as well as a sub-
set v̂1, v̂2, . . . , v̂b of the currently unmatched vectors vr,s —
along with corresponding vectors ŵ1, ŵ2, . . . , ŵb from the set
of vectors wr,s such that A · ŵt = v̂t for 1 ≤ t ≤ b.

One then — by some means — determines the rank r of
the Hankel matrix

H =
[
û1û2 . . . ûa

]T · [v̂1v̂2 . . . v̂b
]
∈ Fa×bq (3)

as well as integer indices σ1, σ2, . . . , σr such that 1 ≤ σ1 <
σ2 < · · · < σr ≤ a, and integer indices τ1, τ2, . . . , τr such
that 1 ≤ τ1 < τ2 < · · · < τr ≤ b, and where the matrix

H~σ,~τ =
[
ûσ1 ûσ2 . . . ûσr

]T · [v̂τ1 v̂τ2 . . . v̂τr ] ∈ Fr×rq

is a maximal nonsingular submatrix of H. To continue one
somehow finds a pair of invertible matrices XL, XR ∈ Fr×rq

such that XR ·XL = H−1
~σ,~τ . Now one should set

ML :=
[
ûσ1 ûσ2 . . . ûσr

]
·XT

L (4)

— updating the values of ûσ1 , ûσ2 , . . . , ûσr to be the corre-
sponding columns of ML in the process — set

MR :=
[
v̂τ1 v̂τ2 . . . v̂τr

]
·XR (5)

and, finally, set

Mpre
R :=

[
ŵτ1 ŵτ2 . . . ŵτr

]
·XR (6)

— updating the values of v̂τ1 , v̂τ2 , . . . v̂τr (respectively, the
values of ŵτ1 , ŵτ2 , . . . , ŵτr ) to be the corresponding columns
of MR (respectively, Mpre

R ) in the process.
Following these updates

MT
L · MR ·XL = XL ·H~σ,~τ ·XR ·XL = XL

since XR · XL = H−1
~σ,~τ — and, since XL is a nonsingular

matrix, MT
L · MR = Ir. The vector ûσs has now been

“matched” with the vector v̂σs , for 1 ≤ s ≤ r, so that the
sequences at lines (1) and (2) can be extended by setting
µ`+s (respectively, ν`+s) to be ûσs (respectively, v̂τs) for
1 ≤ s ≤ r and adding r to the value of `.

With that noted, the next set of operations are required:
For D :=MT

L · (A · w + b), one should now set

ρ := ρ−MR ·D and χ := χ+Mpre
R ·D

in order to ensure that Invariant #7 is satisfied after these
modifications if it was satisfied before them.

Note. In order to reduce running time, storage space, or
rely upon existence code, one might also consider versions of
these updates that also modify unmatched vectors ûs or v̂t,
for 1 ≤ s ≤ a or 1 ≤ t ≤ b. If the vector spaces spanned
by the vectors ûs for 1 ≤ s ≤ a (respectively, v̂t for 1 ≤ t ≤
b) are unchanged by these updates, and if Invariant #6 is
preserved, then the claims in the rest of this report will still
be correct and provable, in essentially the same way, even if
such an alternative “matching” step is used.

One also needs a pair of orthogonalization steps. For
a “left orthogonalization step,” one requires an integer se-
quence γ1, γ2, . . . , γt ≤ ` such that

1 ≤ γ1 < γ2 < · · · < γt ≤ `

and one sets matricesML,MR,Mpre
R ∈ Fn×tq to be the ma-

trices with columns µγ1 , µγ2 , . . . , µγt , νγ1 , νγ2 , . . . , νγt and
ωγ1 , ωγ2 , . . . , ωγt respectively, where ωγi = wr,s if νγi = vr,s,
so that A·ωγi = νγi for 1 ≤ i ≤ t. Given a set û1, û2, . . . , ûm
of the set of vectors ur,s, set Û ∈ Fn×mq to be the matrix
with columns û1, û2, . . . , ûm. Now the update

Û := Û −ML ·D for D =MT
R · Û ∈ Ft×mq (7)

(with corresponding updates to û1, û2, . . . , ûm) is sufficient
to ensure that ûTr · νγs = 0 for 1 ≤ r ≤ m and 1 ≤ s ≤ t.

For a “right orthogonalization step,” let γ1, γ2, . . . , γt and
matrices ML,MR,Mpre

R ∈ Fn×tq be as above. Given a set
v̂1, v̂2, . . . , v̂m of the vectors vr,s, and vectors ŵ1, ŵ2, . . . , ŵm
such that A · ŵr = v̂r for 1 ≤ r ≤ m, set V̂ and Ŵ to
be the matrices in Fn×mq with columns v̂1, v̂2, . . . , v̂m and
ŵ1, ŵ2, . . . , ŵm respectively. Now the updates

V̂ := V̂ −MR ·D and Ŵ := Ŵ −Mpre
R ·D

for D =MT
L · V̂ ∈ Ft×mq (8)

(with updates to v̂1, v̂2, . . . , v̂m and ŵ1, ŵ2, . . . , ŵm) ensure
that µTγr ·v̂s = 0 and A·ŵs = v̂s for 1 ≤ r ≤ t and 1 ≤ s ≤ m.

Stage 0 : To begin one should set ` = 0, χ = 0, σ =
ρ = A · w + b, and one should initialize vectors by set-
ting u0,s to be us, setting w0,s to be ws, and setting v0,s to
be A · ws for 1 ≤ s ≤ k. One should continue by match-
ing u0,1, u0,2, . . . , u0,k with v0,1, v0,2, . . . , v0,k as described
above. For this first stage, all matched vectors should be
orthogonalized against all unmatched vectors. That is, one
should perform left and right orthogonalizations with t = `
and γr = r for 1 ≤ r ≤ t, setting û1, û2, . . . , ûm (respectively,
v̂1, v̂2, . . . , v̂m) to be the set of all vectors u0,r (respectively,
v0,r) that were not matched during the initial matching step.

Stage i, for i ≥ 1: Each later stage should begin by ap-
plying A or AT as an operator:

ui,s := AT · ui−1,s, vi,s : A · vi−1,s and wi,s := vi−1,s (9)

for each integer s such that 1 ≤ s ≤ k
Now, while it is necessary to apply orthogonalization steps

similar to the ones at lines (7) and (8) in order to establish
Invariant #3 once again, Invariant #5 serves to limit the
number of these that are required.

Lemma 2.1. Suppose there are at least i+ 1 stages of the
Lanczos phase of the algorithm, and Invariant #5 is satisfied
at the end of each of the first i stages. Then, at the beginning
of stage i (that is, the i+ 1st stage),

(AT · ui−1,s) · νt = µTt · (A · vi−1,s) = 0

for 1 ≤ s ≤ k and for every integer t such that 1 ≤ t ≤ `
and either µt = ug,h or νt = vg,h for integers g and h such
that 0 ≤ g ≤ i− 2 ·∆n,k − 3 and 1 ≤ h ≤ k.

Consequently, in order to re-establish Invariant #3 it now
suffices to employ updates as shown at lines (7) and (8),
above, where t = k, ûr = ui,r and v̂r = vi,r for 1 ≤ r ≤ k
and where matched vectors µa and νa such that µa = uc,d



and νa = vc′,d′ such that i − 2 · ∆n,k − 2 ≤ c, c′ ≤ i and
1 ≤ d, d′ ≤ k.

Indeed, these are the only matched vectors that will be
needed after this point in the computation. Consequently, if
all other matched vectors are deleted at this point a circular
queue (of arrays) can be used to store all of the vectors ur,s,
vr,s and wr,s that might still be needed, a circular queue (of
linked lists) can be used to maintain the indices of currently
unmatched vectors, and a linked list (whose length will not
exceed (2 ·∆n,k + 3) · k) can be used to store the indices of
pairs of matched vectors that are still required.

This stage should continue with a process of pairing (and
“matching”) previously unmatched vectors ur,s and vr′,s′ in
order to extend the sequences at lines (1) and (2). It turns
out that a simple “greedy” strategy will suffice (and, this the
primary algorithmic contribution here): Whenever possible,
“older” vectors should be matched before “newer” ones.

In particular, since Invariant #5 was satisfied at the end
of stage i − 1 the only unmatched vectors at the beginning
of stage i are vectors ur,s and vr,s such that i−∆n,k ≤ r ≤ i
and 1 ≤ s ≤ k. The matching process should include a
sequence of rounds 1, 2, 3, . . . , 2 ·∆n,k + 1, as follows.

• Round 2j + 1, for 0 ≤ j ≤ ∆n,k − 1: The unmatched
vectors ui−∆n,k+j,r such that 1 ≤ r ≤ k are matched
with the unmatched vectors vi,s such that 1 ≤ s ≤ k,
in order to obtain additional pairs of matched vectors.
A left orthogonalization step is carried out using the
newly matched vectors and all (still) unmatched vec-
tors ur,s such that i−∆n,k + j ≤ r ≤ i and 1 ≤ s ≤ k,
and a right orthogonalization step is carried out using
the newly matched vectors and all (still) unmatched
vectors vi,s such that 1 ≤ s ≤ k.

• Round 2j + 2, for 0 ≤ j ≤ ∆n,k − 1: The unmatched
vectors ui,r such that 1 ≤ r ≤ k are matched with the
unmatched vectors vi−∆n,k+j,s such that 1 ≤ s ≤ k,
in order to obtain additional pairs of matched vectors.
A left orthogonalization step is carried out using the
newly matched vectors and all (still) unmatched vec-
tors ui,s such that 1 ≤ s ≤ k, and a right orthogo-
nalization step is carried out using the newly matched
vectors and all (still) unmatched vectors vr,s such that
i−∆n,k + j ≤ r ≤ i and 1 ≤ s ≤ k.

• Round 2 ·∆n,k + 1: The unmatched vectors ui,r such
that 1 ≤ r ≤ k are matched with the unmatched vec-
tors vi,s such that 1 ≤ s ≤ k in order to obtain ad-
ditional pairs of matched vectors. A left orthogonal-
ization step is carried out using the newly matched
vectors and all (still) unmatched vectors ui,s such that
1 ≤ s ≤ k, and a right orthogonalization step is car-
ried out using the newly matched vectors and all (still)
unmatched vectors vi,s such that 1 ≤ s ≤ k.

Quite a few orthogonalization steps have been left out
above. Nevertheless, the following can be proved.

Lemma 2.2. Consider the updates of vectors ur,s and vr,s.
given above in stage i of the Lanczos phase for i ≥ 1.

(a) If j is an integer such that 0 ≤ j ≤ i− 1 then the sub-
space of Fn×1

q spanned by the set of vectors ur,s (re-
spectively, vr,s) such that 0 ≤ r ≤ j and 1 ≤ s ≤ k
is unchanged by the updates included in stage i of the
Lanczos phase.

(b) If h is an integer such that 0 ≤ h ≤ ∆n,k − 1, then the
only vectors whose values can be changed by updates,
after round 2h+2 of the Lanczos phase, are vectors ur,s
and vr,s such that i−∆n,k + h < r ≤ i and 1 ≤ s ≤ k.

(c) If the steps described above and Invariants #1–#5 were
satisfied before stage i of the Lanczos phase of the com-
putation then Invariants #1–#4 are satisfied at the
end of stage i as well.

2.3 Details of the Elimination Phase

2.3.1 Objectives and Invariants
The computation will end with an “elimination phase”

which will also proceed in a series of stages. The follow-
ing data is accumulated:

• A sequence of vectors

λ1, λ2, . . . , λm ∈ Fn×1
q , (10)

will be stored as the columns of a matrix Mλ ∈ Fn×mq .

• Another sequence of vectors of the same length m
κ1, κ2, . . . , κm ∈ Fn×1

q such that A · κr = λr for 1 ≤
r ≤ m. These will be stored as the columns of a ma-
trix Mκ ∈ Fn×mq such that A ·Mκ = Mλ.

• A permutation matrix P ∈ Fn×nq will be maintained.

• Another sequence of vectors

ϕ1, ϕ2, . . . , ϕg ∈ Fn×1
q , (11)

will be stored as the columns of a matrix Mϕ ∈ Fn×gq .

The following properties will be satisfied at the end of
stage j of the elimination phase (for j ≥ 0) if j + 1 or more
stages are included in the computation — assuming that the
Lanczos phase ended with stage i.

• Invariant #8: The vectors ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm
span the same subspace of Fn×1

q as the vectors Aavb
such that 1 ≤ a ≤ i+ j and 1 ≤ b ≤ k.

• Invariant #9: µTr · λs = 0 for all integers r and s such
that 1 ≤ r ≤ ` and 1 ≤ s ≤ m.

• Invariant #10:

P ·Mλ =

[
Lλ
Xλ

]
(12)

for a lower triangular matrix Lλ ∈ Fm×mq with ones on

its diagonal and for a matrix Xλ ∈ F
(n−m)×m
q .

• Invariant #11: The vectors ϕ1, ϕ2, . . . , ϕg are linearly
independent and the sequence of vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm,

A · ϕ1, A · ϕ2, . . . , A · ϕg

span the same subspace of Fn×1
q as the vectors Aavb

such that 0 ≤ a ≤ i+ j + 1 and 1 ≤ b ≤ k.

Another pair of invariants are needed for a version of the
algorithm that solves a linear system.

• Invariant #12 : A ·Mκ = Mλ.



• Invariant #13: A · χ+ ρ = A · w + b. Furthermore, χ
is a linear combination of

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm,

µTh ·A · χ = µTh · (A · w + b) for 1 ≤ h ≤ `, and if

P · ρ =
[
ρ1ρ2 . . . ρn

]T ∈ Fn×1
q

for P as shown at line (12) then ρt = 0 for 1 ≤ t ≤ m.

The algorithm will continue until g = 0 (so that the se-
quence of vectors shown at line (11), above is empty) at the
end of a stage.

2.3.2 Details of Stages
The stages will also maintain a pair of matrices Mnew ∈

Fn×rq and Mpre
new ∈ Fn×rq such that A · Mpre

new = Mnew ; the
following operations will be performed.

• An orthogonalization step: Performing a right or-
thogonalization step, with the matricesML,MR and
Mpre

R from the final stage of the Lanczos phase and us-

ingMnew andMpre
new as the matrices V̂ and Ŵ , respec-

tively (in updates at line (8)), will suffice to ensure that
the columns ofMnew are orthogonal to µ1, µ2, . . . , µ`.

• An elimination step will also be needed: If

P · Mnew =

[
Y
Z

]
for Y ∈ Fm×rq and Z ∈ F

(n−m)×r
q , then performing the

updates

Mnew :=Mnew −Mλ · L−1
λ · Y

and

Mpre
new :=Mpre

new −Mκ · L−1
λ · Y

will suffice to ensure that

P · Mnew =

[
0m×h
M̂new

]
for a matrix M̂new ∈ F

(n−m)×h
q .

• In a compression step one should determine the rank s

of the above matrix M̂new as well as a matrixX ∈ Fr×sq

such that M̂new · X ∈ F
(n−m)×s
q has rank s as well.

Matrices should be updated by setting

Mnew :=Mnew ·X and Mpre
new :=Mpre

new ·X

(effectively replacing M̂new with M̂new ·X as well and
setting r to be s).

• In a triangularization step one should compute a

permutation matrix P̂ ∈ F
(n−m)×(n−m)
q , a lower trian-

gular matrix L̂ ∈ F
(n−m)×r
q with ones on the diagonal,

and a nonsingular upper triangular matrix Û ∈ Fr×rq ,

such that M̂new = P̂ · L̂ · Û . Another pair of updates

Mnew :=Mnew · Û−1 and M̂new := M̂new · Û−1

effectively replaces M̂new with P̂ · L̂.

• Suppose next that L̃ ∈ Fr×rq consists of the top r rows

of the above matrix L̂, so that L̃ is a nonsingular lower
triangular matrix with ones on its diagonal and recall
that, by invariant #13, above,

P · ρ =

[
0m
ρ̂

]
for a vector ρ ∈ F

(n−m)×1
q . Set ρ̂1 ∈ Fr×1

q to be the

vector containing the top r entries of P̂T · ρ̂. Then, in
a solution step, one should update ρ and χ by setting

ρ := ρ−Mnew · L̃−1 · ρ̂1 and χ := χ+Mpre
new L̃

−1 · ρ̂1.

• Finally, in an update step, another pair of updates
should be performed:

P := P ·
[
Im 0

0 P̂T

]
and Mϕ :=Mnew ,

and the columns of Mnew and Mpre
new should be ap-

pended to the matrices Mλ and Mκ respectively.

Stage 0: Initially m = 0, and P is the identity matrix.
Set Mnew and Mpre

new to include as columns all vectors vr,s
(respectively, wr,s) such that 0 ≤ r ≤ i − 1, 1 ≤ s ≤ k,
and vr,s was unmatched at the end of the final stage of the
Lanczos phase. The compression, triangularization, solution
and update steps should be carried out — and all columns
of Mϕ removed.

The vectors vi,s (and, respectively, wi,s) such that 1 ≤
s ≤ k and vi,s was unmatched at the end of stage i of the
Lanczos phase should then be used as the initial columns
of Mnew (respectively, Mpre

new ). The elimination, compres-
sion, triangularization, solution and update steps should be
carried out. Finally, the vectors vi,s′ such that 1 ≤ s′ ≤ k
and vi,s′ was matched at the end of stage i should be ap-
pended as columns of Mϕ as well.

Stage j for j ≥ 1: The matrices Mnew and Mpre
new should

be initialized to be A ·Mϕ and Mϕ, respectively. The or-
thogonalization, elimination, compression, triangularization,
solution and update steps should be carried out.

As noted above, this phase of the algorithm will end as
soon as g = 0 at the end of a stage. Following this, one
should check whether ρ = 0. If it is, then χ − w can be
returned a solution for the system Ax = b. Otherwise, a
solution has not been found and, indeed, no vector χ such
that A · χ = A · w + b is contained in KS~v.

2.4 Correctness and Efficiency

Theorem 2.3. If the above algorithm is executed then, on
termination, the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm (13)

form a basis for the Krylov space KS~v and either a vector
x ∈ Fn×1

q such that A · x = b has returned, or KS~v does not
include any vector χ such that A · χ = A · w + b and it has
been reported that a solution has not been found.

Theorem 2.4. Suppose that KS~v has dimension d = `+
m. Then the above algorithm can be applied to produce a
basis as shown at line (13) using the selection of 2k vectors
uniformly and independently from Fn×1

q , at most d+(∆n,k+
2)k+1 multiplications of A by vectors, at most d+(∆n,k+1)k



multiplications of AT by vectors, O(d(∆n,k · k)2n + (m +
∆n,k)mn) additional operations over Fq and space required
to store O(mn+ ∆n,k · kn) elements of Fq.

It follows that if both ∆n,k · k and the length of elimina-
tion phase is reasonably short (so that m is as well) then this
algorithm is asymptotically efficient. We will be considering
cases where ∆n,k ·k,m ∈ O(logn) — in which case it follows
by the above that the algorithm requires d + O(logn) mul-
tiplications of A and AT by vectors, O(dn log2 n) additional
operations over Fq, and space required to store O(n logn)
elements of Fq.

2.5 Matrices of Interest
For a positive integer kL, vectors ~u = u1, u2, . . . , ukL ∈

Fn×1
q , and a positive integer r, let K̂A,~u,r ∈ Fn×rkLq be the

matrix with columns

u1, A
T · u1, (AT )2 · u1, . . . , (AT )r−1 · u1,

u2, A
T · u2, (AT )2 · u2, . . . , (AT )r−1 · u2,

. . . ukL , A
T · ukL , (AT )2 · ukL , . . . , (AT )r−1 · ukL

— that is, the vectors (AT )huj h and j such that 0 ≤ h ≤ r−
1 and 1 ≤ j ≤ kL. Similarly, for positive integers kR and s,
and vectors ~v = v1, v2, . . . , vkR ∈ Fn×1

q , let KA,~v,s ∈ Fn×skRq

be the matrix with columns

v1, A · v1, A
2 · v1, . . . , A

s−1 · v1,

v2, A · v2, A
2 · v2, . . . , A

s−1 · v2,

. . . vkR , A · vkR , A
2 · vkR , . . . , A

s−1 · vkR

— that is, the vectors Ahvj for h and j such that 0 ≤ h ≤ s−
1 and 1 ≤ j ≤ kR. Finally, for positive integers kL and kR,
vectors u1, u2, . . . , ukL ∈ Fn×1

q and v1, v2, . . . , vkR ∈ Fn×1
q ,

and positive integers r and s, let

HA,~u,~v,r,s = K̂TA,~u,r · KA,~v,s ∈ FrkL×skRq . (14)

This is a block Hankel matrix; in particular, it has the form
H1,1 H1,2 . . . H1,kR

H2,1 H2,2 . . . H2,kR

...
...

. . .
...

HkL,1 HkL,2 . . . HkL,kR


where each submatrix Ha,b is an r × s Hankel matrix: For
1 ≤ c ≤ r and 1 ≤ d ≤ s, its entry in row c and column d is
the value αc+d−2, where αt = uTa ·At ·vb. for 0 ≤ t ≤ r+s−2.

It suffices to consider the case that kL = kR = k in order
to analyze the algorithm given here.

Lemma 2.5. Let k be a positive integer and let

~u = u1, u2, . . . , uk,∈ Fn×1
q and ~v = v1, v2, . . . , vk ∈ Fn×1

q .

If i ≥ ∆n,k−1 and HA,~u,~v,a,a+∆n,k and HA,~u,~v,a+∆n,k,a each
have maximal rank ak for 0 ≤ a ≤ i−∆n,k + 1 then Invari-
ant #5 is satisfied at the end of each of the first i stages of
the Lanczos phase of the computation, (so that there will be
at least i+ 1 stages in the Lanczos phase).

Note: It will generally be clear that the input matrix A ∈
Fn×nq has been used to define the above matrices K̂A,~u,r,
KA,~v,t, and HA,~u,~v,s,t — so they will generally be denoted

more succinctly as K̂~u,s, K~v,t, and H~u,~v,s,t respectively.

3. A USEFUL MATRIX NORMAL FORM
Let f = xd +αd−1x

d−1 +αd−2x
d−2 + · · ·+α0 be a monic

polynomial with degree d in Fq[x]. Then the companion
matrix of f is the d × d matrix Cf with a one below the
diagonal and zeroes elsewhere in the first d− 1 columns and
whose final column is[

−α0 − α1 − α2 . . . − αd−1

]T
.

it is well-known that the minimal polynomial and charac-
teristic polynomial of Cf are both equal to f . Every ma-
trix A ∈ Fn×nq is similar to a unique block-diagonal matrix
C~f = Cf1,f2,...,f` ∈ Fn×nq whose diagonal blocks are com-
panion matrices Cf1 , Cf2 , . . . , Cf` for monic polynomials

f1, f2, . . . , f` ∈ Fq[x]

such that fi is divisible by fi+1 in Fq[x] for 1 ≤ i ≤ ` − 1.
The polynomials f1, f2, . . . , f` are called the invariant fac-
tors of A (so that, in particular, fi will be called the “ith

invariant factor” of A for 1 ≤ i ≤ `) and these are also
unique. For a proof of the uniqueness of both the Frobe-
nius normal form and the invariant factors see, for example,
Gantmacher [6] (who refers to the above matrix Cf1,f2,...,f`
as the “first natural normal form of A,” instead).

We will say that“A has ` invariant factors” if its Frobenius
normal form is as described above. We will say that “A has
h nontrivial invariant factors” if h ≤ ` and fh 6= x = fh+1 =
fh+2 = · · · = f`.

4. EXPONENTIAL NULLITY
Consider a matrix B ∈ Fs×tq . Let us define the left ex-

ponential nullity of B, xnullL(B), to be the number of vec-
tors x ∈ Fs×1

q such that xT ·B = 0, and the right exponential
nullity of B, xnullR(B), to be the number of vectors y ∈ Ft×1

q

such that B · y = 0.
It is easily shown that if B has rank r then xnullL(B) =

qs−r and xnull(B) = qt−r — so that the left and right expo-
nential nullifies are the same if s = t. We will call this com-
mon value the exponential nullity and denote it as xnull(B)
in this case.

While this notation was not used, various properties of
exponential nullities, including one similar to the following,
were explored in the report [5].

Lemma 4.1. Let A ∈ Fn×nq , s, t ≥ 1, and consider the ma-

trix H = Hk,~u,~v,s,t ∈ Fsk×tkq where vectors ~u = u1, u2, . . . , uk
and ~w = w,w2, w3, . . . , wk are chosen uniformly and in-
dependently from Fn×1

q , w1 = A · w + b, vh = A · wh for
1 ≤ h ≤ k, and ~v = v1, v2, . . . , vk.

Then, if r is an integer such that 0 ≤ r ≤ min(s, t) then
the probability that the rank of the above matrix is less than
or equal to r is less than or equal to each of E[xnullL(H)]/qs−r

and E[xnullR(H)]/qt−r.
Furthermore, if s ≤ t then the probability that the rank of

this matrix ls less than s is at most (E[xnullL(H)]−1)/(q−1)
and, if t ≤ s then the probability that the rank of this matrix
is less than t is at most (E[xnullR(H)]− 1)/(q − 1).

Claims about the expected performance of the algorithm
described in Section 2 will be established by bounding the
expected value of the left or right exponential nullity of ma-
trices Hk,~u,~v,s,t, where either s = t + ∆n,k or t = s + ∆n,k,
and applying the above lemma along with Lemma 2.5.



A second (new) technical lemma will also be of use in
explaining the behaviour of the algorithm presented in Sec-
tion 2 and, indeed, a variety of other Krylov-based algo-
rithms that are presently under development.

Lemma 4.2. Let A ∈ Fn×nq , s, t ≥ 1, and consider the ma-

trix H = Hk,~u,~v,s,t ∈ Fsk×tkq where vectors ~u = u1, u2, . . . , uk
and ~w = w,w2, w3, . . . , wk are chosen uniformly and inde-
pendently from Fn×1

q , w1 = A ·w, vh = A ·wh for 1 ≤ h ≤ k,
and ~v = v1, v2, . . . , vk.

If another matrix W ∈ Fsk×tkq is selected (from some sub-

set of Fsk×tkq ) independently from the above vectors ~u and ~w,
then the expected value of the left exponential nullity of the
matrix H + W is less than or equal to that of H, and the
expected value of the right exponential nullity of H + W is
less than or equal to that of H as well.

Question: Is there a similar provable result that relates
the expected values of the (left or right) nullities of matri-
ces H and H + W , for H and W as above? It seems likely
that a result along these lines could establish the efficiency of
the algorithm of Section 2 without any assumptions about
the input matrix A at all. Unfortunately, the techniques
used to prove Lemma 4.2 do not seem to be applicable when
“nullites” are considered instead of “exponential nullities.”

5. MATRICES FOR WHICH BREAKDOWN
IS PROVABLY UNLIKELY

The reliability of a block Lanczos algorithm using block
size k, when applied to a matrix A ∈ Fn×nq such that the
number h of nontrivial invariant factors is less than k, was
first established by Bradford Hovinen in his Master’s The-
sis [7]. One can also establish this by bounding the ex-
ponential nullities of the associated matrices considered in
Lemma 2.5, above. The following is a reasonably straight-
forward extension of bounds presented in [5].

Lemma 5.1. Suppose that vectors

u1, u2, . . . , uk, w, w2, w3, . . . , wk

are chosen uniformly and independently from Fn×1
q , and that

w1 = A · w + b, and that va = A · wa for 1 ≤ a ≤ h. Let
~u = u1, u2, . . . , uk and ~v = v1, v2, . . . , vk.

Suppose, as well, that A has h nontrivial invariant factors,
for h ≤ k − 1, and let r be the rank of A.

Then if a is an integer such that 1 ≤ a ≤ br/kc−∆n,k−1,

E[xnullL(H~u,~v,a,a+∆n,k )]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

and

E[xnullR(H~u,~v,a+∆n,k,a)]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

as well, where

f(h, k) =


6 · logq n if k = h+ 1,

4 if k = h+ 2,

1 + 2qh−k+1 if k ≥ h+ 3.

Let c > 0; then (assuming that k ≥ 2), if

∆n,k ≥ d((1 + c) logq n+ 2 logq logq n+ 7)/ke (15)

then

q(∆n,k−2)k ≥ 32n1+c log2
q n

≥ n1+c · (f(h, k) + f(h, k)2 · q1−k)

implying that the expected values of xnullL(H~u,~v,a,a+∆n,k )

and xnullR(H~u,~v,a+∆n,k ) are each at most 1+n−(c+1). Now,
it follows by the inequalities at the end of Lemma 4.1 that
the probability that either of the matrices H~u,~v,a,a+∆n,k or

H~u,~v,a+∆n,k,a is rank-deficient is at most 2n−(1+c).
Summing failure probabilities, one can establish that there

are at least br/kc − 1 stages of the Lanczos phase of the
algorithm with probability at least 1 − 2n−c. In this case
` ≥ (br/kc−∆n,k−2)·k ≥ r−(∆n,k+3)k (since Invariant #5
was satisfied at the end of stage bn/kc − 3), so that m ≤
r− ` ≤ (∆n,k + 3) · k ∈ O(logn). It follows by Theorem 2.4
and the remarks following it that, with high probability, the
algorithm is efficient in this case.

6. BREAKDOWN IS NOT EARLY
Something positive can also be said about the performance

of the algorithm when it is applied to certain matrices with
k or more nontrivial invariant factors: Suppose the first k
invariant factors are f1, f2, . . . , fk, let

r1 =

{
deg(f1) if x does not divide f1,

deg(f1)− 1 otherwise,
(16)

and, for 2 ≤ s ≤ k, let

rs =

{
rs−1 + deg(fs) if x does not divide fs,

rs−1 + deg(fs)− 1 otherwise.
(17)

If ~v = v1, v2, . . . , vk is as described in previous sections then
the dimension of the Krylov space KS~v is at most rk.

Let h be an integer such that 1 ≤ h ≤ k − 1. Then it is
possible express A as a sum A = A1 +A2 for A1, A2 ∈ Fn×nq

such that A1 · A2 = A2 · A1 = 0 and A1 has h nontrivial
invariant factors f1, f2, . . . , fh.

Furthermore, it turns out that if the vectors

u1, u2, . . . , uk, w, w2, w3, . . . , wk

are chosen uniformly and independently from Fn×1
q , w1 =

A · w + b, va = A · wa, ya = A1 · wa za = A2 · wa for
1 ≤ a ≤ k, ~y = y1, y2, . . . , yk and ~z = z1, z2, . . . , zk then

HA,~u,~vs,t = HA1,~u,~y,s,t +HA2,~u,~z,s,t (18)

and, furthermore, the matrices HA1,~u,~y,s,t and HA2,~u,~z,s,t

are independently distributed. This can be used, along with
Lemmas 4.2 and 5.1, to establish the following.

Lemma 6.1. Suppose that the vectors u1, u2, . . . , uk and
w,w2, w3, . . . , wk are chosen uniformly and independently
from Fn×1

q , that w1 = A · w + b, and that va = A · wa for
1 ≤ a ≤ k. Let ~u = u1, u2, . . . , uk and ~v = v1, v2, . . . , vk.
Suppose that A has k or ore nontrivial invariant factors,
that the first k invariant factors are f1, f2, . . . , fk, and that
r1, r2, . . . , rk are as defined at lines (16) and (17).

Let h be an integer such that 1 ≤ h ≤ k− 1. Then, if a is
an integer such that 1 ≤ a ≤ brh/kc −∆n,k − 1,

E[xnullL(H~u,~v,a,a+∆n,k )]

≤ 1 + q(2−∆n,k)·k · (f(h, k) + f(h, k)2 · q1−k)



and

E[xnullR(H~u,~v,a+∆n,k,a)]

≤ 1 + q(2−∆n,k)·k · (f(h, k) + f(h, k)2 · q1−k)

as well, where f(h, k) is as given in Lemma 5.1.

Summing failure probabilities one can establish that there
are at most brk−1/kc − 1 stages of the Lanczos phase with
probability at least 1−2n−c, if ∆n,k is as shown at line (15),
above. In this case ` ≥ rk−1 − (∆n,k + 3)k at the end of the
Lanczos phase, so that

m ≤ rk − rk−1 + (∆n,k + 3)k ≤ deg(fk) + (∆n,k + 3)k.

It follows that, with high probability, the algorithm is also
efficient if the input matrix has k or more nontrivial invariant
factors but the degree of the kth invariant factor is small.
In particular, the asymptotic bound on performance match
those given in the remark following Theorem 2.4, above.

7. FUTURE DIRECTIONS
While the design of the algorithm described in Section 2

is now complete, an implementation is not yet available.
Variants of the algorithm might merit consideration. For

example, one might continue a modified Lanczos phase after
Invariant #5 is violated by looking for linear dependencies
in the set of vectors ur,s (respectively, vr,s and reducing the
block size on the left or right accordingly. It is possible that
such an algorithm would have better expected performance
on arbitrary input matrices A ∈ Fn×nq than the one pre-
sented here. That noted, it seems unlikely that either the
description of such an algorithm or its analysis would be
“simple.”

It is also possible that the rectangular block Lanczos algo-
rithm of [3] can now be improved by removing unnecessary
orthogonalizations in light of the analysis of the algorithm
outlined above.

It seems likely that the results of Section 6 can be ex-
tended. In particular, it appears that the length of the elim-
ination phase (and value of m) is also logarithmic in n, with
high probability, if the the kth invariant factor has high de-
gree but has a small number of distinct irreducible factors
in Fq[x] A proof of this is in progress.

Unfortunately the techniques used here are of little help
in other cases — the bounds that one can obtain for the
expected “exponential nullities” of matrices, when the kth

invariant factor is an arbitrary matrix in Fq[x], are too high
to be of value. It is also possible (and provable) that ma-
trices Cf1,f2,...,fk such that f1 = f2 = · · · = fk = f , for an
arbitrary polynomial f ∈ Fq[x] with degree at most n/k, are
a “hardest case” here — that is, if the algorithm’s perfor-
mance on such matrices is good with high probability then
it will also work well on arbitrary matrices A ∈ Fn×nq . An
attempt to develop a more precise statement along the above
lines and prove it is also in progress.

All that said, there is also the question of whether condi-
tioning is required, at all, when one wishes to use a block
Lanczos algorithm — or block Wiedemann algorithm incor-
porating some form of “early termination” — to solve a sys-
tem of linear equations, when the minimal polynomial of the
input matrix is not divisible by x2, or to obtain a nonzero ele-
ment of the null space of a singular input matrix. I presently
suspect that conditioning is not needed here, but (to my
knowledge) the question remains open.

8. REFERENCES
[1] D. Coppersmith. Solving linear equations over GF(2):

Block Lanczos algorithm. Linear Algebra and Its
Applications, 192:33–60, 1993.

[2] D. Coppersmith. Solving homogenous linear equations
over GF(2) via block Wiedemann algorithm.
Mathematics of Computation, 62:333–350, 1994.

[3] W. Eberly. Yet another block Lanczos algorithm: How
to simplify the computation and reduce reliance on
preconditioners in the small field case. In Proceedings,
2010 International Symposium on Symbolic and
Algebraic Computation, pages 289–296, 2010.

[4] W. Eberly. Sparse matrix computations over small
finite fields: A simpler block Lanczos algorithm and
its analysis. Technical Report 2013–1036–03,
Department of Computer Science, University of
Calgary, 2013. Available online at http://www.cpsc.

ucalgary.ca/~eberly/simple_lanczos.pdf.

[5] W. Eberly and B. Hovinen. Bounding the nullities of
random block Hankel matrices: An alternative
approach. Technical Report 2005–779–10, Department
of Computer Science, University of Calgary, 2005.
Available online at http://www.cpsc.ucalgary.ca/

~eberly/block_termination_report.pdf.

[6] F. R. Gantmacher. The Theory of Matrices, volume
one. Chelsea Publishing Company, second edition,
1959.

[7] B. Hovinen. Blocked Lanczos-style algorithms over
small finite fields. Master’s thesis, University of
Waterloo, 2004.

[8] B. Hovinen and W. Eberly. A reliable block Lanczos
algorithm over small finite fields. In Proceedings, 2005
International Symposium on Symbolic and Algebraic
Computation, pages 177–184, 2005.

[9] E. Kaltofen. Analysis of Coppersmith’s block
Wiedemann algorithm for the parallel solution of
sparse linear systems. Mathematics of Computation,
64:777–806, 1995.

[10] P. Montgomery. A block Lanczos algorithm for finding
dependences over GF(2). In Lecture Notes in
Computer Science, volume 921, pages 106–120.
Springer-Verlag, 1995.

[11] G. Villard. A study of Ccoppersmith’s block
Wiedemann algorithm using matrix polynomials.
Technical Report 975, LMC-IMAG, 1997.

[12] D. Wiedemann. Solving sparse linear equations over
finite fields. IEEE Transactions on Information
Theory, 33:54–62, 1986.

APPENDIX
A. DETAILS OF THE ALGORITHM

I regret that I have yet to discover and provide a succinct
proof of the correctness of a “block Lanczos algorithm.”

With that noted, Lemma A.4 really is “key” to this and
worth consideration as time allows: It is used to establish
Lemma A.5–A.7, which establish that the orthogonalizations
used in the initialization of vectors ui,s and vi,s (for i ≥ 1)
are sufficient, Lemma A.12, which is useful in showing that
the orthogonalizations in matching rounds of the Lanczos
phase are adequate, Lemma A.24, which establishes that
Invariants #8 and 11 hold after each stage of the elimination



phase, and Lemmas A.31 and A.32, which imply Lemma 2.5.
Finally, I will apologize for any typographical errors and

poor writing found in these appendices. The online tech-
nical report [4] is currently just a copy of this submission,
including the appendices. While I do not intend to change
the first eight pages of this I hope to post one or more up-
dates that improve the appendices following the conference
submission deadline.

A.1 A More Detailed Description of the Lanc-
zos Phase

A.1.1 Data Structures
Once again, consider an integer i ≥ 0 such that the Lanc-

zos phase of the computation includes at least i + 1 stages
(ending with stage i). For 0 ≤ j ≤ i, let `j be the length `
of the sequences shown at lines (1) and (2) at the end of
stage j of the Lanczos phase of the algorithm.

The algorithm can be implemented to make use of the
following data structures.

• An array VL, with indices (r, s) such that 0 ≤ r ≤
2 · ∆n,k + 3 and 1 ≤ s ≤ k, can be used to store the
vectors ua,b that are currently required. In particular,
at the end of stage i of the Lanczos phase, ua,b will
be stored at location VL[a mod 2 ·∆n,k + 4, b] for all
integers a and b such that max(0, i−2·∆n,k−3) ≤ a ≤ i
and 1 ≤ b ≤ k.

• An array VR, with indices (r, s) such that 0 ≤ r ≤
2 ·∆n,k+3 and 1 ≤ s ≤ k, can be used to store the vec-
tors va,b that are currently required — and is organized
as described for VL above.

• An array VP , with indices (r, s) such that 0 ≤ r ≤
2 ·∆n,k+3 and 1 ≤ s ≤ k, can be used to store the vec-
tors wa,b that are currently required — and is organized
as described for VL, above, as well.

• A linked list M will store pairs of indices of “matched”
vectors. In particular, at the end of stage i, M will
include an entry ((r, s), (r′, s′)) whenever i−2 ·∆−3 ≤
r, r′ ≤ i, 1 ≤ s, s′ ≤ k, µh = ur,s and νh = vr′,s′ for an
integer h such that 1 ≤ h ≤ `.
• A pair of arrays UL and UR with indices r such that 0 ≤
r ≤ ∆n,k will be used to store the indices of unmatched
vectors. In particular, at the end of stage i the indices
of all unmatched vectors us,t (respectively, vs,t) such
that

max(0, i−∆n,k + 1) ≤ s ≤ i

will be stored on the linked list UL[s mod ∆n,k + 1] (re-
spectively, UR[s mod ∆n,k + 1]).

A.1.2 Two “Orthogonalization” Subroutines
A routine orthogL will be used perform updates as shown

at line (7). This routine receives the following inputs.

• A matrix ML ∈ Fn×mq whose columns are the vectors
µσ1 , µσ2 , . . . , µσm , for a nonnegative integer m ≤ `, and
for distinct integers σ1, σ2, . . . , σm such that 1 ≤ σa ≤ `
for 1 ≤ a ≤ m.

• A matrix MR ∈ Fn×mq whose columns are the vectors
νσ1 , µσ2 , . . . , νσm for the nonnegative integer m and in-
tegers σ1, σ2, . . . , σm as above.

• An integer h such that 0 ≤ hL ≤ ∆n,k + 1.

Pseudocode is as follows; to simplify this, vectors ur,s (re-
spectively, vr,s and wr,s) are named instead of their loca-
tions VL[r mod 2 ·∆n,k + 4, s] (VR[r mod 2 ·∆n,k + 4, s] and
VP [r mod 2 ·∆n,k + 4, s], respectively) in the data structures
that have been described above.

procedure orthogL(ML, MR, h)

1. Set t to be the length of the linked list UL[h] and, if
UL[h] has entries

(r, s1), (r, s2), . . . , (r, st),

set U ∈ Fn×tq to be the matrix with columns

ur,s1 , ur,s2 , . . . , ur,st .

2. if (m > 0 and t > 0) then
3. D :=MT

R · U ∈ Fm×tq

4. U := U −ML ·D
5. for 1 ≤ a ≤ t do
6. Set ur,sa to be column a of U

end for
end if

end procedure

Lemma A.1, below, follows by inspection of the code and
the fact that if Invariant #2 is satisfied thenMT

L ·MR = Im
so that, if D is as shown at line 3 above, then (before line 4)

(U −ML ·D)T · MR

= UT · MR −DT · (MT
L · MR)

= UT · MR −DT

= 0,

and

(ML ·D)T · νβ = DT · MT
L · νβ = 0

if 1 ≤ β ≤ ` and β /∈ {σ1, σ2, . . . , σm}.

Lemma A.1. Suppose that the procedure orthogL is exe-
cuted when Invariant #2 is satisfied and that the vectors ur,sa
are unmatched at the time when this procedure is called for
1 ≤ a ≤ t. Then, on termination,

uTr,sa · νσb = 0

for 1 ≤ a ≤ t and 1 ≤ b ≤ m. If β is an integer such that
≤ β ≤ ` and

β /∈ {σ1, σ2, . . . , σm},

then uTr,sa ·νβ = 0 on termination if and only if uTr,sa cot νβ =
0 when the procedure was executed as well. None of the
vectors ua,b or va,b (such that 0 ≤ a ≤ i and 1 ≤ b ≤ k)
except for the vectors ur,s1 , ur,s2 , . . . , ur,st are modified by
the execution of this procedure.

The procedure can be implemented to use O(mtn) opera-
tions over Fq using standard arithmetic.

A similar routine orthogR will be used to perform updates
as shown at line (8) while also ensuring that Invariant A,
above, remains satisfied. This routine receives the following
inputs.

• A matrix ML ∈ Fn×mq whose columns are the vectors
µσ1 , µσ2 , . . . , µσm , for a nonnegative integer m ≤ `, and
for distinct integers σ1, σ2, . . . , σm such that 1 ≤ σa ≤ `
for 1 ≤ a ≤ m.



• A matrix MR ∈ Fn×mq whose columns are the vectors
νσ1 , νσ2 , . . . , νσm for the nonnegative integer m and in-
tegers σ1, σ2, . . . , σm as above.

• A matrix Mpre
R ∈ Fn×mq whose columns are vectors

ωσ1 , ωσ2 , . . . , ωσm ∈ Fn×1
q

such that A · ωσa = νσa for 1 ≤ a ≤ m — so that
A · Mpre

R =MR.

• An integer h such that 0 ≤ hL ≤ ∆n,k + 1.

Pseudocode for this routine is as follows.

procedure orthogR(ML, MR, Mpre
R , h)

1. Set t to be the length of the linked list UR[h] and, if
UR[h] has entries

(r, s1), (r, s2), . . . , (r, st),

set U ∈ Fn×tq to be the matrix with columns

vr,s1 , vr,s2 , . . . , vr,st

and set W ∈ Fn×tq to be the matrix with columns

wr,s1 , wr,s2 , . . . , wr,st

— so that A · W = U .

2. if (m > 0 and t > 0) then
3. D :=MT

L · U ∈ Fm×tq

4. U := U −MR ·D
5. W :=W −Mpre

R ·D
6. for 1 ≤ a ≤ t do
7. Set ur,sa to be column a of U
8. Set wr,sa to be column a of W

end for
end if

end procedure

The proof of Lemma A.2, below, is almost the same as
that of Lemma A.1. It also depends on the assumption that
A · Mpre

R =MR, so that A · W = U after the executions of
steps 4 and 5 if this relationship held before this.

Lemma A.2. Suppose that the procedure orthogR is ex-
ecuted with Invariants #2 and #6 satisfied and with A ·
Mpre

R = MR, and that the vectors vr,sa are unmatched at
the time when that this procedure is called for 1 ≤ a ≤ t.
Then, on termination,

µTσb · vr,sa = 0

for 1 ≤ a ≤ t and 1 ≤ b ≤ m, and Invariant #6 is satisfied
once again. If β is an integer such that 1 ≤ β ≤ ` and

β /∈ {σ1, σ2, . . . , σm}

then µTβ ·vr,sa = 0 on termination if and only if µTβ ·vr,sa = 0
when the procedure was executed as well. None of the vectors
ua,b or va,b (such that 0 ≤ a ≤ i and 1 ≤ b ≤ k) except for
the vectors vr,s1 , vr,s2 , . . . , vr,st are modified by the execution
of this procedure.

The procedure can be implemented to use O(mtn) opera-
tions over Fq using standard arithmetic.

A.1.3 A “Matching” Subroutine
A routine match will be used to matched a given pair of

sequences of unmatched vectors, perform updates as shown
at lines (4) and (5), extend the sequences at lines (1) and (2),

and ensure that Invariant #7 is satisfied once again. This
routine receives as inputs a pair of integers hL and hR such
that 0 ≤ hL, hR ≤ ∆n,k + 1 and attempts to match vectors
ur,s such that (r, s) is an index in the linked list UL[hL] with
vectors vr′,s′ such (r′, s′) is an entry in the linked list UR[hR].

The routine will return a sequence of three matrices,ML,
MR, and Mpre

R : The columns of ML and MR will be the
vectors µh (respectively, νh) that have been added to the
sequence at line (1) (respectively, at line (2)), while Mpre

R

will be a matrix such that A · Mpre
R =MR.

Pseudocode for this routine is as follows.

procedure match(hL, hR)

1. Set tL and tR to be the lengths of the linked
lists UL[hL] and UR[hR] respectively. If UL[hL] has
entries

(r, s1), (r, s2), . . . , (r, stL),

set K̂L ∈ Fn×tLq to be the matrix with columns

ur,s1 , ur,s2 , . . . , ur,stL .

Similarly, if UR[hR] has entries

(r′, s′1), (r′, s′2) . . . , (r′, s′tR),

set KR ∈ Fn×tRq to be the matrix with columns

vr′,s′1 , vr′,s′2 , . . . , vr′,s′tR

and set Kpre
R ∈ Fn×tRq to be the matrix with columns

wr′,s′1 , wr′,s′2 , . . . , wr′,s′tR

— so that A · Kpre
R = KR.

2. if (tL > 0 and tR > 0) then

3. H := K̂TL · KR ∈ FtL×tRq

4. Compute the rank r̂ of H as well as a sequence of
integer indices σ1, σ2, . . . , σr̂ where

1 ≤ σ1 < σ2 < · · · < σr̂ ≤ tL
along with a sequence of integer indices
τ1, τ2, . . . , τr̂ where

1 ≤ τ1 < τ2 < · · · < τr̂ ≤ tR,

so that the submatrix Ĥ ∈ Fr̂×r̂q of H that includes
rows σ1, σ2, . . . , σr̂ and columns τ1, τ2, . . . , τr̂ is a
maximal nonsingular submatrix of H.

5. (In any way that is convenient) compute invertible

matrices XL, XR ∈ Fr̂×r̂q such that XR ·XL = Ĥ−1,

for Ĥ as above.

6. Set K̃L ∈ Fn×r̂q to be the matrix with columns

ur,sσ1 , ur,sσ2 , . . . , ur,sσr̂ ,

set K̃R ∈ Fn×r̂q to be the matrix with columns

vr′,s′τ1
, vr′,s′τ2

, . . . , vr′,s′τr̂

and set K̃pre
R ∈ Fn×r̂q to be the matrix with columns

wr′,s′τ1
, wr′,s′τ2

, . . . , wr′,s′τr̂

— so that A · K̃pre
R = K̃R and K̃L

T
· K̃R is equal to

the matrix Ĥ mentioned in the previous steps.



7. ML := K̃L ·XT
L ;

8. MR := K̃R ·XR; Mpre
R := K̃pre

R ·XR
9. for 1 ≤ g ≤ r̂ do

10. Set ur,sσg to be column g of ML

11. Set vr′,s′τg to be column g of MR

12. Set wr′,s′τg to b column g of Mpre
R

13. Append entry ((r, sσg ), (r′, s′τg )) onto the list M
end for

14. Remove the entries

(r, sσ1), (r, sσ2), . . . , (r, sσg )

from the list UL[hL]

15. Remove the entries

(r′, s′τ1), (r′, s′τ2), . . . , (r′, s′τg )

from the list UR[hR]

16. z := MT
L · σ ∈ Fr̂×1

q

17. χ := χ+Mpre
R · z; ρ := ρ−MR · z

18. return (ML, MR, Mpre
R )

end if

end procedure

As discussed in Section 2, ifML andMR are computed as
shown at lines 3–8, above, thenMT

L ·MR = Ir̂. Furthermore
one can see by inspection of the code that the columns of
ML are linear combinations of

ur,s1 , ur,s2 , . . . , ur,stL

and that the columns of MR are linear combinations of

vr′,s′1 , vr′,s′2 , . . . , vr′,s′tR
,

so that Invariant #2 will hold once again after the execution
of this procedure. An inspection of line 16 and 17 should
confirm thatMT

L ·(A·χ+ρ) is unchanged after the execution
of these lines but thatMT

L ·A ·χ =MT
L ·σ =MT

L ·(A ·w+b),
as needed to re-establish Invariant #7.

The following claim can now be verified by inspection of
the code.

Lemma A.3. Suppose procedure match is executed with
Invariants #2, 6 and 7 satisfied and when uTr,sa · νb = 0

for 1 ≤ a ≤ tL and 1 ≤ b ≤ ` and µTb · vr′,s′c for 1 ≤ b ≤ `
and 1 ≤ c ≤ tR, for the vectors

ur,s1 , ur,s2 , . . . , ur,stL

and

vr′,s′1 , vr′,s′2 . . . , vr′,s′tR

as shown in step 1.
Then Invariants #2, 6 and 7 are satisfied again on termi-

nation of the procedure.

Furthermore, if K̂L ∈ Fn×tLq (respectively, KR ∈ Fn×tRq ) is
the matrix whose columns are the vectors ur,s (respectively,
vr′,s) such that 1 ≤ s ≤ k and these vectors were unmatched
when the procedure was executed, then on termination, the
sequences of vectors at lines (1) and (2) have been extended
with vectors

µ`+1, µ`+2, . . . , µ`+m (19)

and

ν`+1, ν`+2, . . . , ν`+m (20)

respectively, where µ`+a (respectively, ν`+a) is a linear com-

bination of the columns of K̂L (respectively, KR) for 1 ≤ a ≤
b and where m is the rank of the matrix K̂TL ·KR. It returns,
as output, matrices ML,MR,Mpre

R ∈ Fn×mq such that the
columns of ML are the vectors at line (19), the columns
of MR are the vectors at line (20), and A · Mpre

R =MR.
None of the vectors ua,b or va,b have been modified by this

procedure except for the m pairs of vectors that have been
newly matched.

The procedure can be implemented to use O(n · tL · tR)
operations over Fq using standard arithmetic,

As noted in Section 2 it is acceptable to use a version of
this that also modifies the vectors

ur,s1 , ur,s2 , . . . , ur,sL

and

vr′,s′1 , vr′,s′2 . . . , vr′,s′L

provided that the column spaces spanned by each of the
above sequences is unchanged. The above lemma would
need to be modified (to allow for such a change) if such
a “matching” procedure was used, but it could still be used
to establish the results that follow.

A.1.4 The Main Method
Pseudocode for the Lanczos phase is now as follows. As

noted above, this version of the algorithm receives a matrix
A ∈ Fn×nq and a vector b as input and attempts to provide
a solution for the system Ax = b.

// Initialization

1. Select vectors

u1, u2, . . . , uk, w, w2, . . . , wk

uniformly and independently from Fn×1
q . Set w1 to be

A · w + b.
2. for 1 ≤ j ≤ k do
3. vj := A · wj

end for
4. Initialize the list M to be empty
5. for 0 ≤ r ≤ ∆n,k do
6. Initialize the lists UL[r] and UR[r] to be empty

end for
7. χ := 0 ∈ Fn×1

q ; ρ := σ := w1

// Stage 0

8. for 1 ≤ j ≤ k do
9. u0,j := uj ; v0,j := vj ; w0,j := wj

end for
10. Insert the entries (0, 1), (0, 2), . . . , (0, k) into each of

the lists UL[0] and UR[0]

11. (ML,MR,Mpre
R ) := match(0, 0)

12. orthogL(ML,MR, 0)
13. orthogR(ML,MR,Mpre

R , 0)

// Stage i for i ≥ 1

14. i := 1
15. while (i < ∆n,k or (UL[i mod ∆n,k + 1] and

UR[i mod ∆n,k + 1] are both empty)) do

// i mod (∆n,k + 1) = i−∆n,k − 1 mod (∆n,k + 1),
// so Invariant #5 was satisfied at the end of
// the previous round.



16. Remove all entries ((r, s), (r′, s′)) such that ei-
ther r ≤ i− 2 ·∆n,k − 3 or r′ ≤ i− 2 ·∆n,k − 3
from the list M

17. for 1 ≤ j ≤ k do
18. ui,j := AT · ui−1,j ; vi,j := A · vi−1,j ;

wi,j := vi−1,j

end for
19. Append the entries

(i, 1), (i, 2), . . . , (i, k)

onto each of the lists UL[i mod ∆n,k + 1] and
UR[i mod ∆n,k + 1]

20. if (M is nonempty) then

21. If the entries of M are

((r1, s1), (r′1, s
′
1)), ((r2, s2), (r′2, s

′
2)),

. . . , ((rh, sh), (r′h, s
′
h))

then setML ∈ Fn×hq to be the matrix with
columns

ur1,s1 , ur2,s2 , . . . , urh,sh ,

set MR ∈ Fn×hq to be the matrix with
columns

vr′1,s′1 , vr′2,s′2 , . . . , vr′h,s
′
h
,

and setMpre
R ∈ Fn×hq to be the matrix with

columns

wr′1,s′1 , wr′2,s′2 , . . . , wr′h,s
′
h

— so that A · Mpre
R =MR.

22. orthogL(ML,MR, i mod ∆n,k + 1)
23. orthogR(ML,MR,Mpre

R , i mod ∆n,k + 1)

end if
24. for j = 0, 1, 2, . . . ,∆n,k − 1 do

// Matching Round #2j + 1

25. (ML,MR,Mpre
R ) :=

match(i−∆n,k + j mod ∆n,k + 1,
i mod ∆n,k + 1)

26. for j ≤ h ≤ ∆n,k do

27. orthogL(ML,MR, i−∆n,k + h mod ∆n,k + 1)
end for

28. orthogR(ML,MR,Mpre
R , i mod ∆n,k + 1)

// Matching Round #2j + 2

29. (ML,MR,Mpre
R ) :=

match(i mod ∆n,k + 1,
i−∆n,k + j mod ∆n,k + 1)

30.. for j ≤ h ≤ ∆n,k do

31. orthogR(ML,MR,Mpre
R ,

i−∆n,k + h mod ∆n,k + 1)
end for

32. orthogL(ML,MR, i mod ∆n,k + 1)

end for
// Matching Round #2 ·∆n,k + 1

33. (ML,MR,Mpre
R ) :=

match(i mod ∆n,k + 1, i mod ∆n,k + 1)
34. orthogL(ML,MR, i mod ∆n,k + 1)
35. orthogR(ML,MR,Mpre

R , i mod ∆n,k + 1)

end while

A.2 On the Correctness and Efficiency of the
Lanczos Phase

A.2.1 A Key Lemma
The next lemma is instrumental in proving the orthogo-

nalizations included in the Lanczos phase of the algorithm
are sufficient to establish Invariants #1–5 and for the proof
of Lemma 2.5.

Lemma A.4. Let i be an integer such that i ≥ 0 and there
are at least i + 1 stages of the Lanczos phase. Then the
following properties are satisfied at the end of stage i.

(a) Invariant #1 is satisfied.

(b) Suppose j is an integer such that 1 ≤ j ≤ i + 1 and
ML,i,j ,MR,i,j ∈ Fn×jkq be the matrices with columns
ur,s and vr,s, respectively, for 0 ≤ r ≤ j − 1 and 1 ≤
s ≤ k.

Then there exist nonsingular matrices Xi,j , Yi,j ∈ Fjk×jkq

such that

ML,i,j = K̂~u,j ·Xi,j and MR,i,j = K~v,j · Yi,j (21)

where matrices K̂~u,j and K~v,j are as defined in Subsec-
tion 2.5.

(c) If r and s are integers such that 0 ≤ r ≤ i − 1 and
1 ≤ s ≤ k then there exist elements αr,s,a,b and βr,s,a,b
of Fq, for 0 ≤ a ≤ r + 1 and 1 ≤ b ≤ k, such that

AT · ur,s =

r+1∑
a=0

k∑
b=1

αr,s,a,b · ua,b (22)

and

A · vr,s =

r+1∑
a=0

k∑
b=1

βr,s,a,b · va,b. (23)

Proof. The claims can be established by induction on i.
Notice first that, since u0,r and v0,s are initialized to be ur

and vr, respectively, Invariant #1 is certainly satisfied at
the beginning of stage #0, that is, immediately after these
vectors have been defined but before any have been matched.

The equations at line (21) are also satisfied for j = 1
(the only case to be considered here). In particular, they
are satisfied when one chooses both X0,1 and Y0,1 to be the
identity matrix in Fk×kq .

To continue, one should notice that the updates included
in matchings and orthogonalizations are all invertible linear
transformations that effectively update the above matrices
using updates of the form

ML,0,1 :=ML,0,1 ·Xupdate

and

MR,0,1 :=MR,0,1 · Yupdate

for invertible matrices Xupdate , Yupdate ∈ Fk×kq . Now, if one
also updates the matrices X1,0 and X1,0 by setting

X1,0 := X1,0 ·Xupdate

and

Y1,0 := Y1,0 · Yupdate ,

then the equations at line (21) are satisfied after the update
if they were satisfied before — and the matrices X1,0, Y1,0 ∈
Fk×kq are still nonsingular as well.



It follows by a straightforward induction on the number
of updates performed that equations as shown at line (21)
at the end of stage #0, as desired. This implies that Invari-
ant #1 is satisfied at the end of stage #0 as well.

Since the claim in part (c) is vacuous when i = 0, this
establishes the basis.

For the inductive step suppose that i ≥ 0, there are at
least i + 2 stages of the Lanczos phase, and that the above
three properties hold at the end of stage i. It is necessary
and sufficient to prove that they hold at the end of stage i+1
as well.

It follows by the inductive hypothesis that equations as
shown at line (21) hold for j = i+1. Now, multiplying both
sides of the first equation by AT and multiplying both sides
of the second by A one has that

AT · ML,i,i+1 = AT · K̂~u,i+1 ·Xi,i+1.

Now consider the columns of the matrix AT ·ML,i,i+1: These
are either vectors AT · ui,s for 1 ≤ s ≤ k or they are vectors
AT ·ur,s for 0 ≤ r ≤ i−1 and 1 ≤ s ≤ k. Now, AT ·ui,s is the
initial value of ui+1,s for 1 ≤ s ≤ k and it follows by part (c)
of the inductive hypothesis that each vector AT · ur,s such
that 0 ≤ r ≤ i− 1 and 1 ≤ s ≤ k is a linear combination of
the vectors ua,b such that 0 ≤ a ≤ i and 1 ≤ b ≤ k at the end
of stage i. Consequently each of the columns of the matrix
AT ·ML,i,i+1 is a linear combination of the vectors ua,b such
that 0 ≤ a ≤ i+1 and 1 ≤ b ≤ k — when the values of these
vectors immediately after the vectors ui+1,s and vi+1,s have
been initialized are considered. Now, since the matrix Xi,i+1

is invertible it follows that the columns of AT · K̂~u,i+1 are
linear combinations of these vectors as well. The columns of
K̂~u,i+1 are certainly all linear combinations of these vectors
too, since these columns are linear combinations of vectors
ua,b such that 0 ≤ a ≤ i and 1 ≤ b ≤ k. It follows that the

columns of K̂~u,i+2 are all linear combinations of the vectors
ua,b such that 0 ≤ a ≤ i + 1 and 1 ≤ b ≤ k, because

each column of K̂~u,i+2 is either a column of K̂~u,i+1 or of

AT · K̂~u,i+1.
On the other hand, since

AT · ML,i,i+1 = AT · K̂~u,i+1 ·Xi,i+1

since AT · ui,s is a column of AT · ML,i,i+1 and since every

column of AT · K̂~u,i+1 is also a column of K̂~u,i+2, each vector

ui+1,s is a linear combination of the columns of K̂~u,i+2 when
the vectors ui+1,s are first initialized. It follows by the induc-
tive hypothesis that each vector ur,s such that 1 ≤ r ≤ i and

1 ≤ s ≤ k is a linear combination of the columns of K̂~u,i+2

at this point as well, since the columns of K̂~u,i+2 include all

of the columns of K̂~u,i+1.
The same consideration of vectors vr,s establishes the same

property for these vectors, as needed to establish Invari-
ant #1 at the beginning of stage i+ 1, that is, immediately
after ui+1,s (respectively, vi+1,s) have been set to be AT ·ui,s
(respectively, A · vi,s) for 1 ≤ s ≤ k.

It now suffices to note that all matching and orthogonal-
ization updates in stage i+ 1 that follow are invertible (and
argue as in the basis) to conclude that Invariant #1 is sat-
isfied at the end of stage i+ 1 as well.

In order to establish part (b) of the claim, let us suppose

that the matrix K̂~u,i+2 has rank s (so that 0 ≤ s ≤ (i +
2) · k). Notice that, since Invariant #1 is satisfied at the

end of stage #i + 1, ML,i+1,i+2 has rank s as well and,
furthermore, each column of either of these matrices is a
linear combination of the columns of the other. Consider
the following additional matrices.

• There are permutation matrices

P1, P2 ∈ F(i+2)·k×(i+2)·k
q

such that the first s columns of K̂~u,i+2 ·P1 (respectively,
of ML,i+1,i+2 · P2) are linearly independent and such
that the remaining (i + 2) · k − s columns are linear
combinations of the first s.

• Consequently there exist nonsingular upper triangular
matrices

U1 =

[
Is X1

0 I(i+2)·k

]
and U2 =

[
Is X2

0 I(k+2)·k

]
in F

(i+2)·k×(i+2)·k
q such that

K̂~u,i+2 · P1 · U1 =
[
A 0

]
and

ML,i+1,i+2 · P2 · U2 =
[
B 0

]
where A,B ∈ Fn×sq each has full rank s (and so that

the last (i+ 2) · k− s columns of each of K̂~u,i+2 ·P1 ·U1

and ML,i1,i2 · P2 · U2 are equal to zero).

• Now, the columns of A are linear combinations of the
columns of B, and vice-versa. Consequently there ex-
ists a nonsingular matrix C ∈ Fs×sq such that A·C = B.
Furthermore the matrix

Ĉ =

[
C 0
0 I(i+2)·k−s

]
∈ F(i+2)·k×(i+2)·k

q

is also nonsingular — and

K̂~u,i+2 · P1 · U1 · Ĉ =ML,i+1,i+2 · P2 · U2.

• We now have that

ML,i+1,i+2 = K̂~u,i+2 ·Xi+1,i+2

for the invertible matrix

Xi+1,i+2 = P1 · U1 · Ĉ · U−1
2 · P−1

1 ∈ F(i+2)·k×(i+2)·k
q .

It follows by the same argument that there exists a non-

singular matrix Yi+1,i+2 ∈ F
(i+2)·k×(i+2)·k
q such that

MR,i+1,i+2 = K~v,i+2 · Yi+1,i+2

as well.
Now, to establish that

ML,i+1,j = K̂~u,j ·Xi+1,j and MR,i+1,j = K~v,j · Yi+1,j

for nonsingular matrices Xi+1,j , Yi+1,j ∈ Fj·k×j·kq at the end
of stage i+ 1 of the Lanczos phase as well, for 1 ≤ j ≤ i+ 1,
one should notice that it follows by the inductive hypothesis
that such relationships hold at the end of stage i and the
beginning of stage i + 1. Furthermore, a close examination
of the updates included in matching and orthogonalization
steps during stage i+1 (noting, in particular, the limitation
in orthogonalization steps after matchings) is sufficient to
establish that every such update is invertible and modifies
the value of a vector ur,s (respectively, vr,s) by replacing
it with a linear combination of the values of vectors ur′,s′



(respectively, vr′,s′) such that 0 ≤ r′ ≤ r and 1 ≤ s′ ≤
k. Consequently, these updates modify matrices ML,i+1,j

and MR,i+1,j using updates of the form

ML,i+1,j :=ML,i+1,j ·Xupdate

and

MR,i+1,j :=MR,i+1,j · Yupdate

for nonsingular matrices Xupdate , Yupdate ∈ Fj·k×j·kq . Updates

Xi+1,j := Xi+1,j ·Xupdate

and

Yi+1,j := Yi+1,j · Yupdate

suffice to ensure that the equations at lines (21) are satis-
fied after these updates if they were satisfied before them.
Part (b) of the claim now follows by a straightforward in-
duction on the number of updates made in stage i+ 1.

Finally, part (c) of the claim is a consequence of part (b):
If 0 ≤ r ≤ i and 1 ≤ s ≤ k then, at the end of stage i + 1,
AT · ur,s is a column of AT · ML,i+1,r, so that it is a linear

combination of the columns of AT · K̂~u,r. However, all such

columns are also columns of K̂~u,r+1, so Â · ur,s is a linear

combination of the columns of K̂~u,r+1. That is, there exists

a vector γ ∈ F
(r+1)·k×1
q such that

AT · ur,s = K̂~u,r+1 · γ.

However, as noted above,

ML,i+1,r+1 = K̂~u,r+1 ·Xi+1,r+1

for a a nonsingular matrix Xi+1,r+1 ∈ F
(r+1)·k×(r+1)·k
q . Con-

sequently, if we set γ̂ to be X−1
i+1,r+1 · γ then

ATur,s =ML,i+1,r+1 · γ̂.

It follows by the same argument that there exists a vector

δ̂ ∈ F
(r+1)·k×1
q such that

A · vr,s =MR,i+1,r+1 · δ̂

at the end of stage i + 1 as well. Part (c) now follows —
because the columns of the matrixML,i+1,r+1 (respectively,
MR,i+1,r+1) are the vectors ua,b (respectively, va,b) such
that 0 ≤ a ≤ r and 1 ≤ b ≤ k.

A.2.2 Proofs of Lemmas 2.1 and 2.2
The next lemma is useful for the proof of Lemma 2.1.

Lemma A.5. Let i be an integer such that i ≥ 0 and there
are at least i+1 stages in the Lanczos phase of the algorithm.
Suppose, as well, that Invariants #2–5 are satisfied at the
beginning of the first i stages of the algorithm. Then if t
is an integer such that 1 ≤ t ≤ ` and either µt = ug,h or
νt = vg,h such that 0 ≤ g ≤ i − 2 ·∆n,k − 3 and 1 ≤ h ≤ k
then there exist elements αt,a, βt,a of Fq such that 1 ≤ a ≤ `
and such that

AT · µt =
∑̀
a=1

αt,a · µa and A · νt =
∑̀
a=1

βt,a · νa

at the end of stage i− 2 of the Lanczos phase of the compu-
tation.

Proof. Suppose, as in the statement of the lemma, that
i is an integer such that i ≥ 0, there are at least i + 1
stages included in the Lanczos phase of the algorithm, and
that Invariants #2–5 are satisfied at the end of the first
i stages. Let t be an integer such that 1 ≤ t ≤ ` and
either µt = ug,h or νt = vg,h for integers g and h such that
0 ≤ g ≤ i− 2 ·∆n,k − 3 and 1 ≤ h ≤ k.

Then, since Invariant #5 was satisfied at the end of each
of the first i stages (and, in particular, at the end of stage g+
∆n,k), vectors µt and µt were matched at or before the end
of stage g + ∆n,k. Consequently µt = ua,b and νt = vc,d for
integers a, b, c, d such that 0 ≤ a, c ≤ g+∆n,k ≤ i−∆n,k−3
and 1 ≤ b, c ≤ k. It now follows by part (c) of Lemma A.4
that, at the end of stage i− 2,

AT · µt =

i−∆n,k−2∑
c=0

k∑
d=1

αt,c,d · uc,d

and

A · νt =

i−∆n,k−2∑
c=0

k∑
d=1

βt,c,d · vc,d

where αt,c,d, βt,c,d ∈ Fq for 0 ≤ c ≤ i − ∆n,k − 2 and 1 ≤
d ≤ k.

Now, since Invariant #5 is satisfied at the end of stage i−
2, each value uc,d and vc,d such that 0 ≤ i − ∆n,k − 2 has
been matched at this point so that

AT · µt =
∑̀
a=1

αt,a · µa and A · νt =
∑̀
a=1

βt,a · νa

where αt,a, βt,a ∈ Fq for 1 ≤ a ≤ ` as well.

Lemma A.6. Let i be an integer such that i ≥ 0 and there
are at least i + 1 stages included in the Lanczos phase of
the algorithm. Suppose, as well, that Invariants #2–5 are
satisfied at the end of each of the first i stages. Then, at the
beginning of the stage i (that is, the i+ 1st stage),

(AT · ui−1,s) · νt = µTt · (A · vi−1,s) = 0

for 1 ≤ s ≤ k and for every integer t such that 1 ≤ t ≤ `
and either µt = ug,h or νt = vg,h for integers g and h such
that 0 ≤ g ≤ i− 2 ·∆n,k − 3 and 1 ≤ h ≤ k.

Proof. Suppose, as in the statement of the lemma, that
i is an integer such that i ≥ 0, there are at least i+ 1 stages
included in the Lanczos phase of the algorithm, and that
Invariants #2–5 are satisfied at the end of the first i stages.
Let s be an integer such that 1 ≤ s ≤ k and let t be an
integer such that 1 ≤ t ≤ ` and either µt = ug,h or νt = vg,h
for integers g and h such that 0 ≤ g ≤ i − 2 ·∆n,k − 3 and
1 ≤ h ≤ k.

Then it follows by Lemma A.5, above,

AT · µt =

`i−2∑
a=1

αt,a · µa and A · νt =

`i−2∑
a=1

βt,a · νa

where γt,a, δt,a ∈ Fq for 1 ≤ a ≤ `i−2 as well, where `i−2 is
the length of the sequences of matched vectors at lines (1)
and (2) at the end of stage i− 2 of the Lanczos phase.

It follows that, at the end of stage i−1 (and the beginning



of stage i),

(AT · ui−1,s) · νt = uTi−1,s · (A · νt)

=

`i−2∑
a=1

βt,a · uTi−1,s · νa.

However, uTi−1,s · νa = 0 for 1 ≤ a ≤ `i−2 — for either
ui−1,s was matched during stage i − 1, or it was not. If it
was matched then ui−1,s = µb for an integer b ≥ `i−2 +1, so
that b 6= a, and it follows by Invariant #2 that uTi−1,s ·νa = 0.
On the other hand, if ui−1,s was not matched at the end of
stage i− 1 then uTi−1,s · νa = 0 by Invariant #3, instead.

It now follows that (AT · ui−1,s) · νt = 0. The same ar-
gument establishes that µTt · (A · vi−1,s) = 0 as well, as
required.

The next lemma follows from the previous one and an
inspection of the algorithm that has been defined.

Lemma A.7. Let i be an integer such that i ≥ 0 and there
are at least i+1 stages in the Lanczos phase of the algorithm.
Suppose, as well, that Invariants #2–5 are satisfied at the
beginning of the first i stages of the algorithm. Then, if the
vectors ui,s and vi,s are initialized and the orthogonalizations
described after Lemma 2.1 are performed, then uTi,s ·νa = 0 =

νTa · vi,s for 1 ≤ a ≤ ` and 1 ≤ s ≤ k, so that Invariants #2
and #3 are both satisfied at this point.

Proof. If the conditions in the lemma are satisfied then
Invariant #2 is satisfied after the above-mentioned opera-
tions are performed because this invariant was satisfied at
the end of stage i− 1, and none of the vectors mentioned in
this invariant have been changed by these operations.

Now it follows by Lemma A.6 that, following the initial-
ization of ui,s (respectively, vi,s) as AT ·ui−1,s (respectively,
A · vi−1,s), µ

T
t · vi,s = uTi,s · νt = 0 for 1 ≤ s ≤ k and ev-

ery integer t such that either µt = ug,h or νt = vg,h where
0 ≤ g ≤ i− 2 ·∆n,k − 3 and 1 ≤ h ≤ k.

On the other hand, if 1 ≤ t ≤ ` and t does not satisfy this
condition then µt = uc,d and νt = vc′,d′ for integers c, c′, d, d′

such that i − 2 · ∆n,k − 2 ≤ c, c′ ≤ i and 1 ≤ d, d′ ≤ k,
so that an orthogonalization step including µt (and νt) has
been included as part of the initialization of ui,s and vi,s. It
therefore follows by the correctness of the orthogonalization
step (see Lemmas A.1 and A.2, above) that

uTi,s · νa = 0 = µTa · vi,s

after these operations, for every integer s such that 1 ≤ s ≤
k and for every integer a such that 1 ≤ a ≤ `.

Note as well that if 0 ≤ r ≤ i − 1 and ur,s (respectively,
vr,s) is a vector that is unmatched at this point then

uTr,s · νa = 0

(respectively, µTa · vr,s = 0) for 1 ≤ a ≤ ` as well, because
Invariant #3 was satisfied at the end of stage i − 1, and
none of the vectors ur,s or vr,s such that 0 ≤ r ≤ i − 1
and 1 ≤ s ≤ k, and none of the vectors µ1, µ2, . . . , µ` or
ν1, ν2, . . . , ν`, have been changed by the operations at the
beginning of stage i being considered above.

Thus Invariant #3 is also satisfied, as claimed.

Lemma A.8–A.12 help to establish that Invariants #2–5
are satisfied at the end of round i, for i ≥ 1.

Lemma A.8. Let i be an integer such that i ≥ 1 and there
are at least i+1 stages of the Lanczos phase of the algorithm
(ending with stage i). Let g be an odd integer such that
1 ≤ g ≤ 2 ·∆n,i + 1.

Recall that round g of stage i begins with a matching step,
during which unmatched vectors ui−∆n,k+j,s are matched
with unmatched vectors vi,t for j = bg/2c and 1 ≤ s, t ≤ k.

For 0 ≤ r ≤ i and 1 ≤ s ≤ k,

• let ar,s be the value of ur,s immediately before round g
of stage i,

• let br,s be the value of ur,s immediately after round g
of stage i,

• let cr,s be the value of vr,s immediately before round g
of stage i, and

• let dr,s be the value of vr,s immediately after round g of
stage i.

Then the following relationships hold.

(a) If 0 ≤ r < i+ ∆n,k + j then ar,s = br,s for 1 ≤ s ≤ k.

(b) Suppose that r = i + ∆n,k + j and that σ1, σ2, . . . , σh
are integers such that

1 ≤ σ1 < σ2 < · · · < σh ≤ k

and ur,σ1 , ur,σ2 , . . . , ur,σh are the vectors ur,s (for 1 ≤
s ≤ k) that were already matched before round g of
stage i. Suppose τ1, τ2, . . . , τk−h are integers such that

1 ≤ τ1 < τ2 < · · · < τk−h

and ur,τ1 , ur,τ2 , . . . , ur,τk−h are the vectors ur,s (for 1 ≤
s ≤ k) that were not matched, yet, at the beginning of
round g of stage i.

Then ar,σw = br,σw for 1 ≤ w ≤ h, and[
br,τ1 br,τ2 · · · br,τk−h

]
=
[
ar,τ1 ar,τ2 · · · ar,τk−h

]
·XL

for a nonsingular matrix XL ∈ F
(k−h)×(k−h)
q .

(c) If i−∆n,k + j < r ≤ i then[
br,1 br,2 · · · br,k

]
=
[
ar,1 ar,2 · · · ar,k

]
+[

as,τ1 as,τ2 · · · as,τk−h
]
· Ys,r

for s = i−∆n,k + j < r, τ1, τ2, . . . , τk−h as above, and

for a matrix Ys,r ∈ F
(k−h)×k
q .

(d) If 1 ≤ r ≤ i− 1 then cr,s = dr,s for 1 ≤ s ≤ k.

(e) Suppose that θ1, θ2, . . . , θĥ are integers such that

1 ≤ θ1 < θ2 < · · · < θĥ ≤ k

and vi,θ1 , vi,θ2 , . . . , vi,θĥ are the vectors vi,s (for 1 ≤
s ≤ k) that were already matched before round g of
stage i. Suppose ι1, ι2, . . . , ιk−ĥ are integers such that

1 ≤ ι1 < ι2 < · · · < ιk−ĥ

and vi,ι1 , vi,ι2 , . . . , vi,ιk−ĥ are the vectors vi,s (for 1 ≤
s ≤ k) that were not matched, yet, at the beginning of
round g of stage i.

Then ci,θw = di,θw for 1 ≤ w ≤ ĥ and[
di,ι1 di,ι2 · · · di,ιk−ĥ

]
=
[
ci,ι1 ci,ι2 · · · ci,ιk−ĥ

]
·XR

for a nonsingular matrix XR ∈ F
(k−ĥ)×(k−ĥ)
q .



Proof. Parts (a) and (d) of the claim can be established
by an inspection of the details of round g of stage i of the
Lanczos phase, when g is odd: If j = bg/2c, as above, then
ur,s is not accessed during this round for 0 ≤ r < i−∆n,k+j,
and vr,s is not accessed or modified for 0 ≤ r ≤ i−1 and 1 ≤
s ≤ k, either.

Part (b) can be established by noticing that no vectors
that have been matched before this round are accessed or
modified during it (so that ar,σw = br,σw for r = i−∆n,k +
j and 1 ≤ w ≤ h, as claimed) and by noticing that the
previously unmatched vectors

ur,τ1 , ur,τ2 , . . . , ur,τk−h

are involved in two operations during round g:

• a matching operation matches these with the unmatched
vectors

vi,ι1 , vi,ι2 , . . . , vi,ιk−ĥ ;

• the vectors ur,τw that are still unmatched are then or-
thogonalized, to ensure that each is orthogonal to each
newly matched vector vi,ιy .

Let er,τw be the value of the vector ur,τw after the above
matching step but before the orthogonalization, for 1 ≤ w ≤
h. Then it follows by the correctness of the matching pro-
cedure (see Lemma A.3 for details) that[

er,τ1 er,τ2 · · · er,τh
]

=
[
ar,τ1 ar,τ2 · · · ar,τh

]
· YL

for a nonsingular matrix YL ∈ F
(k−h)×(k−h)
q . Similarly, since

the orthogonalization step subtracts a linear combination of
the values of newly matrices vectors ur,τw from each of these
vectors that is still unmatched,[

br,τ1 br,τ2 · · · br,τh
]

=
[
er,τ1 er,τ2 · · · er,τh

]
· ZL

for a nonsingular matrix ZL ∈ F
(k−h)×(k−h)
q . It now suffices

to set XL = YL · ZL (noting that this is also a nonsingular

matrix in F
(k−h)×1
q ) to establish this part of the claim.

Part (e) can be established using the argument given above
to establish part (b).

Finally, note that if i − ∆n,k + j < r ≤ i then then the
vectors ur,a are included in an orthogonalization step to en-
sure that they are orthogonal to newly matched vectors vιy
but otherwise unchanged. Since the above vectors vιy were
matched with (some of) the vectors

us,τ1 , us,τ2 , . . . , us,τk−h

for s = i − ∆n,k + j, a consideration of the details of the
orthogonalization process suffices to establish that the values
of ur,1, ur,2, . . . , ur,k using an update with the form shown
in part (c), as well, as required to establish the claim.

Lemma A.9. Let i be an integer such that i ≥ 1 and there
are at least i+1 stages of the Lanczos phase of the algorithm
(ending with stage i). Let g be an even integer such that
1 ≤ g ≤ 2 ·∆n,i.

Recall that round g of stage i begins with a matching step,
during which unmatched vectors ui,s are matched with un-
matched vectors vi−∆n,k+j,t for j = (g− 2)/2 and 1 ≤ s, t ≤
k.

For 0 ≤ r ≤ i and 1 ≤ s ≤ k,

• let ar,s be the value of ur,s immediately before round g
of stage i,

• let br,s be the value of ur,s immediately after round g
of stage i,

• let cr,s be the value of vr,s immediately before round g
of stage i, and

• let dr,s be the value of vr,s immediately after round g of
stage i.

Then the following relationships hold.

(a) If 0 ≤ r < i+ ∆n,k + j then cr,s = dr,s for 1 ≤ s ≤ k.

(b) Suppose that r = i∆n,k + j and that σ1, σ2, . . . , σh are
integers such that

1 ≤ σ1 < σ2 < · · · < σh ≤ k

and vr,σ1 , vr,σ2 , . . . , vr,σh are the vectors vr,s (for 1 ≤
s ≤ k) that were already matched before round g of
stage i. Suppose τ1, τ2, . . . , τk−h are integers such that

1 ≤ τ1 < τ2 < · · · < τk−h

and vr,τ1 , vr,τ2 , . . . , vr,τk−h are the vectors vr,s (for 1 ≤
s ≤ k) that were not matched, yet, at the beginning of
round g of stage i.

Then cr,σw = dr,σw for 1 ≤ w ≤ h and[
dr,τ1 dr,τ2 · · · dr,τk−h

]
=
[
cr,τ1 cr,τ2 · · · cr,τk−h

]
·XR

for a nonsingular matrix XR ∈ F
(k−h)×(k−h)
q .

(c) If i−∆n,k + j < r ≤ i then[
dr,1 dr,2 · · · dr,k

]
=
[
cr,1 cr,2 · · · cr,k

]
+[

cs,τ1 cs,τ2 · · · cs,τk−h
]
· Ys,r

for τ1, τ2, . . . , τk−h as above and for a matrix Ys,r ∈
F

(k−h)×k
q .

(d) If 1 ≤ r ≤ i− 1 then ar,s = br,s for 1 ≤ s ≤ k.

(e) Suppose that θ1, θ2, . . . , θĥ are integers such that

1 ≤ θ1 < θ2 < · · · < θĥ ≤ k

and ui,θ1 , ui,θ2 , . . . , ui,θĥ are the vectors ui,s (for 1 ≤
s ≤ k) that were already matched before round g of
stage i. Suppose ι1, ι2, . . . , ιk−ĥ are integers such that

1 ≤ ι1 < ι2 < · · · < ιk−ĥ

and ui,ι1 , ui,ι2 , . . . , ui,ιk−ĥ are the vectors ui,s (for 1 ≤
s ≤ k) that were not matched, yet, at the beginning of
round g of stage i.

Then ai,θw = bi,θw for 1 ≤ w ≤ ĥ and[
bi,ι1 bi,ι2 · · · bi,ιk−ĥ

]
=
[
ai,ι1 ai,ι2 · · · ai,ιk−ĥ

]
·XL

for a nonsingular matrix XL ∈ F
(k−ĥ)×(k−ĥ)
q .

Proof. This can be proved in the same way as the lemma
that preceded it: Notice that, for g as described in the
claim, the matchings and orthogonalizations are exactly as
described for round g − 1 (an odd integer between 0 and 2 ·
∆n,k) except that the roles of ur,s and vr,s are reversed. Con-
sequently, reversing the roles of ur,s and vr,s in the previous
proof provides a proof of the current lemma as well.



Lemma A.10. Let i be an integer such that i ≥ 1 and
there are at least i + 1 stages of the Lanczos phase of the
computation (ending with stage i). Let g be an integer such
that 1 ≤ g ≤ 2 ·∆n,k + 1.

Suppose that r and s are integers such that 1 ≤ r, s ≤ k
and, during round g of stage i of the Lanczos phase, the cur-
rently unmatched vectors ur,a (for 1 ≤ a ≤ k) are matched
with the currently unmatched vectors vs,b (for 1 ≤ b ≤ k).

If Invariants #2 and 3 are satisfied at the end of round g
then uTr,a · vs,b = 0 for all integers a and b such that 1 ≤
a, b ≤ k and ur,a and vs,b are still unmatched at this point.

Proof. Let σ1, σ2, . . . , σh be integers such that

1 ≤ σ1 < σ2 < · · · < σh ≤ k

and ur,σ1 , ur,σ2 , . . . , ur,σh are the vectors ur,a (for 1 ≤ a ≤ k)
that are unmatched at the beginning of round g. Similarly,
let τ1, τ2, . . . , τm be integers such that

1 ≤ τ1 < τ2 < · · · < τm ≤ k

and vs,τ1 , vs,τ2 , . . . , vs,τm are the vectors vs,b (for 1 ≤ b ≤ k)
that are unmatched at the beginning of round g.

Let ar,t and br,t be the values of ur,t before and after
round g, respectively, for 1 ≤ t ≤ k, and let cs,w and ds,w
be the values of vs,w before and after round g, respectively,
for 1 ≤ w ≤ k, as well.

Consider the matrices

KL =
[
ar,σ1 ar,σ2 · · · ar,σh

]
∈ Fn×hq

and

K′L =
[
br,σ1 br,σ2 · · · br,σh

]
∈ Fn×hq

whose columns are the values of the vectors

ur,σ1 , ur,σ2 , . . . , ur,σh

before and after round g, respectively. It follows by Lem-
mas A.8 and A.9 that

K′L = KL ·XL

for a nonsingular matrix XL ∈ Fh×hq . Consider also the
matrices

KR =
[
cs,τ1 cs,τ2 · · · cs,τm

]
∈ Fn×mq

and

K′R =
[
ds,τ1 ds,τ2 · · · ds,τm

]
∈ Fn×mq

whose columns are the values of the vectors

vs,τ1 , vs,τ2 , . . . , vs,τm

before and after round g, respectively. It also follows by
Lemmas A.8 and A.9 that

K′R = KR · YR

for a nonsingular matrix YR ∈ Fm×mq .
Let t be the number of pairs of vectors that are matched

during round g. It follows by the correctness of the match
procedure (see, in particular, Lemma A.3) that t is also the
rank of the matrix KT

L ·KR ∈ Fh×mq . Now, since the above

matrices XL ∈ Fh×hq and YR ∈ Fm×mq are nonsingular (so

that XT
L is nonsingular as well), and

(K′L)T ·K′R = XT
L · (KT

L ·KR) · YR,

it follows that the matrix (K′L)T ·K′R has rank t as well.
Now there exist permutation matrices PL ∈ Fh×hq and

PR ∈ Fm×mq such that the first t columns of K′L · PL and of
K′R ·PR are the values (after round g) of the t pairs of vectors
matched during this round — so that (since Invariant #2 is
satisfied after round g) the top left submatrix of the matrix

PTL · (K′L
T ·K′R) · PR is the identity matrix It.

Furthermore, since Invariant #3 is satisfied at the end of
round g, the final h−t columns of K′L ·PL are the unmatched
vectors ur,w at the end of this round (for 1 ≤ w ≤ k), and the
final m − t columns of K′R · PR are the unmatched vectors
vs,w at the end of this round (for 1 ≤ w ≤ k) as well.
Consequently, since Invariant #3 is also satisfied at the end
of this round,

PTL · (K′L
T ·K′R) ·KR =

[
It 0
0 Z

]
for a matrix Z ∈ F

(k−t)×(m−t)
q whose entries are the inner

products uTr,a · vs,b of the vectors ur,a and vs,b that remain

unmatched. Now, since K′L
T · KR has rank t, the matrix

PTL · (K′L
T ·K′R) ·PR has rank t as well, so that Z = 0 — as

needed to establish the claim.

Lemma A.11. Invariants #2–4, 6 and 7 are satisfied at
the end of stage 0 of the Lanczos phase of the computation.

Proof. Note first that Invariants #2–4, 6 and 7 all hold
at the beginning of stage 0 because the claims in Invari-
ants #2–4 and 6 are vacuous, and Invariant #7 is satisfied
because χ = 0 and ρ = σ = A · w + b.

Invariants #2 and 3 are still satisfied after the initial-
ization of u0,r, w0,r and v0,r, for 1 ≤ r ≤ k, because these
claims are still vacuous. Invariant #6 still holds at this point
since v0,r = A · wr = A · w0,r for 1 ≤ r ≤ k. Invariant #7
still holds because none of the values mentioned in it have
been changed.

It follows by the correctness of the match procedure (see
Lemma A.3, above) that Invariants #2, 6 and 7 hold again
after the matching step in stage 0. These invariants are
also satisfied again after the orthogonalization steps that
complete stage 0, because none of the values mentioned in
these invariants are changed by these final operations.

Invariant #3 has been re-established as well, at the end
of stage 0, because all unmatched vectors u0,r (respectively,
v0,r) have been orthogonalized against all matched vectors
v0,s (respectively, u0,s) by the end of this stage.

Finally, the proof that Invariant #4 has also been re-
established is the same as the proof given for Lemma A.10,
above.

Lemma A.12. Let i be an integer such that i ≥ 1 and
there are at least i + 1 stages of the Lanczos phase of the
computation. Suppose, as well, that Invariants #2–#7 are
satisfied at the end of stage h of the Lanczos phase for 0 ≤
h ≤ i− 1.

Consider the various updates of vectors ur,s and vr,s in-
cluded in stage i of the Lanczos phase of the computation,
for integers r and s such that 0 ≤ r ≤ i and 1 ≤ s ≤ k that
follow the initialization of ui,s and vi,s.

(a) If g is an integer such that 0 ≤ g ≤ 2 · ∆n,k + 1 then
Invariants #2, 3, 6 and 7 are all satisfied after round g
of stage i of the Lanczos phase of the computation.



(b) If g is an integer such that 0 ≤ g ≤ 2 · ∆n,k + 1 and
vectors ur,s and vr′,s′ are unmatched after round g of
stage i of the Lanczos phase, where 0 ≤ r, r′ ≤ i − 1
and 1 ≤ s, s′ ≤ k, then uTr,s · vr′,s′ = 0 at this point in
the computation.

(c) If g is an even integer such that 0 ≤ g ≤ 2 ·∆n,k and r
and s are integers such that 0 ≤ r < i − ∆n,k + g/2
and 1 ≤ s ≤ k, and ur,s (respectively, vr,s) is un-
matched after round g, then uTr,s ·va,b = 0 (respectively,

uTa,b · vr,s = 0) after round g for all integers a and b
such that 0 ≤ a ≤ i and 1 ≤ b ≤ k.

Proof. The above claims will be established by induction
on g. The strong form of induction will be useful here, since
part (c) includes conditions that are only satisfied when g is
even.

Basis: It follows by Lemma A.7, above, that Invariants #2
and #3 hold once again after the initialization of ui,s and vi,s
for 1 ≤ s ≤ k.

If 0 ≤ r ≤ i − 1 and 1 ≤ s ≤ k then A · wr,s = vr,s
after the initialization of the vectors ui,s′ and vi,s′ because
Invariant #6 was satisfied at the end of stage i−1 and none
of the vectors vr,s or wr,s such that 0 ≤ r ≤ i − 1 and
1 ≤ s ≤ k were changed by this initialization. Since wi,s =
vi−1,s and A · vi−s,s, vi,s = A · wi,s at the beginning of the
initialization process, re-establishing Invariant #6 at that
point. It follows by the correctness of the orthogonalization
process (see Lemma A.2, above) that Invariant #6 holds at
the end of the initialization of ui,s and vi,s as well.

Invariant #7 also holds at the end of the initialization
of ui,s and vi,s, as needed to establish part (a) of the claim,
because it held at the end of stage i − 1 and none of the
values referred to in this invariant have been modified.

Now, since none of the vectors ur,s or vr,s such that 0 ≤
r ≤ i − 1 and 1 ≤ s ≤ k are changed by these initial op-
erations, and since Invariants #3–5 were also satisfied at
the end of stage i− 1, part (b) of the claim follows because
Invariant #4 was satisfied at the end of stage i− 1.

Part (c) holds because Invariant #5 also held at the end
of stage i − 1: There are no vectors ur,s or vr,s such that
0 ≤ r < i−∆n,k that are unmatched at this point at all, so
the claim is vacuous.

Inductive Step: Suppose 0 ≤ g ≤ 2 · ∆n,k and that the
above conditions are satisfied for every integer h such that
0 ≤ h ≤ g. It is necessary and sufficient to establish that
they are satisfied for g + 1 as well.

Let us first consider part (a) of the claim. Round g + 1
begins with a matching update that extends the sequence of
vectors shown at line (1) and (2). It follows by the correct-
ness of the match procedure (see, in particular, Lemma A.3)
that Invariants #2, 6 and 7 are satisfied once again after
this update.

Invariants #2 and 7 are satisfied at the end of round g+1
because none of the remaining (orthogonalizaton) opera-
tions modify any of the values mentioned in them. It fol-
lows the correctness of the orthogonalization procedure (see
Lemma A.2, once again) that Invariant #6 is satisfied at the
end of this round as well.

In remains to re-establish Invariant #3. The cases g ≤
2 ·∆n,k−1 and g = 2 ·∆n,k are considered separately below.

Case: 0 ≤ g ≤ 2 · ∆n,k − 1. Once again, round g + 1
begins with a matching update.that extends the sequences
of vectors shown at lines (1) and (2). In particular, either

1. unmatched vectors ur,s are matched with unmatched
vectors vi,s′ , for some integer r such that 0 ≤ r ≤ i−1,
or

2. unmatched vectors ui,s are matched with unmatched
vectors vr,s′ for some integer r such that 0 ≤ r ≤ i− 1,
instead.

In particular, this is the case for r = i − ∆n,k + bg/2c.
The round ended with a series of orthogonalization steps
(described above and, as needed again, below).

Subcase 1: In this case g is odd and Lemma A.8 is appli-
cable; it now suffices to show that if 0 ≤ a ≤ i, 1 ≤ b ≤ k,
and ua,b (respectively, va,b) is unmatched at the end of
round g+ 1 then uTa,b · νc = 0 (respectively, µTc · va,b = 0) for
1 ≤ c ≤ ` at the end of round g + 1.

Now it follows by the inductive hypothesis that if µc and νc
were already matched at the end of round g then uTa,b ·νc = 0

(respectively, µTc ·va,b = 0) at the end of round g+1 — Invari-
ant #3 was satisfied at the end of round g, the values of µc
and νc have not been changed during round g + 1, and the
value of ua,b (respectively, va,b) at the end of round g+1 is a
linear combination of the values of vectors ue,f (respectively,
ve,f ) that were unmatched at the beginning of round g + 1,
and at the end of round g — see Lemma A.8, above.

Similarly, if 0 ≤ a < r then a < i − ∆n,k + g/2 as well,
and it follows by part (c) of the inductive hypothesis that,
at the end of round g, uTa,b · vd,e = 0 for all integers d and e
such that 0 ≤ d ≤ i and 1 ≤ e ≤ k.

Once again, it follows by Lemma A.8 that the value of ua,b
is a linear combination of the values of vectors ua′,b′ at the
end of round g, for a′ and b′ such that 0 ≤ a′ ≤ a, 1 ≤ b′ ≤ k,
and ua′,b′ was also unmatched at the end of round g. It also
follows by this lemma that the value of vd,e is now a linear
combination of the values of vectors vd′,e′ (for 0 ≤ d′ ≤ i
and 1 ≤ e′ ≤ k) as they were defined at the end of round g.
This suffices to establish that uTa,b · vd,e = 0 at the end of

round g+1 as well. In particular, it establishes that uTa,b·νc =
0 at the end of round g + 1 if µc was unmatched at the end
of round g but matched at the end of round g + 1.

On the other hand, if r ≤ a ≤ i then the matching step in
round g+ 1 is followed by an orthogonalization step orthog-
onalizing still-unmatched vectors ua,b and newly matched
vectors νc = vi,s′ , so it follows by the correctness of the
orthogonalization process that ua,b · νc = 0 at the end of
round g + 1 in this case, as well.

Consider still-unmatched vectors va,b and newly matched
vectors µc. Now, if 0 ≤ a ≤ i− 1 and 1 ≤ b ≤ k then, since
µc = ur,s for 0 ≤ r ≤ i − 1, and ur,s and va,b were each
unmatched at the end of round g, it follows by part (b) of
the inductive hypothesis that that µTc · va,b = uTr,s · va,b = 0
at the end of round g — and, indeed, that ur′,s′ · va′,b′ = 0
at the end of round g as well, for all integers a′, b′, r′, s′ such
that 0 ≤ a′, r′ ≤ i − 1, 1 ≤ b′, s′ ≤ k, and ur′,s′ and va′,b′
were each unmatched at the end of round g.

Once again, it follows by Lemma A.8 that the value of va,b
at the end of round g+1 is a linear combination of the values
of unmatched vectors va′,b′ , for 0 ≤ a′ ≤ a and 1 ≤ b′ ≤ k, as
these values were defined at the end of round i. The lemma
implies that the value of ur,s at the end of round g + 1 is
a linear combination of values ur′,s′ for r′ and s′ such that
0 ≤ r′ ≤ r and 1 ≤ s′ ≤ k and ur′,s′ was unmatched at the
end of round g, as these values were defined at the end of
round g as well. It follows that uTr,s · va,b = µTc · va,b = 0 at



the end of round g + 1 once again.
It remains only to consider the case that a = i. In this

case one should note that the matching step in round g+1 is
followed by an orthogonalization step, orthogonalizing still-
unmatched vectors va,b with newly matched vectors µc, and
ensuring that µTc · va,b = 0 as well.

It follows (finally) that Invariant #3 is satisfied at the end
of round g + 1 if this subcase is applicable.

Subcase 2: The proof for this other subcase is almost iden-
tical — the roles of vectors ua,b and va,b must simply be
interchanged in the argument, and Lemma A.9 must be ap-
plied instead of Lemma A.8.

Case: g = 2 ·∆n,k. In this case the argument needed to
re-establish Invariant #3 is similar to, but simpler, than the
above.

In particular, in this case, the matching phase matches
vectors ui,s with vectors vi,s′ .

Now, if 0 ≤ r ≤ i − 1, 1 ≤ s ≤ k, and ur,s (respectively,
vr,s) was unmatched at the end of round g then an applica-
tion of part (c) of the inductive hypothesis establishes that
uTr,s · vi,t = 0 for every unmatched vector vi,t (respectively,

uTi,t · vr,s = 0 for every unmatched vector ui,t) at the end
of round g. It follows by Lemma A.8 that, at the end of
this round, the value of an unmatched vector ur,s (respec-
tively, vr,s) is a linear combination of the values of vectors
ur′,w (respectively, vr′,w) such that 0 ≤ r′ ≤ r, 1 ≤ w ≤ k,
and ur′,w (respectively, vr′,w) was unmatched at the end
of round g — as these values were defined after round g.
Thus uTr,s · vi,s′ = 0 (respectively, ui,s′ · vr,s = 0), so that

uTr,s · νc = 0 (respectively, µTc · vr,s = 0) whenever ur,s (re-
spectively, vr,s) is still unmatched after round g + 1 and µc
and νc were newly matched in this final round.

On the other hand, if r = i, then the matching step is
followed by orthogonalization steps that orthogonalize still-
unmatched vectors ur,s with newly matched vectors νc =
vi,t and that orthogonalize still unmatched vectors vr,s with
newly matched vectors µc = ui,t, as well. The correctness of
the orthogonalization process suffices to complete the proof
(at long last) that Invariant #3 is also established at the
end of this final round, as needed to complete the proof that
part (a) of the claim holds.

The proof that part (b) holds after round g + 1, if it held
after round g, is more straightforward: If r, s, r′ and s′ are
integers such that 0 ≤ r, r′ ≤ i − 1, 1 ≤ s, s′ ≤ k, and ur,s
and vr′,s′ are also both unmatched at the end of round g+1
then they were unmatched at the end of round g as well.
Once again, Lemma A.8 establishes that the value of ur,s at
the end of round g + 1 is a linear combination of the values
of vectors ua,b such that 0 ≤ a ≤ r, 1 ≤ b ≤ k, and ua,b
was unmatched at the end of round g, as these values were
defined at the end of round g. Similarly, the value of vr′,s′ at
the end of round g + 1 is a linear combination of the values
of vectors va′,b′ such that 0 ≤ a′ ≤ r′, 1 ≤ b′ ≤ k, and va′,b′
was unmatched at the end of round g, as these values were
defined at the end of round g, as well. Since (by part (b) of
the inductive hypothesis) uTa,b · va′,b′ at the end of round g

for a, b, a′ and b′ as above, uTr,s · vr′,s′ = 0 at the end of
round g + 1 as well, as required to establish part (b).

Finally, let us consider part (c) of the claim.
If g+ 1 is an odd integer then there is nothing to be done

to establish this, because (when g + 1 is being considered)
the claim is vacuous.

With that noted, suppose, instead, that g + 1 is an even

integer. Then g ≥ 1 and g− 1 is a nonnegative even integer
— so that the inductive hypothesis can be applied to make
conclusions about the state of vectors after round g − 1.

Consider a vector ur,s that is unmatched after round g+1,
where 0 ≤ r < i −∆n,k + (g + 1)/2 and 1 ≤ s ≤ k. Either
0 ≤ r < i−∆n,k+(g−1)/2 as well, or r = i−∆n,k+(g−1)/2;
these subcases are considered separately below.

Subcase: 0 ≤ r < i−∆n,k + (g − 1)/2. In this case, since
g−1 is also a nonnegative integer, it follows by the inductive
hypothesis that uTr,s · va,b = 0 for every vector va,b such that

0 ≤ a ≤ i and 1 ≤ b ≤ k. Furthermore, uTr′,s′ · va′,b′ = 0

for every vector ur′,s′ such that 0 ≤ r′ ≤ r, 1 ≤ s′ ≤ k, and
ur′,s′ was also unmatched at the end after round g− 1, and
for every vector va′,b′ such that 0 ≤ a′ ≤ i and 1 ≤ b′ ≤ k,
as well.

Once again, Lemmas A.8 and A.9 establish that the up-
dates in rounds g and g+1 only update the value of ur,s, for
r and s as above, by replacing it with a linear combination of
the values of vectors ur′,s′ such that 0 ≤ r′ ≤ r, 1 ≤ s′ ≤ k,
and ur′,s′ was also unmatched at the end of round g − 1
— as these values were defined at the end of round g − 1.
They only update the value of va,b by replacing it with a
linear combination of the values of vectors va′,b′ such that
0 ≤ a′ ≤ i and 1 ≤ b′ ≤ k, as these values were defined at
the end of round g − 1, as well. Consequently uTr,s · va,b = 0
at the end of round g + 1.

The argument needed to establish that uTa,b · vr,s if 0 ≤
r < i−∆n,k +(g−1)/2, 1 ≤ s ≤ k, vr,s is unmatched at the
end of round g + 1, 0 ≤ a ≤ i and 1 ≤ b ≤ k, is the same —
the roles of vectors ur,s and vr,s need only be exchanged.

Subcase: r = i −∆n,k + (g − 1)/2. In this case, part (c)
can be established by noticing that rounds g and g + 1 in-
clude matching phases in which unmatched vectors ur,s (re-
spectively, vr,s) are matched with unmatched vectors vi,s′
(respectively, ui,s′).

Now, the unmatched vectors ur,s are orthogonal to all
matched vectors vr′,s′ such that 0 ≤ r′ ≤ i and 1 ≤ s ≤
k, because Invariant #3 has been re-established, as noted
above.

They are orthogonal to all unmatched vectors vr′,s′ such
that 0 ≤ r′ ≤ i − 1 and 1 ≤ s′ ≤ k because property (b)
holds once again (as established above), as well.

Finally, to see that they are also orthogonal to all un-
matched vectors vi,s′ , recall that rounds g and g + 1 in-
cluding a matching step in which the vectors ur,s, that are
unmatched at the beginning of round g, are matched with
the unmatched vectors vi,s′ that are unmatched at the be-
ginning of this round. Since Invariants #2 and #3 hold at
the end of this round (as noted above), this is now a conse-
quence of Lemma A.10, above.

The corresponding result for unmatched vectors vr,s, that
is needed to establish part (c), follows by the same argument.

The claim now follows by induction on g.

Lemma A.13. Let i be an integer such that i ≥ 1 and
there are at least i + 1 stages of the Lanczos phase of the
computation (ending with stage i). Suppose, as well, that
Invariants #2–7 are satisfied at the end of stage i− 1 of the
computation.

Then Invariants #2–4, 6 and 7 are satisfied at the end of
the end of stage i of the Lanczos phase as well.

Proof. It follows by Lemma A.12 that Invariants #2, 3,
6 and 7 are satisfied at the end of stage i, so it remains only



to establish Invariant #4.
It also follows by the above lemma that, at the end of

round 2 ·∆n,k of stage i, uTa,b · vc,d = 0 for all integers a, b, c
and d such that 0 ≤ a ≤ i− 1, 1 ≤ b ≤ k, ua,b is unmatched
after round 2 · ∆n,k, 0 ≤ c ≤ i and 1 ≤ d ≤ k. It follows
by this lemma, as well, that, at the end of round 2 · ∆n,k,
uTa,b ·vc,d = 0 for all integers a, b, c and d such that 0 ≤ a ≤ i,
1 ≤ b ≤ k, 0 ≤ c ≤ i− 1, 1 ≤ d ≤ k, and vc,d is unmatched
after this round.

Lemmas A.8 and A.9 imply that the above orthogonality
conditions are still satisfied at the end of round 2·∆n,k+1 —
that is, at the end of stage i of the Lanczos phase — as well:
For, after round 2 · ∆n,k + 1, the value of each unmatched
vector ua,b (respectively, va,b) for 0 ≤ a ≤ i − 1 and 1 ≤
b ≤ k is a linear combination of the values of the vectors
ua′,b′ (respectively, va′,b′) such that 0 ≤ a′ ≤ a and 1 ≤
b′ ≤ k, as defined at the beginning of this round. Similarly,
the value of each vector vc,d (respectively, uc,d) after this
round is a linear combination of the values of vectors vc′,d′
(respectively, uc′,d′) such that 0 ≤ c′ ≤ c and 1 ≤ d′ ≤ k as
defined at the beginning of this round as well.

It remains only to establish that if 1 ≤ a, b ≤ k and ui,a
and vi,b are both unmatched after round 2 ·∆n,k + 1, then
uTi,a · vi,b = 0 as well. Since round 2 · ∆n,k + 1 includes a
matching step in which unmatched vectors ui,a are matched
with unmatched vectors vi,b, and Invariants #2 and 3 are
satisfied after this round, this follows by Lemma A.10.

Lemma A.14. Let i be an integer such that i ≥ 0 and
there are at least i + 1 stages of the Lanczos phase of the
algorithm. Then Invariants #2–#7 are satisfied at the end
of each of the first i stages and Invariants #2–#4, 6 and 7
are satisfied at the end of stage i (that is, the i + 1st stage)
as well.

Proof. The claim can now be established by induction
on i.

It follows by Lemma A.11 that Invariants #2–4, 6 and 7
are satisfied at the end of stage 0 of the Lanczos phase, as
required to establish the basis.

Suppose (for the inductive step) that i ≥ 0, there are at
least i + 2 stages of the Lanczos phase, ending with with
stage i + 1, and that Invariants #2–4, 6 and 7 are satisfied
at the end of stage i. Invariant #5 must also be satisfied
at this point, because the Lanczos phase of the computation
does not end with stage i. Lemma A.13 now implies that
Invariants #2–4, 6 and 7 are established after stage i+ 1 as
well, as needed to complete the proof.

Proof of Lemma 2.1. This is now a straightforward con-
sequence of Lemmas A.4, A.6 and A.14, above.

Proof of Lemma 2.2. This is now a straightforward corol-
lary of Lemmas A.4 and A.14.

A.2.3 Bounding the Cost of the Lanczos Phase

Lemma A.15. Suppose i ≥ 0 and there are at least i +
1 stages of the Lanczos phase (ending with stage i). Then
there are at most ∆n,k · k unmatched vectors ur,s such that
0 ≤ r ≤ i−1 and 1 ≤ s ≤ k, and at most ∆n,k ·k unmatched
vectors vr,s such that 0 ≤ r ≤ i − 1 and 1 ≤ s ≤ k, at the
end of stage i− 1.

Proof. Since the Lanczos phase did not end at stage i−1,
Invariant #5 was satisfied at the end of this stage — so that

the vectors ur,s and vr,s such that 0 ≤ r ≤ i − 1 − ∆n,k

and 1 ≤ s ≤ k were all unmatched. Consequently the only
vectors that could be unmatched at this point are the vectors
ur,s (respectively, vr,s such that i − ∆n,k ≤ r ≤ i − 1 and
1 ≤ s ≤ k. The claim now follows since only ∆n,k · k such
vectors exist.

The following lemma is now easily established using Lem-
mas A.1, A.2, A.3, the fact (by inspection of the code) that
O(∆n,k ·k) matched vectors are stored at any point, and fact
(established by the lemma above) that there are at most
∆n,k · k unmatched vectors ur,s (respectively, vr,s) at the
beginning of any stage of the Lanczos phase, as well.

Lemma A.16. The cost of the initialization step and each
stage of the Lanczos phase can be bounded as follows.

(a) The initialization step requires k + 1 multiplications of
vectors by A, the selection of 2k vectors uniformly and
independently from Fn×1

q , and O(n) additional opera-
tions over Fq.

(b) Stage 0 requires O(n ·k2) additional operations over Fq.

(c) If i ≥ 1 and there are at least i+ 1 stages of the Lanc-
zos phase (ending with stage i), then stage i requires
k multiplications of vectors by A, k multiplications of
vectors by AT , and O(∆2

n,k ·k2 ·n) additional operations
over Fq.

(d) O(∆n,k · k) vectors and additional values are stored at
any time, so the algorithm requires space required to
store O(∆n,k ·k ·n) elements of Fq as well as O(∆n,k ·k)
nonnegative integers with values between 0 and n.

A.3 A More Detailed Description of the Elim-
ination Phase

A.3.1 Initialization
The following procedure defines matricesML,MR,Mpre

R ∈
Fn×tq that will be used (as global data) for orthogonalization
steps during the Lanczos phase.

procedure setup

1. If the entries of the list M (used during the Lanczos
phase) are

((r1, s1), (r′1, s
′
1)), ((r2, s2), (r′2, s

′
2)),

. . . , ((rt, st), (r
′
t, s
′
t))

then set ML ∈ Fn×tq to be the matrix with columns

ur1,s1 , ur2,s2 , . . . , urt,st ,

set MR ∈ Fn×tq to be the matrix with columns

vr′1,s′1 , vr′2,s′2 , . . . , vr′t,s′t ,

and set Mpre
R ∈ Fn×tq to be the matrix with columns

wr′1,s′1 , wr′2,s′2 , . . . , wr′t,s′t

— so that A · Mpre
R =MR and MT

L · MR = It.

end procedure

The following lemma is a consequence of the fact that In-
variants #2 and #6 were satisfied at the end of the Lanczos
phase of the computation (and inspection of the code).



Lemma A.17. Procedure setup, above, produces matrices
ML,MR,Mpre

R ∈ Fn×tq such thatMT
L ·MR = It ∈ Ft×tq and

such that A · Mpre
R =MR.

A.3.2 An “Orthogonalization” Step
A routine orthogonalize will receive as inputs a pair of

matrices Mnew ,Mpre
new ∈ Fn×hq such that A · Mpre

R = MR

and will ensure that the columns of Mnew are orthogonal
to the vectors µ1, µ2, . . . , µ` that had been produced at the
end of the Lanczos phase of the algorithm.

procedure orthogonalize(Mnew ,Mpre
new )

1. D := MT
L · Mnew ∈ Ft×hq

2. Mnew := Mnew −MR ·D
3. Mpre

new := Mpre
new −Mpre

R ·D
4. return(Mnew , Mpre

new )

The following lemma is of use in establishing the correct-
ness of this procedure.

Lemma A.18. Suppose that j ≥ 1, there are at least j+ 1
stages of the elimination phase, and that Invariant #9 is
satisfied at the beginning of stage j. Then, if t is an integer
such that either µt = ug,h or νt = vg,h where 0 ≤ g ≤
i − 2 · ∆n,k − 3 and 1 ≤ h ≤ k, then µTt · (A · ϕs) = 0
for every integer s such that 1 ≤ s ≤ g at the beginning of
stage j of the elimination phase.

Proof. Note first that, since Invariant #5 was satisfied
at the end of round i− 1 of the Lanczos phase, it follows by
Lemma A.5 that if t is as above then

AT · µt =
∑̀
t=1

αa,t · µa (24)

where αa,t ∈ Fq for 1 ≤ a ≤ ` and, furthermore, αa,t = 0
unless the vector µa was matched at or before the end of
round i− 2 of the Lanczos phase.

The cases j = 1 and j ≥ 2 are considered separately
below.

Case: j = 1. Examining the details of stage 0 of the
elimination phase one should note that, at the beginning of
stage 1, every vector ϕr such that 1 ≤ r ≤ g is a linear
combination of

• vectors vs,t such that 0 ≤ s ≤ i, 1 ≤ t ≤ k, and the
vector vs,t was unmatched at the end of stage i of the
Lanczos phase, and

• vectors vi,t such that 1 ≤ t ≤ k and vi,t was matched
at the end of stage i of the Lanczos phase.

Now, if vs,t was unmatched at the end of stage i of the
Lanczos phase then it follows by Invariant #4 (which was
satisfied at that point) that µTa · vs,t = 0 for 1 ≤ a ≤ `. On
the other hand, if vi,t was matched at the end of stage i and
µa was matched at or before the end of stage i − 2 of the
Lanczos phase then vi,t = νw for an integer w > a, since
vi,t was necessarily matched during round i. Invariant #2
(which was also satisfied at the end of stage i of the Lanczos
phase) implies that µTa · vi,t = µTa · νw = 0 as well.

It follows that µTa ·ϕr for every integer a such that αt,a 6= 0,
and the equation shown above at line (24) implies that

µTt · (A · ϕr) = (AT · µt)T · ϕr = 0.

Case: j ≥ 2. The argument for this case is similar but
simpler. Notice that, after the application of the update
step at the end of stage j−1 (and the beginning of stage j),
each vector ϕr (such that 1 ≤ r ≤ g) is equal to one of the
vectors λs that was included during stage j − 1 — so that
Invariant #9 implies that µTa ·ϕr = µTa ·λs = 0 for 1 ≤ a ≤ `.

Once again, the equation at line (24) can now be used to
establish that

µTt · (A · ϕr) = (AT · µt)T · ϕr = 0

as required.

Since the above procedure is not called during stage 0 of
the elimination phase at all, this suffices to establish (the
harder part of) the following as well — note that, before
step 2 of the procedure orthogonalize,

MT
L · (Mnew −MR ·D) =MT

L · Mnew −D = 0 ∈ Ft×hq ,

so that MT
L · Mnew = 0 after step 2 has been carried out.

Lemma A.19. Suppose that procedure orthogonalize is ex-
ecuted with a pair of matricesMnew,Mpre

new ∈ Fn×hq such that
A · Mpre

new = Mnew as its inputs. Then, on termination of
this procedure, the following properties are satisfied.

(a) The subspace of Fn×1
q spanned by the vectors

ν1, ν2, . . . , ν`

and the columns of Mnew will not have been changed.

(b) µTr · Mnew = 0 for 1 ≤ r ≤ `.
(c) A · Mpre

new =Mnew.

(d) No matrices (or other data) except for the matricesMnew

and Mpre
new will have been changed.

The procedure uses O(∆n,k · k · h · n) operations over Fq
using standard arithmetic.

A.3.3 An “Elimination” Step
A routine eliminate will receive matrices Mnew ,Mpre

new ∈
Fn×hq and will ensure that, following the update,

P · Mnew =

[
0

M̂new

]
for a matrix M̂new ∈ F

(n−m)×h
q . The algorithm makes use

of the permutation P and matrices Mκ and Mλ as defined
for the elimination stage (and considered in Invariants #12
and #13).

procedure eliminate(Mnew ,Mpre
new )

1. Let Y ∈ Fm×hq and let Lλ be the nonsingular lower
triangular matrix in Fm×mq such that

P · Mnew =

[
Y
Z

]
and P ·Mλ =

[
Lλ
Xλ

]
for matrices Z ∈ F

(n−m)×h
q and Xλ ∈ F

(n−m)×m
q .

2. W := L−1
λ · Y ∈ Fm×hq

3. Mnew := Mnew −Mλ ·W
4. Mpre

new := Mpre
new −Mκ ·W

end procedure



Lemma A.20, below, follows by inspection of the code:
Note that, after step 2,

P ·Mλ ·W =

[
Lλ
Xλ

]
·W =

[
Y

Xλ ·W

]
so it will be true that

P · Mnew =

[
0

M̂new

]
after step 3, as required. Since A ·Mκ = Mλ, it will be true
that A · Mpre

new =Mnew after step 4, as well.

Lemma A.20. Suppose that procedure eliminate is executed
with a pair of matrices Mnew,Mpre

new ∈ Fn×hq , such that

µTr · Mnew = 0 for 1 ≤ r ≤ ` and A · Mpre
new = Mnew, as

its inputs.
Suppose as well, that Invariants #10–12 are satisfied when

the procedure is executed.
Then, on termination, the following properties are satis-

fied.

(a) The subspace of Fn×1
q spanned by the columns of Mλ

and Mnew has not been changed.

(b) µTr · Mnew = 0 for 1 ≤ r ≤ `.

(c) P · Mnew =

[
0

M̂new

]
for a matrix M̂new ∈ F

(n−m)×h
q .

(d) A · Mpre
new =Mnew.

(e) No matrices (or other data) except for the matricesMnew

and Mpre
new will have been changed.

The procedure uses O(nmh) operations over Fq using stan-
dard arithmetic.

A.3.4 A “Compression” Step
The next procedure receives, as input, a pair of matrices

V ∈ Fr×sq and W ∈ Fn×sq (for r ≤ n) such that

A ·W = PT ·
[

0
V

]
(25)

and, reducing r as needed, modifies V in order to ensure that
the column space of the matrix has been unchanged but the
columns are now linearly independent — while ensuring that
an equation as shown at line (25) is satisfied, once again.

procedure compress(V,W )
1. Compute the rank t of V as well as a matrix X ∈ Fs×tq

such that the matrix V ·X has full rank t.
2. V := V ·X
3. W := W ·X
4. s := t
5. return(V,W )
end procedure

Lemma A.21, below, follows by inspection of the above
code.

Lemma A.21. Suppose that procedure compress is executed
with a pair of matrices V ∈ Fr×sq and W ∈ Fn×sq such the
equation at line (25), above is satisfied.

Then, on termination of the procedure, the following prop-
erties are satisfied.

(a) The column space of V has not been changed (but the
number s of columns in each of the matrices V and W
may have been reduced).

(b) An equation of the form shown at line (25) is satisfied,
once again.

(c) The columns of V are linearly independent.

(d) No matrices (or other data) except for V and W have
been changed.

The procedure uses O(n·s2) operations over Fq using stan-
dard arithmetic.

A.3.5 A “Triangularization” Step
The next procedure receives, as inputs a pair of matrices

V ∈ Fr×sq and W ∈ Fn×sq (for r ≤ n) such that the equation
at line (25) is satisfied, and the columns of V are linearly
independent.

It modifies V and W in such a way that the column space
and dimension of V have not been changed, and the equa-
tion at line (25) is once again satisfied, but there exists a

permutation matrix P̂ ∈ Fr×rq such that the top r rows of

P̂ · V is a lower triangular matrix with ones on its diagonal.

The permutation matrix P̂ is also returned as output.

procedure triangularize(V,W )

1. Compute a P̃ -L̂-Û factorization of V —that is, com-

pute a permutation matrix P̃ ∈ Fr×rq , a lower trian-

gular matrix Û ∈ Fr×sq with ones on its diagonal, and

a nonsingular upper triangular matrix Û ∈ Fs×sq such

that V = P̃ · L̂ · Û .

2. Û inv := Û−1

3. V := V · Û inv

4. W : W · Û inv

5. P̂ := P̃T

6. return (V,W, P̂ )

end procedure

Lemma A.22 follows by inspection of the above code.

Lemma A.22. Suppose the procedure triangularize is exe-
cuted with a pair of matrices V ∈ Fr×sq and W ∈ Fn×sq as
inputs such that the equation at line (25) is satisfied, and
the columns of V are linearly independent,.

Then, on termination of the procedure, the following prop-
erties are satisfied.

(a) The column space of V has not been changed.

(b) An equation of the form shown at line (25) is satisfied,
once again.

(c) P̂ · V = L̂, where P̂ ∈ Fr×rq is a permutation matrix

and L̂ ∈ Fr×sq is a lower triangular matrix with ones on
its diagonal.

The procedure uses O(n · s2) operations over Fq using stan-
dard arithmetic.

A.3.6 “Solution” and “Update” Steps
The final procedure completes a stage of the elimination

phase. It also receives as input a permutation matrix P̂ ∈
F

(n−m)×(n−m)
q and a matrix M̂new ∈ F

(n−m)×h
q such that

P · Mnew =

[
0

M̂new

]



and such that

P̂ · M̂new =

[
L̃
X

]
where L̃ ∈ Fh×hq is lower triangular with ones on its diagonal

and where X ∈ F
(n−m−h)×h
q .

procedure solve and update(P̂ ,Mnew ,M̂new ,Mpre
new )

1. Set ρ̂ ∈ F
(n−m)×1
q to be the vector such that

P · ρ =

[
0
ρ̂

]
(see Invariant #13, above).

2. Set L̃ ∈ Fh×hq to be the lower triangular matrix with
ones on its diagonal such that

P̂ · M̂new =

[
L̃
X

]
for X ∈ F

(n−m−h)×h
q and set ρ̂1 ∈ Fh×1

q to be the
vector such that

P̂ · ρ̂ =

[
ρ̂1

y

]
for a vector y ∈ F

(n−m−h)×1
q .

3. η := L̃−1 · ρ̂1 ∈ Fh×1
q

4. ρ := ρ−Mnew · η
5. χ := χ+Mpre

new · η

6. P :=

[
Im

P̂

]
· P ∈ Fn×nq

7. Mϕ := Mnew (so that g is now equal to the number
of columns in Mnew )

8. Append the columns of the matricesMnew andMpre
new

onto the matrices Vλ and Vκ respectively (adding h to
the value of m in the process).

end procedure

Lemma A.23. Suppose the procedure solve and update is

executed with inputs P̂ ∈ Fm×mq , Mnew ∈ Fn×hq , M̂new ∈
F

(n−m)×h
q , and Mpre

new ∈ Fn×hq , such that the following prop-
erties are satisfied.

(a) Invariants #8–10 and #12–13 are satisfied.

(b) P · Mnew =

[
0

M̂new

]
.

(c) P̂ · M̂new is lower triangular with ones on its diagonal.

(d) µTa · Mnew = 0 for 1 ≤ a ≤ `.
(e) A · Mpre

new =Mnew.

Let X ⊆ Fn×1
q be the column space of the matrix[

Mλ Mnew

]
∈ Fn×(m+r)

q

and let Y be the columnspace of the matrix Mnew (for the
matrix Mλ as defined at the beginning of the execution of
the procedure). Then the following properties are satisfied
on termination of the procedure.

(a) Mλ now has column space X .

(b) The columns of Mϕ are linearly independent and Mϕ

has column space Y.

(c) Invariants #9, 10, 12 and #13 are satisfied once again.

The procedure uses O(n·h) operations over Fq using standard
arithmetic.

Proof. Since the columns ofMnew have been appended
as new columns of Mλ at step 8, above, and these matrices
are otherwise unchanged, part (a) of the claim follows by
inspection of the code.

Following step 7 (and the rest of the procedure) the columns
of Mϕ are those of the above matrix Mnew . Now, as noted
above (and using the original value of the matrix P here),[

Im
P̂

]
· P · Mnew =

 0

L̃
X

 (26)

where L̃ ∈ Fh×hq is a lower triangular matrix with ones on
its diagonal — establishing the linear independence of the
columns of Mnew (and of Mϕ).

Since Y is the column space of the matrixMnew it follows
by inspection of the code (specifically, step 7) that Mϕ now
has column space Y, as needed to establish part (b).

Since µTa ·Mnew = 0 for 1 ≤ a ≤ `, it follows by inspection
of the code (specifically, step 8) that Invariant #9 is satisfied
on termination of this procedure if it was satisfied before it.

Since P is modified to have value[
Im

P̂

]
· P

at step 6, and the columns of Mnew are appended to Mλ

at step 8, the equation at line (26), above, establishes that
Invariant #10 will be satisfied on termination of this proce-
dure if it was initially satisfied, as well.

Since A ·Mpre
new =Mnew , one can see by inspection of the

code (specifically, step 8) that Invariant #12 is satisfied at
the end of the execution of this procedure if it was satisfied
before it too.

In order to consider Invariant #13 let us denote by χ
and ρ the values of these vectors before the execution of
this procedure, and denote by χ′ and ρ′ the values of these
vectors after it. Then

χ′ = χ+Mpre
new · η and ρ′ = ρ−Mnew · η

for the vector η ∈ Fh×1
q defined at step 3, above. Then

A · χ′ + ρ′

= A · (χ+Mpre
new · η) + (ρ−Mnew · η)

= (A · χ+ ρ) + (Mnew · η −Mnew · η)
(since A · Mpre

new =Mnew )

= A · χ+ ρ

= A · w + b,

since Invariant #13 was initially satisfied. Furthermore, if
1 ≤ a ≤ ` then

µTa · ρ′ = µTa · (ρ−Mnew · η)

= µTa · ρ (since µTa · Mnew = 0)

= 0,

once again, because Invariant #13 was initially satisfied.
Now let P and P ′ denote the values of the permutation

matrix P before and after the execution of this procedure,



respectively. Then

P ′ · ρ′ =

[
Im

P̂

]
· P · (ρ−Mnew · η)

=

[
Im

P̂

]
·
([

0m
ρ̂

]
−
[

0m
M̂new

]
· η
)

=

0m
ρ̂1

y

−
0m
L̃
X

 · L̃−1 · ρ̂1

=

0m
ρ̂1

y

−
 0m

ρ̂1

X · L̃−1 · ρ̂1


=

[
0m+h

y −X · L̃−1 · ρ̂1

]
as needed to re-establish Invariant #13 and to establish
part (c) of the claim.

The claimed bound on the cost of this procedure follows

by inspection of the code — noting that, since L̃ ∈ Fh×hq

is lower triangular with ones on its diagonal, the cost to
compute the vector η at step 3 is in O(h2).

A.3.7 The Main Method

// Initialization

1. setup

// Stage #0

2. Set h to be the number of vectors vr,s such that 0 ≤
r ≤ i − 1, 1 ≤ s ≤ k, and vr,s was unmatched at
the end of (the final) stage i of the Lanczos phase.
Set Mnew ,Mpre

new ∈ Fh×hq to be the matrices whose
columns are the above vectors vr,s and corresponding
vectors wr,s, so that A · Mpre

new =Mnew .

3 Set m and g to be zero (since Mλ, Mκ and Mϕ have
zero columns) and set P to be the identity matrix In.

4. if (h > 0) then

5. (Mnew ,Mpre
new ) := compress(Mnew ,Mpre

new )

6. if (Mnew has at least one column) then

7. (Mnew ,Mpre
new , P̂ ) := triangularize(Mnew ,Mpre

new )

8. solve and update(P̂ ,Mnew ,Mnew ,Mpre
new )

end if

end if

9. Once again, set g to be 0 (removing all columns
from Mϕ). Set h to be the number of vectors vi,s
such that 1 ≤ s ≤ k and vi,s was unmatched at
the end of (the final) stage i of the Lanczos phase.
Set Mnew ,Mpre

new ∈ Fn×hq to be the matrices whose
columns are the above vectors vi,s (and corresponding
vectors wi,s), so that A · Mpre

new =Mnew , once again.

10. if (h > 0) then

11. (Mnew ,Mpre
new ) := eliminate(Mnew ,Mpre

new )

12. Set M̂new ∈ F
(n−m)×h
q to be the matrix such that

P · Mnew =

[
0

M̂new

]
.

13. (M̂new ,Mpre
new ) := compress(M̂new ,Mpre

new )

14. if (M̂new has at least one column) then

15. (M̂new ,Mpre
new , P̂ ) := triangularize(M̂new ,Mpre

new )

16. Mnew := PT ·
[

0

M̂new

]
17. solve and update(P̂ ,Mnew ,M̂new ,Mpre

new )

end if

end if

18. Append each vector vi,s such that 1 ≤ s ≤ k and vi,s
was matched at the end of (the final) stage i of the
Lanczos phase as a column of Mϕ (increasing g by the
number of such vectors).

// Stage #j for j ≥ 1

19. while (g > 0) do

20. h := g; Mpre
new := Mϕ; Mnew := A · Mpre

new

21. Remove all of the columns from Mϕ and set g to
be 0

22. (Mnew ,Mpre
new ) := orthogonalize(Mnew ,Mpre

new )
23. (Mnew ,Mpre

new ) := eliminate(Mnew ,Mpre
new )

24. Set M̂new ∈ F
(n−m)×h
q to be the matrix such that

P · Mnew =

[
0

M̂new

]
.

25. (M̂new ,Mpre
new ) := compress(M̂new ,Mpre

new )

26. if (M̂new has at least one column) then

27. (M̂new ,Mpre
new , P̂ ) := triangularize(M̂new ,Mpre

new )

28. Mnew := PT ·
[

0

M̂new

]
29. solve and update(P̂ ,Mnew ,M̂new ,Mpre

new )

end if

end while

// Recovery of Solution

30. if (ρ == 0) then
31. x := χ− w
32. Return x as a vector such that A · x = b

else

33. Report that no vector x such that A · x = b was
found.

end if

A.4 On the Correctness and Efficiency of the
Elimination Phase

A.4.1 Establishing the Invariants after Each Stage

Lemma A.24. Suppose that i, j ≥ 0, there were exactly i+
1 stages of the Lanczos phase, and that there are at least j+1
stages of the elimination phase. Then Invariants #8 and 11
are both satisfied at the end of stage #j of the elimination
phase.

Proof. The claim will be established by induction on j.
Basis: It will be helpful to begin by establishing the fol-

lowing properties, which hold at the end of the Lanczos
phase of the computation.

(a) The subspace spanned by ν1, ν2, . . . , ν`, and the vec-
tors vr,s such that 0 ≤ r ≤ i, 1 ≤ s ≤ k, and vr,s was
unmatched at the end of (the final) stage i of the Lanc-
zos phase, is the same as the subspace spanned by the
vectors Aa · vb such that 0 ≤ a ≤ i and 1 ≤ b ≤ k.

(b) The subspace spanned by ν1, ν2, . . . , ν`, the vectors vr,s
such that 0 ≤ r ≤ i, 1 ≤ s ≤ k, and vr,s was unmatched



at the end of stage i of the Lanczos phase, and the
vectors A · vi,t such that 1 ≤ t ≤ k, is the same as
the subspace spanned by the vectors Aa · vb such that
0 ≤ a ≤ i+ 1 and 1 ≤ b ≤ k.

To see that this is the case note, first, that the vectors
ν1, ν2, . . . , ν` and the unmatched vectors vr,s such that 0 ≤
r ≤ i and 1 ≤ s ≤ k are just the vectors vc,d such that
0 ≤ c ≤ i and 1 ≤ d ≤ k. Consequently the first claim is
implied by the fact that Invariant #1 is satisfied at the end
of stage i of the Lanczos phase — see Lemma A.4, above.

Now consider a vector Aa · vb such that 0 ≤ a ≤ i+ 1 and
1 ≤ b ≤ k. If a ≤ i then it follows by the above that Aa ·vb is
a linear combination of the vectors vc,d such that 1 ≤ c ≤ r
and 1 ≤ d ≤ k. On the other hand, if a = i+ 1 then

Ai+1 · vb
= A · (Ai · vb)

= A ·

(
i∑

c=0

k∑
d=1

αc,d · vc,d

)
(by part (a), above)

= ζ +
k∑
d=1

αi,d ·A · vi,d

where

ζ =

i−1∑
c=0

k∑
d=1

αc,d ·A · vc,d

and where αc,d ∈ Fq for 0 ≤ c ≤ i and 1 ≤ d ≤ k.
Lemma A.4 implies that A · vc,d is a linear combination of

the vectors vr,s such that 0 ≤ r ≤ i and 1 ≤ s ≤ k whenever
0 ≤ c ≤ i− 1 and 1 ≤ d ≤ k, so it follows that ζ is a linear
combination of these vectors as well. Ai+1 · vb has now been
expressed as a linear combination of these vectors and the
vectors A · vi,t such that 1 ≤ t ≤ k — as needed to establish
that the subspace spanned by the vectors Aa · vb such that
0 ≤ a ≤ i + 1 and 1 ≤ b ≤ k is contained in the subspace
spanned by ν1, ν2, . . . , ν`, the unmatched vectors vr,s such
that 0 ≤ r ≤ i and 1 ≤ b ≤ k, and the vectors A · vi,t such
that 1 ≤ t ≤ k.

The opposite containment is easier to prove: It follows by
part (a), above, that each vector νa for 1 ≤ a ≤ ` and each
unmatched vector vr,s for 0 ≤ r ≤ i and 1 ≤ s ≤ k is a
linear combination of the vectors Ac · vd such that 0 ≤ c ≤ i
and 1 ≤ d ≤ k. Furthermore, since vi,t is in the subspace
spanned by the vectors Ac · vd such that 0 ≤ c ≤ i and
1 ≤ d ≤ k, for 1 ≤ t ≤ k, A · vi,t is in the subspace spanned
by the vectors Ac · vd such that 0 ≤ c ≤ i+ 1 and 1 ≤ d ≤ k.
This suffices to confirm that the two subspaces mentioned
in part (b) above the same, as required.

It should next be noticed that stage 0 of the elimination
phase consists of a pair of rounds — including the steps at
lines 2–8 and 9–18, respectively.

We first claim that, after the first of these rounds
”

the
sequence of vectors

λ1, λ2, . . . λm

spans the same subspace of Fn×1
q as the set of all vectors vr,s

such that 0 ≤ r ≤ i− 1, 1 ≤ s ≤ k and vr,s was unmatched
at the end of (the final) stage i of the Lanczos phase of the
computation. To see that this is the case, let us consider the
following alternative claim, which is certainly satisfied after
the initialization of the matrix Mnew at step 2.

(c) The subspace of Fn×1
q spanned by the columns ofMnew

is equal to the subspace of Fn×1
q spanned by the un-

matched vectors vr,s such that 0 ≤ r ≤ i − 1 and
1 ≤ s ≤ k.

Let us first consider the case that there are no unmatched
vectors vr,s such that 0 ≤ r ≤ i− 1 and 1 ≤ s ≤ k at all. In
this case the test at line 4 fails and this first round ends —
with m = 0 — and the above claim (concerning the vectors
λ1, λ2, . . . , λm) is trivially satisfied.

Suppose, instead, that there is at least one unmatched
vector vr,s such that 0 ≤ r ≤ i − 1 and 1 ≤ s ≤ k — but
that all such vectors are equal to 0. In this case the test at
line 4 is passed, and procedure compress is executed at line 5.
The matrixMnew is modified in such a way that its column
space is unchanged but its columns are linearly independent
— so that the number h of its columns is equal to 0 after
line 5 (see Lemma A.21, above). Consequently the test at
line 6 fails and the first round ends with m = 0 — as suffices
to establish the above claim, concerning λ1, λ2, . . . , λm, once
again.

Finally let us consider the case that there is at least one
nonzero vector vr,s such that 0 ≤ r ≤ i−1 and 1 ≤ s ≤ k and
vr,s is unmatched at the end of the final stage of the Lanczos
phase. Note, first, that claim (c), above, is satisfied after the
execution of procedure compress at line 5 because this does
not change the column space of Mnew (see Lemma A.21,
above). Now Mnew must still include at least column so
that h > 0 and the test at line 6 is passed, and lines 8 and 9
are also executed before the completion of the first round.

Claim (c) is also satisfied after the execution of the pro-
cedure triangularize at line 7 because this procedure does
not change the column space ofMnew or modify other data
either (see Lemma A.22, above).

Since m = 0 at this point it now follows by part (a) of
Lemma A.23 that the subspace spanned by λ1, λ2, . . . , λm
after the execution of solve and update is equal to the sub-
space spanned by the unmatched vectors vr,s such that 0 ≤
r ≤ i − 1 and 1 ≤ s ≤ k — for λ1, λ2, . . . , λm will span the
same subspace as the columns of Mnew after this step if m
was equal to 0 before it.

We next claim that, after the second round (that is, the
end of stage 0), Invariants #8 and #11 are both satisfied.
It will be helpful to consider the following claims, which are
satisfied after line 9, instead.

(d) The subspace of Fn×1
q spanned by the vectors

λ1, λ2, . . . , λm

is the same as the subspace spanned by the vectors
vr,s such that 0 ≤ r ≤ i − 1, 1 ≤ s ≤ k, and vr,s
was unmatched at the end of (the final) stage i of the
Lanczos phase.

(e) The subspace of Fn×1
q spanned by the vectors

λ1, λ2, . . . , λm

and the columns of Mnew is the same as the subspace
spanned by the vectors vr,s such that 0 ≤ r ≤ i, 1 ≤
s ≤ k, and vr,s was unmatched at the end of stage i of
the Lanczos phase.

(f) The subspace of Fn×1
q spanned by the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm,



and the columns ofMnew and A ·Mnew is the same as
the subspace spanned by the vectors Aa · vb such that
0 ≤ r ≤ i and 1 ≤ s ≤ k and the vectors A · vi,t such
that 1 ≤ t ≤ k and vi,t was unmatched at the end of
stage i of the Lanczos phase.

Clam (d) is satisfied because it was satisfied at the end
of the first round and none of the vectors λ1, λ2, . . . , λm
have been changed by the initialization of Mnew . Part (e)
is a consequence of the initialization ofMnew as describe at
line 9.

In order to see that part (f) is also correct at this point,
one should notice that it follows by Lemma A.4 and claim (e)
that the subspace spanned by the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

and the columns ofMnew is the is the same as that spanned
by the vectors Aa · vb such that 0 ≤ a ≤ i and 1 ≤ b ≤ k.
The claim now follows because, after line 9, the columns
of Mnew are the vectors vi,t such that 1 ≤ t ≤ k and vi,t
was unmatched at the end of the final stage of the Lanczos
phase.

Suppose, now, that there were no vectors vi,t such that
1 ≤ t ≤ k and vi,t was unmatched at the end of stage i of
the Lanczos phase at all. In this case h = 0 after line 9 so
that the test at line 10 fails, and the only other step executed
during stage 0 of the elimination phase is step 18. In this
case, Invariant #8 is satisfied at the end of stage 0 because
it is implied by claim (e), above, when the matrixMnew has
no columns, and because the vectors λ1, λ2, . . . , λm are not
changed by the execution of step 18.

Invariant #11 is satisfied as well because all of the vec-
tors vi,t such that 1 ≤ t ≤ k are included as columns of
Mϕ during the execution of step 18 in this case, so that the
invariant is now a consequence of Invariant #8 and prop-
erty (b), above.

Suppose next that there is at least one unmatched vector
vi,t such that 1 ≤ t ≤ k. In this case, h > 0 when this is
checked at line 10, so that steps 11 and 12 will be executed.

Consider the effects of the execution of procedure eliminate
at line 11. Property (d), above, will still be satisfied be-
cause it was satisfied after step 9 and none of the vectors
mentioned in it have been changed. Property (e) will also
hold because the subspace spanned by λ1, λ2, . . . , λm and
the columns of Mnew has not been changed by the execu-
tion of eliminate (see Lemma A.20, above).

In order to see that property (f) is also satisfied after
this step, notice that the transformation applied by the ex-
ecution of procedure eliminate was a linear transformation
in which the columns γ1, γ2, . . . , γh of Mnew were replaced
by linear combinations of these columns and the vectors
λ1, λ2, . . . , λm:

γa :=

n∑
b=1

αa,b · γb +

m∑
c=1

βa,c · λc (27)

and, as noted above, this does not change the subspace
spanned by γ1, γ2, . . . , γh, λ1, λ2, . . . , λm.

It follows that A ·γa is being updated in a similar way, for
1 ≤ a ≤ h —

A · γa =

h∑
b=1

αa,b · (A · γb) +
∑
c=1

βa,c · (A · λc) (28)

and the subspace spanned by A · γ1, A · γ2, . . . , A · γh, and
A · λ1, A · λ2, . . . , A · λm has not been changed, either.

Now suppose that A ·λc is a linear combination of the vec-
tors ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm, and columns γ1, γ2, . . . , γh
of Mnew for 1 ≤ c ≤ m. Then it would follow that the
subspace spanned by ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm and the
columns of Mnew and A ·Mnew was also unchanged by the
execution of the procedure eliminate — for, considering the
updates at lines (27) and (28) in sequence, one could demon-
strate that a given vector ζ ∈ Fn×1

q was a linear combination
of ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm, and the columns of Mnew

and A · Mnew before the update if and only if it can be
expressed as a linear combination of these vectors after it.

It now suffices to note that λc is a linear combination of
the vectors vr,s such that 0 ≤ r ≤ i − 1 and 1 ≤ s ≤ k, by
property (e) — so that Lemma A.4 implies that A · λc is a
linear combination of the vectors vr,s such that 0 ≤ r ≤ i
and 1 ≤ s ≤ k. It now follows by property (e) that A · λc is
a linear combination of ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm and the
columns of Mnew — as required to show that property (f)
is also satisfied after the execution of procedure eliminate at
line 11 because it was satisfied before it.

Suppose, now, that each unmatched vector vi,t was a lin-
ear combination of the vectors λ1, λ2, . . . , λm. Then each of
the columns of Mnew would be equal to 0 after the execu-

tion of eliminate at line 11. The matrix M̂new defined at
line 12 would thus be the zero matrix in F

(n−m)×h
q , so that

it would have no columns at all as a result of the execution
of procedure compress at line 13 (see Lemma A.21, above).
The test at line 14 would therefore fail, and step 18 would
be the only remaining step to be executed during stage 0 of
the elimination phase.

In this case it follows by property (e), above, that the sub-
space of Fn×1

q spanned by the vectors λ1, λ2, . . . , λm is the
same as the subspace spanned by the unmatched vectors vr,s
such that 0 ≤ r ≤ i and 1 ≤ s ≤ k — and property (a),
above, implies that Invariant #8 has now been satisfied.

Furthermore, if vi,t is an unmatched vector then A · vi,t is
a linear combination of ν1, ν2, . . . , ν` and λ1, λ2, . . . , λm in
this case — for it follows by property (d), above, that vi,t is
a linear combination of vectors vr,s such that 0 ≤ r ≤ i− 1
and 1 ≤ s ≤ k, so that Lemma A.4 implies that A · vi,t
is a linear combination of vr,s such that 0 ≤ r ≤ i and
1 ≤ s ≤ k — so that this now follows by property (a),
above, and Invariant #8.

Consequently Invariant #11 will be satisfied, in this case,
after the execution of step #18, which sets the columns
of Mϕ to be the matched vectors vi,t such that 1 ≤ t ≤ k.

Finally, suppose that there is at least one unmatched vec-
tor vi,t that is not a linear combination of λ1, λ2, . . . , λm
after step 9. Once again, properties (d), (e) and (f) will
be satisfied after the execution of step 11, as argued above,
and it will follow by property (e) that the matrix Mnew

will have at least one column that is nonzero at this point.

Consequently the matrix M̂new defined at line 12 will be
nonzero. The column space of this matrix is not changed
by the execution of compress at line 12 (see Lemma A.21,

above), so M̂new will still have at least one column when
this is checked at line 14 and steps 15–18 will be executed
before the end of stage 0 of the elimination phase.

Now, the column space of M̂new will not have been changed
by the execution of procedure compress at line 13 (see, again,



Lemma A.21) or the execution of procedure triangularize at
line 15 (see Lemma A.22) and, since

P · Mnew =

[
0

M̂new

]
both before the execution of step 12 and after the execution
of step 16, the column space ofMnew will be the same, after
steps 11 and 16, as well. Since none of the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

are changed by the execution of steps 12–16 it follows that
properties (d), (e) and (f) hold after the execution of step 16
because they held before the execution of step 12.

It now follows by Lemma A.23 that the execution of pro-
cedure solve and update at line 17 establishes Invariant #8:
For the column space of the vectors λ1, λ2, . . . , λm after this
operation will be the same as the subspace of Fn×1

q spanned
by the vectors λ1, λ2, . . . , λm and the columns of Mnew be-
fore it, and this follows because property (e) was satisfied
after the execution of line 16. Furthermore, the column
space of the matrix Mϕ after step 16 will be the same as
the column space of the matrix Mnew before it (see, again,
the above lemma), so property (f) can now be applied to
establish that, after step 17, the subspace of Fn×1

q spanned
by the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

and the columns of A ·Mϕ will be the same as the subspace
spanned by the vectors vr,s such that 0 ≤ r ≤ i and 1 ≤ s ≤
k and the vectors A · vi,t such that 1 ≤ t ≤ k and vi,t was
unmatched at the end of stage i of the Lanczos phase.

The addition of columns to Mϕ in the execution of step 18
therefore ensures that the subspace spanned the subspace
spanned by

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

and the columns of A · Mϕ is the same as the subspace
spanned by vr,s such that 0 ≤ r ≤ i and 1 ≤ s ≤ k and
A · vi,t such that 1 ≤ t ≤ k. Since Invariant #1 was satisfied
at the end of the Lanczos phase and Invariant #8 is estab-
lished now, another application of property (b), above, now
suffices to establish Invariant #11 at the end of the stage 0
of the elimination phase as well.

Inductive Step: Suppose that j ≥ 0, there are at least
j+2 stages of the elimination phase, and that Invariants #8
and 11 are all satisfied at the end of stage j. It is necessary
and sufficient to establish that these are satisfied at the end
of stage j + 1 as well.

To begin, it will be helpful to establish yet another prop-
erty.

(g) The subspace of Fn×1
q spanned by the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm,

A · ϕ1, A · ϕ2, . . . , A · ϕg,
. . . A2ϕ1, A

2 · ϕ2, . . . , A
2 · ϕg (29)

is the same as the subspace spanned by the vectors
Aa · vb such that 0 ≤ a ≤ i+ j + 2 and 1 ≤ b ≤ k.

To see that this is the case one should note the following.

• Each vector Aa · vb such that 0 ≤ a ≤ i + j + 1 and
1 ≤ b ≤ k is a linear combination of the vectors at

line (29), above, because it follows by the inductive
hypothesis that Invariant #11 is satisfied at the end of
stage j of the elimination phase, so that this vector is
a linear combination of

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm, A · ϕ1, A · ϕ2, . . . , A · ϕg.

• It now follows that if 1 ≤ b ≤ k then

Ai+j+2 · vb
= A · (Aj+1 · vb)

= A ·

(∑̀
r=1

αr · νr +

m∑
s=1

βs · λb +

g∑
t=1

γt ·A · ϕt

)

= A · ζ +

g∑
t=1

γt ·A2 · ϕt

where αr ∈ Fq for 1 ≤ r ≤ `, βs ∈ Fq for 1 ≤ s ≤ m,
γt ∈ Fq for 1 ≤ t ≤ g, and where

ζ =
∑̀
r=1

αr · νr +

m∑
s=1

βs · λs.

Now it also follows by the inductive hypothesis that
Invariant #8 was satisfied at the end of stage j of the
elimination phase, so that ζ is a linear combination of
the vectors Ac · vd for 0 ≤ c ≤ i+ j and 1 ≤ d ≤ k. It
follows that A · ζ is a linear combination of the vectors
Ac · vd such that 0 ≤ c ≤ i + j + 1 and 1 ≤ d ≤ k —
implying, by Invariant #11 once again, that A · ζ is a
linear combination of

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm, A · ϕ1, A · ϕ2, . . . , A · ϕg.

It now follows that Ai+j+2 · vb is a linear combination
of the vectors shown at line (29) as well.

• It has now been established that the subspace of Fn×1
q

spanned by the vectors Aa ·vb such that 0 ≤ a ≤ i+j+2
and 1 ≤ b ≤ k is contained in the subspace spanned by
the vectors listed at one (29).

Note, on the other hand, that it follows by Invari-
ant #11 that each of the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm, A · ϕ1, A · ϕ2, . . . , A · ϕg

is contained in the subspace spanned by Aa · vb for 0 ≤
a ≤ i + j + 2 and 1 ≤ b ≤ k — because they are
all contained in the subspace spanned by Aa · vb for
0 ≤ a ≤ i+ j + 1 and 1 ≤ b ≤ k.

Furthermore, since A · ϕc is in the subspace spanned
by Aa · bb such that 0 ≤ a ≤ i + j + 1 and 1 ≤ b ≤ k,
for 1 ≤ c ≤ g, A2 · ϕc = A · (A · ϕc) is certainly in
the subspace spanned by Ad · ve such that 0 ≤ d ≤
i + j + 2 and 1 ≤ e ≤ k — as needed to establish
the opposite containment and prove that the subspaces
of Fn×1

q being considered are the same.

Notice that the matrix Mnew is initialized to have the
vectors

A · ϕ1, A · ϕ2, . . . , A · ϕg

as its entries, at line 20. It follows by the above, that, at
this point in the computation, the following properties are
satisfied.



(h) The subspace of Fn×1
q spanned by the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

and the columns of Mnew is equal to the subspace
of Fn×1

q spanned by the vector Aa · vb such that 0 ≤
a ≤ i+ j + 1 and 1 ≤ b ≤ k.

(i) The subspace of Fn×1
q spanned by the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm,

the columns ofMnew , and the columns of A ·Mnew , is
equal to the subspace of Fn×1

q spanned by the vectors
Aa · vb such that 0 ≤ a ≤ i+ j + 2 and 1 ≤ b ≤ k.

(j) Consequently, it follows by the inductive hypothesis
(which included the fact that Invariant #8 was satisfied
at the end of stage j) that each of the vectors

A · ν1, A · ν2, . . . , A · ν`, A · λ1, A · λ2, . . . , A · λm (30)

is in the subspace of Fn×1
q spanned by the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

and the columns of Mnew .

Let us consider these subspaces as they are defined after
the execution of the procedure orthogonalize at line 22.

Property (h), above, is still satisfied, because the subspace
of Fn×1

q spanned by ν1, ν2, . . . , ν` and the columns of Mnew

has not been modified and none of the vectors λ1, λ2, . . . , λm
have been changed (see Lemma A.19, above).

Property (j) also continues to hold because the subspace
spanned by the vectors ν1, ν2, . . . , ν` and columns of Mnew

has not been changed, and it is only the matrix Mnew that
has been modified (see Lemma A.19, once again). Conse-
quently the subspace spanned by ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm
and the columns of Mnew has not been changed either —
and none of the vectors shown at line (30) have been modi-
fied.

As noted above the subspace of Fn×1
q spanned by the vec-

tors ν1, ν2, . . . , ν` and the columns of Mnew has not been
changed. It follows that the subspace spanned by A · ν1, A ·
ν2, . . . , A · ν` and the columns of A · Mnew has not been
changed, either. Once again, the vectors λ1, λ2, . . . , λm have
not been modified. It follows that the subspace spanned by
ν1, ν2, . . . , ν` A · ν1, A · ν2, . . . , A · ν`, λ1, λ2, . . . , λm, and the
columns ofMnew and of A ·Mnew has also not been changed
— and, since A · ν1, A · ν2, . . . , A · ν` are all in the subspace
spanned by ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm and the columns
of Mnew (by property (j)), this implies that property (i) of
the claim holds after the orthogonalize operation if it did
before.

A similar analysis establishes that the above claims are
all satisfied after the execution of the procedure eliminate at
line 23. In this case one uses the fact that only the columns
of Mnew (and A · Mnew ) have been changed and the sub-
space spanned by λ1, λ2, . . . , λm and the columns of Mnew

has not been modified (see Lemma A.20 above), so the roles
of ν1, ν2, . . . , ν` and λ1, λ2, . . . , λm in the argument are re-
versed.

Now suppose that, after the above application of eliminate,
the columns of Mnew are all equal to 0. In this case the
application of procedure compress at line 25 removes all

columns from M̂new so that the test at line 26 fails and
this stage of the elimination phase ends. However, Invari-
ants #8 and #11 have both been established: Since the

columns of Mnew were all zero at this point and the ma-
trix Mϕ does not have any columns either, property (h) im-
plies Invariant #8 and property (i) implies Invariant #11.

Suppose, on the other hand, that there is at least one
nonzero column of Mnew after the application of proce-

dure eliminate at line 23. Then the matrix M̂new will still
have at least one column after the application of compress
at line 25, so that the test at line 26 will be passed and lines
27–29 will be executed before the end of this stage of the
elimination phase.

The column space of M̂new has not been changed by
the application of procedures compress and triangularize at
lines 25 and 27 (see, again, Lemmas A.21 and A.22 above),
and

P · Mnew =

[
0

M̂new

]
both before the execution of step 25 and after the execu-
tion of step 28, so the column space of Mnew has not been
changed by the execution of steps 25–28, either. Proper-
ties (h)–(j) therefore hold after the execution of step 28 be-
cause they held before the step 25. Once again, the appli-
cation of solve and update at line 29 will establish Invari-
ants #8 and #11, as needed to complete to complete the
proof — for it follows by Lemma A.23 that, after this opera-
tion, the subspace of Fn×1

q spanned by λ1, λ2, . . . , λm will be
the same as the subspace that was spanned by λ1, λ2, . . . , λm
and the columns ofMnew (so that property (h) can be used
to establish Invariant #8), and the column space of Mϕ after
the operation will be the same as the column space ofMnew

before it as well (so that property (i) can be used to establish
Invariant #11).

Lemma A.25. Invariant #9 is satisfied at the end of ev-
ery stage of the elimination phase.

Proof. Let j be an integer such that j ≥ 0 and there
are at least j + 1 stages of the elimination phase. We will
show that Invariant #9 is satisfied at the end of stage j by
induction on j.

Basis: Note first that Invariant #9 is trivially satisfied at
the beginning of stage 0 because m = 0 and the claim is
vacuous at that point.

Notice as well that the columns of the matrix Mnew are
linear combinations of unmatched vectors vr,s such that 0 ≤
r ≤ i and 1 ≤ s ≤ k throughout the first round (steps 2–8)
of stage 0 of the elimination phase, to the fact that Invari-
ant #3 was satisfied at the end of the Lanczos phase implies
that νTa · Mnew = 0 for 1 ≤ a ≤ `. It also follows by
Lemma A.23 that µTa · λb = 0 for 1 ≤ a ≤ ` and 1 ≤ b ≤ m
after the procedure solve and update is applied at step 8.

The argument needed to establish this for the second round
(steps 9–18) of stage 0 is almost the same. One should note,
here, as well, that it follows by the correctness of the pro-
cedure eliminate (Lemma A.20) that µTa · Mnew = 0 for
1 ≤ a ≤ ` after procedure eliminate is applied at line 11.
Now, either step 17 is never reached at all — in which case
the vectors λ1, λ2, . . . , λm are not changed during the exe-
cution of the second round (establishing the result), or the
column space of Mnew is unchanged by steps 12–16 and
µTa · Mnew = 0 immediately before the application of pro-
cedure solve and update at step 17. In the latter case, the
correctness of this procedure (as described in Lemma A.23)
suffices to establish the desired result once again.



Inductive Step: Suppose that j ≥ 0, there are at least
j+ 2 stages of the elimination phase, and that Invariant #9
is satisfied at the end of stage j of the elimination phase. It
is necessary and sufficient to show that it is satisfied at the
end of stage j + 1 as well.

To begin, one should notice that it follows by the cor-
rectness of the orthogonalize procedure (Lemma A.19) that
µTa · Mnew = 0 for 1 ≤ a ≤ ` after this procedure is applied
at step 22. The argument needed to establish the result is
now the same as the argument used to establish it for the
second round of stage 0.

Lemma A.26. Invariants #10, 12 and 13 are satisfied at
the end of every stage of the elimination phase.

Proof. This can be established using another straight-
forward proof by induction on the number of stages that
have been carried out already — using the fact that Invari-
ant #7 was satisfied at the end of the Lanczos phase and
that, at the beginning of stage 0 of the elimination phase,
m = 0 — so that Invariant #7 implies Invariant #13, and
Invariants #10 and 13 are vacuous claims at this point.

The following lemma will be of use in bounding the length
of the elimination phase of the algorithm as well as the cost
of each of its stages and, therefore in bounding the cost of
the algorithm.

Lemma A.27. Suppose i ≥ 0 and there are i + 1 stages
of the Lanczos phase of the algorithm (ending with stage i).
Then ` ≥ (i−∆n,k) · k and there are at most (∆n,k + 1) · k
unmatched vectors vr,s such that 0 ≤ r ≤ i and 1 ≤ s ≤ k
at the end of the Lanczos phase of the algorithm.

Proof. It follows by Lemma A.15 that there are at most
∆n,k · k unmatched vectors vr,s such that 0 ≤ r ≤ i − 1
and 1 ≤ s ≤ k at the end of stage i−1 of the Lanczos phase.
Consequently ` ≥ (i−∆n,k) · k at this point, because ` and
the number of unmatched vectors vr,s such that 0 ≤ r ≤ i−1
and 1 ≤ s ≤ k must be equal to i · k at this point.

Since at most k additional unmatched vectors vr,s such
that 0 ≤ r ≤ i and 1 ≤ s ≤ k could be added during stage i
(namely, the vectors vi,s such that 1 ≤ s ≤ k), this suffices
to establish the bound on the number of unmatched vectors
that is claimed above, It also implies that ` ≥ (i−∆n,k) · k
at the end of the Lanczos phase, because ` could not have
been reduced during the final stage.

Suppose there are j + 1 stages of the elimination phase
(ending with stage j). For 0 ≤ r ≤ j, let mr and gr be the
values of m and g (that is, the number of columns in the
matrices Mλ and Mϕ), respectively, at the end of stage r.
The following is easily established using Lemma A.27 and
by inspection of the algorithm.

Lemma A.28. Suppose, as above, that there are j + 1
stages of the elimination phase (ending with stage j).

(a) m0 ≤ (∆n,k + 1) · k.

(b) k ≥ g0 ≥ g1 ≥ g2 ≥ · · · ≥ gj = 0.

(c) If 0 ≤ r ≤ j−1 then mr+1 = mr+gr+1 = m0+
∑r+1
s=1 gs.

The following is now a straightforward consequence of
Lemmas A.19–A.23, Lemma A.27, and inspection of the al-
gorithm.

Lemma A.29. The costs of the stages of the elimination
phase are bounded as follows.

(a) The initialization step requires O(∆n,k · kn) operations
over Fq.

(b) Stage 0 requires O(∆2
n,k · k2n) operations over Fq.

(c) If 1 ≤ r ≤ j then stage r requires gr−1 multiplications
of vectors by A and O(∆n,k · k · gr−1 · n + gr−1 ·mn)
operations over Fq.

(d) Storage space required is that needed to store O(m +
(∆n,k + 2) ·k) vectors in Fn×1

q , that is to store O(mn+
(∆n,k + 2) · kn) elements of Fq.

The following bounds are now a straightforward conse-
quence of Lemma A.28 — which establishes that

∑j
r=0 gr ≤

m+ k — and the bounds given in Lemma A.29, above.

Lemma A.30. The elimination phase requires at most m+
k multiplication of vectors by A and O(∆2

n,k · k2n + ∆n,k ·
kmn+m2n) operations over Fq.

A.5 On the Correctness and Efficiency of the
Algorithm

Proof of Theorem 2.3. Consider the sequence

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

of vectors in Fn×1
q that have been generated on termination

of this algorithm — recalling that, by Lemma A.24, Invari-
ants #8 and #11 hold at the end of the final stage of the
elimination phase and that the matrix Mϕ has no columns
at this point.

Since Invariant #8 was satisfied on termination of the
algorithm, the subspace of Fn×1

q spanned by these vectors
is a subspace of KS~v that includes the vectors v1, v2, . . . , vk
— in particular, if the Lanczos phase included i + 1 stages
(ending with stage #i) and the elimination phase included
j+1 stages (ending with stage #j) then Invariant #8 implies
that this is the space spanned by the vectors Ar ·vs such that
0 ≤ r ≤ i+ j and 1 ≤ s ≤ k.

This space is also closed under multiplication by A — for
if 0 ≤ r ≤ i + j − 1 and 1 ≤ s ≤ k then it follows by the
above that A · (Ar · vs) = Ar+1 · vs is also an element of
this space. On the other hand, ir r = i + j then it follows
by Invariant #11 that A · (Ar · vs) is a linear combination
of ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm, and the columns of the ma-
trix Mϕ. However the matrix Mϕ has no columns at this
point — for, otherwise, the elimination phase would not have
ended after stage j. Consequently, A · (Ar · vs) is a linear
combination of

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

as well, as required to establish the closure property that
has been claimed.

It now follows that the above vectors span the Krylov
space KS~v, because this is the smallest subspace of Fn×1

q

that includes the vectors v1, v2, . . . , vk and that is closed
under multiplication by A.

Next consider elements αa and βb of Fq, for 1 ≤ a ≤ ` and
1 ≤ b ≤ m, such that∑̀

a=1

αa · νa +

m∑
b=1

βm · λm = 0.



It follows by Lemma A.14 that Invariant #2 was satisfied
at the end of the Lanczos phase of the computation and,
since none of the vectors µr or νr are modified after this, for
1 ≤ r ≤ `, this invariant is still satisfied on termination of
the algorithm. Lemma A.25 establishes that Invariant #9
is satisfied on termination of the algorithm as well, so that
if 1 ≤ a ≤ ` then

0 = µTa ·

(∑̀
a=1

αa · νa +

m∑
b=1

βm · λm

)
= αa.

in other words, α1 = α2 = · · · = α` = 0, so that

m∑
b=1

βb · λb = 0

as well. Now, as stated in Lemma A.26, Invariant #10 is also
satisfied on termination of the algorithm, and this implies
that the vectors λ1, λ2, . . . , λm are linearly independent —
so that β1 = β2 = · · · = βm = 0 as well. It now follows that
the vectors

ν1, ν2, . . . , ν`, λ1, λ2, . . . , λm

are linearly independent — and that they form a basis for
the Krylov space KS~v, as claimed.

Suppose, next, that this Krylov space includes a vector ζ
such that A ·ζ = A ·w+b and note that, since Invariant #13
is satisfied on termination of the algorithm (by Lemma A.26,
once again), ρ ∈ Fn×1

q , χ ∈ KS~v, and A · χ + ρ = A · w + b
as well.

Consequently ρ = A · ζ − A · χ, so that ρ ∈ KS~v too —
and

ρ =
∑̀
a=1

γ1 · νa +

m∑
b=1

δb · λb

where γa, βb ∈ Fq for 1 ≤ a ≤ ` and 1 ≤ b ≤ m.
However, it also follows by Invariant #13 that µTa · ρ = 0,

and

0 = µTa ·

(∑̀
a=1

γ1 · νa +

m∑
b=1

δb · λb

)
= γa

— so that γ1 = γ2 = · · · = γ` = 0 and

ρ =

m∑
b=1

δb · λb.

Notice, next, that it also follows by Invariant #13 that

P · ρ =

[
0
ρ̂

]
(31)

for a matrix ρ̂ ∈ F
(n−m)×1
q . However, Invariant #10 is also

satisfied on termination of the algorithm, and this implies
that λ1, λ2, . . . , λm are the columns of a matrix Mλ such
that

P ·Mλ =

[
Lλ
Xλ

]
where Lλ ∈ Fm×mq is nonsingular (indeed, it is lower trian-

gular with ones on its diagonal) and where Xλ ∈ F
(n−m)×m
q .

Consequently the equation at line (31) can only be satisfied
if b1 = b2 = · · · = bm = 0 and ρ = 0 as well — in which
case the test at line 30 is passed and A ·x = b for the vector
x = χ− w that is returned at line 32.

On the other hand, if the test at line 30 fails — that is, ρ 6=
0 — then it follows by the above that the Krylov space KS~v
does not contain a vector χ such that A · χ = A · w + b, as
needed to establish the rest of the claim.

Proof of Theorem 2.4. This is now a straightforward
consequence of Lemma A.16, Lemma A.27 (which estab-
lishes that ` ≥ i−∆n,k · k), and Lemma A.30, above.

Lemma A.31. Let i and j be integers such that 0 ≤ j ≤
i and there are at least i + 1 stages of the Lanczos phase
(ending with stage i). Suppose that the matrix H~u,~v,j+1,i+1

has rank r. Then exactly r of the vectors ua,b such that
0 ≤ a ≤ j and 1 ≤ b ≤ k have been matched at the end of
stage i of the Lanczos phase of the computation.

Proof. This is a reasonably straightforward consequence
of part (b) of Lemma A.4: As in the statement of this lemma,

let ML,i,j+1 ∈ F
n×k(j+1)
q be the matrix with columns ua,b

such that 0 ≤ a ≤ j and 1 ≤ b ≤ k, as these are defined at
the end of stage i of the Lanczos phase of the computation,

and let MR,i,i+1 ∈ F
n×k(i+1)
q be the matrix with columns

vc,d such that 0 ≤ c ≤ i and 1 ≤ d ≤ k, as these are defined
at the end of stage i of the Lanczos phase of the computation
as well.

Now suppose that exactly s of the vectors ua,b such that
0 ≤ a ≤ j and 1 ≤ b ≤ k that have been matched at the
end of stage i of the Lanczos phase. In particular, sup-
pose that these are the vectors µσ1 , µσ2 , . . . , µσs for integers
σ1, σ2, . . . , σs such that 1 ≤ σ1 < σ2 < · · · < σs ≤ `.

Suppose, as well, that s + t of the vectors va,b such that
0 ≤ a ≤ i have been matched at the end of stage i. In
particular, suppose that these are the vectors

νσ1 , νσ2 , . . . , νσs , ντ1 , ντ2 , . . . , ντt

for integers τ1, τ2, . . . , τt such that 1 ≤ τ1 < τ2 < · · · < τt ≤
`.

Applying permutations PL ∈ F
k(j+1)×k(j+1)
q and PR ∈

F
k(i+1)×k(i+1)
q we may obtain matrices

M̂L,i,j+1 =ML,i,j+1 · PL and M̂R,i,i+1 =MR,i,i+1 · PR

such that M̂L,i,j+1 has as its columns the above vectors

µσ1 , µσ2 , . . . , µσs ,

followed by the k(j+1)−s vectors ua,b such that 0 ≤ a ≤ j,
1 ≤ b ≤ k, and ua,b is unmatched at the end of stage i of the

Lanczos phase, and such that M̂R,i,i+1 has as its columns
the above vectors

νσ1 , νσ2 , . . . , νσs , ντ1 , ντ2 , . . . , ντt ,

followed by the k(i+1)−s−t vectors vc,d such that 0 ≤ c ≤ i,
1 ≤ d ≤ k, and vc,d is unmatched at the end of stage i of the
Lanczos phase. Since Invariants #2 and #3 are satisfied at
the end of the stage i of the Lanczos phase,

M̂T
L,i,j+1 · M̂R,i,i+1 =

[
Is 0
0 0

]
∈ Fk(j+1)×k(i+1)

q

so that the rank of M̂T
L,i,j · M̂R,i,i+1 is equal to s.

However, Lemma A.4 implies that there exist nonsingular

matrices Xi,j+1 ∈ F
(j+1)k×(j+1)k
q and Yi,1+1 ∈ F

(i+1)k×(i+1)k
q

such that

ML,i,j+1 = K̂~u,j+1 ·Xi,j+1



and

MR,i,i+1 = K~v,i+1 · Yi,i+1.

Now the matrix XT
i,j+1 is nonsingular as well and

H~u,~v,j+1,i+1

= K̂T~u,j+1 · K~v,i+1

= (XT
i,j+1)−1 · MT

L,i,j+1 · MR,i,i+1 · Y −1
i,i+1

= (XT
i,j+1)−1 · PL · M̂T

L,i,j+1 · M̂R,i,i+1 · PTR · Y −1
i,i+1

so that the matrices H~u,~v,j+1,i+1 has rank s, since M̂T
L,i,j+1 ·

M̂R,i,i+1 does. That is, the rank r of H~u,~v,j+1,i+1 is equal
to the number of matched vectors s stated in the claim.

The proof of the next lemma is almost identical to that of
the above one.

Lemma A.32. Let i and j be integers such that 0 ≤ j ≤
i and there are at least i + 1 stages of the Lanczos phase
(ending with stage #i). Suppose that the matrix H~u,~v,i+1,j+1

has rank r. Then exactly r of the vectors va,b such that
0 ≤ a ≤ j and 1 ≤ b ≤ k have been matched at the end of
stage i of the Lanczos phase of the computation.

Proof of Lemma 2.5. This can now be established by
induction on i.

Basis: If 0 ≤ i ≤ ∆n,k − 2 then both Invariant #5 and
the claim are trivially satisfied because both claims are vac-
uous. Invariant #5 is also trivially satisfied if i = ∆n,k − 1,
and the condition in the claim is trivially satisfied as well,
because the matrices H~u,~v,0,∆n,k and H~u,~v,∆n,k,0 each have
zero columns (and certainly do have nonnegative renk).

Inductive Step: Suppose i ≤ ∆n,k − 1 and that the claim
is satisfied for i; it is necessary and sufficient to establish
it for i + 1 as well. Suppose, therefore, that the matri-
cesH~u,~v,a,a+∆n,k andH~u,~v,a+∆n,k,a both have maximal rank
ak for 0 ≤ i−∆n,k+2. Then, since this condition is satisfied
for 0 ≤ i ≤ ∆n,k + 1 it follows by the inductive hypothe-
sis that there Invariant #5 was satisfied at the end of the
first i stages, so that there will are at least i + 1 stages of
the Lanczos phase (ending with stage i).

It now follows by Lemmas A.31 and A.32, above, that
Invariant #5 is satisfied at the end of stage i as well —for
these imply that if both of the matrices H~u,~v,i−∆n,k+1,i+1

and H~u,~v,i+1,i−∆n,k+1 have full rank (i − ∆n,k + 1)k, then
all (i−∆n,k+1)k of the vectors ur,s (respectively, vr,s) such
that 0 ≤ r ≤ i−∆n,k and 1 ≤ s ≤ k have been matched at
or before the end of stage i, as required.

B. PROOFS OF RESULTS IN SECTION 4

B.1 Proof of Lemma 4.1
While the notation used in the report [5] is different,

proofs of the next elementary result and Lemma 4.1 can
also be found there.

Lemma B.1. If a matrix B ∈ Fs×tq has rank r then

xnullL(B) = qs−r and xnullR(B) = qt−r.

Proof. If B ∈ Fs×tq has rank r then there are permuta-
tion matrices PL ∈ Fs×sq and PR ∈ Ft×tq such that

PL ·B · PR =

[
B1,1 B1,2

B2,1 B2,2

]
(32)

where B1,1 ∈ Fr×rq , B1,2 ∈ F
r×(t−r)
q , B2,1 ∈ F

(s−r)×r
q , B2,2 ∈

F
(s−r)×(t−r)
q , and B1,1 is nonsingular. Furthermore, since
PL and PR are both nonsingular, the matrix shown on the
right hand side above also has rank r, so that[

B1,1 B1,2

B2,1 B22

]
=

[
Ir 0

B2,1 ·B−1
1,1 Is−r

]
·
[
B1,1 0

0 0

]
·
[
Ir B−1

1,1 ·B1,2

0 It−r

]
(33)

— where the matrices shown above on the right side of the
equation are in Fs×sq , Fs×sq t, and Ft×tq respectively — for an
expansion of the product on the right confirms that this is
equal to [

B1,1 B1,2

B2,1 B2,1 ·B−1
1,1 ·B1,2

]
and this could only be different from[

B1,1 B1,2

B2,1 B2,2

]
if the right t−r columns of the above matrix were not linear
combinations of the left r ones — in which case the rank of
the above matrix, and the rank of B, would both exceed r.
Note as well that the lower triangular matrix shown at the
beginning of the right hand side of the equation at line (33)
and the upper triangular matrix at the end of this equation
are each nonsingular.

With that noted, consider a vector x ∈ Fr×1
q . A consider-

ation of the equations at lines (32) and (33) confirms that
xT ·B = 0 if and only if

PL · x =

[
x1

x2

]
for vectors x1 ∈ Fr×1

q and x2 ∈ F
(s−r)×1
q such that[

xT1 xT2
]
·
[

Ir 0
B2,1 ·B−1

1,1 Is−r

]
·
[
B1,1 0

0 0

]
= 0

(note that, since PL is a permutation matrix, PTL · PL =
Is). Now, since B1,1 is nonsingular, an expansion of the
above equation confirms that this equation is satisfied for

any vector x2 ∈ F
(s−r)×1
q provided that

xT1 = −xT2 ·B2,1 ·B−1
1,1 .

Since there are qs−r choices of x2 and one choice of x1 for
each, for which the above equation is satisfied, it follows that
the left exponential nullity of B is qs−r as claimed.

Similarly, if y ∈ Ft×1
q then B · y = 0 if and only if

PTR · y =

[
y1

y2

]
where y1 ∈ Fr×1

q , y2 ∈ F
(t−r)×1
q , and[

B1,1 0
0 0

]
·
[
Ir B−1

1,1 ·B1,2

0 It−r

]
·
[
y1

y2

]
= 0.

An expansion of the above confirms that this equation is

satisfied for any vector y2 ∈ F
(t−r)×1
q provided that

y1 = −B−1
1,1 ·B1,2 · y2.

Since there are qt−r choices of y2 and one choice of y1 for
each, for which the above equation is satisfied, it follows that
the right exponential nullity of B is qt−r as well.



Proof of Lemma 4.1. ConsiderH = Hk,~u,~v,s,t ∈ Fsk×tkq

where the vectors ~u = u1, u2, . . . , uk, ~w = w, , w2, . . . , wk
are chosen uniformly and independently from Fn×1

q , w1 =
A · w = b, and where vh = A · wh for 1 ≤ h ≤ k, and
~v = v1, v2, . . . , vk. For 0 ≤ w ≤ min(s, t) set ρw to be
the probability that H has rank w and set σw to be the
probability that H as rank at most w. Then it follows by
Lemma B.1, above, that

E[xnullL(H)] =

min(s,t)∑
w=0

ρw · qs−w

=

r∑
w=0

ρw · qs−w +

min(s,t)∑
w=r+1

ρw · qs−w

≥
r∑

w=0

ρw · qs−r +

min(s,t)∑
w=r+1

ρw · 0

= qs−r ·
r∑

w=0

ρw

= qs−r · σr.

Dividing both sides of the above inequality by qs−r one can
see that the probability that H has rank at most r is less
than or equal to E[xnullL(H)]/qs−r, as claimed.

The proof that this probability is also less than or equal
to E[xnullR(H)]/qt−r follows by another application of the
above lemma: It follows by Lemma B.1 that

xnullR(H) = qt−s · xnullL(H)

for every matrix H as defined above, so that

E[xnullR(H)] = qt−s · E[xnullL(H)]

as well — and this suffices to establish the second inequality
in the claim.

Finally, if s ≤ t then

E[xnullL(H)]− 1 =

s∑
w=0

ρw(qs−w − 1)

=

s−1∑
w=0

ρw(qs−w − 1)

≥
s−1∑
w=0

ρw(q − 1)

= (q − 1)

s−1∑
w=0

ρw

= (q − 1) · Pr[rank(H) < s],

so that H has rank less than s with probability at most
(E[xnullL(H)]−1)/(q−1) as claimed. It follows by essentially
the same argument that if t ≤ s then H has rank less than t
with probability (E[xnullR(H)]− 1)/(q − 1) as well.

B.2 Proof of Lemma 4.2

Lemma B.2. Let H be as described in Lemma 4.2, and let
W be a fixed matrix in Fsk×tkq . Then E[xnullL(H +W )] ≤
E[xnullL(H)] and E[xnullR(H +W )] ≤ E[xnullR(H)].

Proof. Recall that H = K̂T
L ·KR ∈ Fks×ktq , where K̂L =

K̂k,~u,s and KR = Kk,~v,t where vectors ~u = u1, u2, . . . , uk,

~w = w,w2, . . . , wk are chosen uniformly and independently
from Fn×1

q where w1 = A · w, and vh = A · wh for 1 ≤
h ≤ k, and ~v = v1, v2, . . . , vk. Since the above vectors ~u
and ~w chosen uniformly and independently from Fn×1

q we
may consider an experiment in which the vectors ~w (and
corresponding vectors ~v) are fixed, with the vectors ~u being
chosen after that.

With that noted, consider the following pair of indicator
random variables — which are defined after vectors ~u have
been selected and are functions of the vectors ~w. For a given
vector x ∈ Fs×1

q ,

• I~u,x depends on the vectors ~w and is equal to one if

xT · H = 0, for H = K̂L · KR as above, and is equal
to 0 otherwise.

• ÎW,~u,x depends on the vectors ~w and is equal to one if
xT · (H + W ) = 0 for H as above, and is equal to 0
otherwise.

Now, next, that

E[xnullL(H)] =
∑

x∈Fr×1
q

SL(x) (34)

where

SL(x) = q−kn ·
∑

~u=u1,u2,...,uk∈F
n×1
q

E[I~u,x] (35)

and

E[xnullL(H +W )] =
∑

x∈Fr×1
q

ŜL(W,x) (36)

where

ŜL(W,x) = q−kn ·
∑

~u=u1,u2,...,uk∈F
n×1
q

E[ÎW,~u,x] (37)

and where the expectations shown on the right sides of equa-
tions (35) and (37), above, concern probability spaces in
which the matrix W and vectors ~u and x are fixed, with vec-
tors ~w to be selected uniformly and independently from Fn×1

q .
Note that if

Pr[ÎW,~ux = 1] ≤ Pr[I~u,x = 1]

for all vectors ~u = u1, u2, . . . , wk ∈ Fn×1
q and x ∈ Fr×1

q ,
then it would follow (by an inspection of the equations at
lines (35) and (37), above) that

ŜL(W,x) ≤ SL(x)

for all x ∈ Fr×1
q as well. This would also imply (by a con-

sideration of the equations at lines (34) and (36)) that

E[xnullL(H +W )] ≤ E[xnull(H)],

as required to prove the first part of the lemma.
With that noted, two cases should be considered.
Case (i): There exist vectors ŵ, ŵ2, ŵ3, ŵ3, . . . , ŵk ∈ Fn×1

q

such that, if ŵ1 = A · ŵ and v̂h = A · ŵh for 1 ≤ h ≤ k, and
~z = v̂1, v̂2, . . . , v̂k, then

xT · K̂k,~u,s · Kk,~z,t = xT ·W

Case (ii) No such vectors ŵ, ŵ2, . . . , ŵk ∈ Fn×1
q exists.

Case (i): In this case Pr[ÎW,~u,x = 1] = Pr[I~u,x = 1] : For
vectors w,w2, w3, . . . , wk ∈ Fn×1

q are chosen with the same
probability as w− ŵ, w2 − ŵ2, w3 − ŵ3, . . . , wk − ŵk — and



if Ĥ = K̂k,~u,s · Kk,~y,t for ~y = v1 − v̂1, v2 − v̂2, . . . , vk − v̂k,

and H = K̂k,~u,s · Kk,~v,t then xT · (Ĥ +W ) = xT ·H, so that

xT · (Ĥ +W ) = 0 if and only if xT ·H = 0.
Case (ii): In this case there are no vectors

~w = w,w2, w3, . . . , wk ∈ Fn×1
q

such that xT · (K̂k,~u,s · Kk,~v,t +W ) = 0 at all. Consequently,

Pr[ÎW,~u,x = 1] = 0,

and the desired inequality is trivial.
The second part of the lemma now follows by additional

applications of Lemma B.1: For any matrix

H = K̂Tk,~u,s · Kk,~v,t ∈ Fsk×tkq ,

it follows by the relationship between left and right expo-
nential nullities and rank that

xnullR(H) = q(t−s)k · xnullL(H)

and

xnullR(H +W ) = q(t−s)k · xnullL(H +W )

as well. Consequently if the matrix H is chosen using the
distribution considered here then

E[xnullR(H)] = q(t−s)k · E[xnullL(H)],

and

E[xnullR(H +W )] = q(t−s)k · E[xnullL(H +W )],

so that fact that

E[xnullL(H +W )] ≤ E[xnullL(H)]

(established above) implies that

E[xnullR(H +W )] ≤ E[xnullR(H)]

as well.

The lemma establishes a result that is, in some sense,
intermediate between the above and Lemma 4.2. It will be
of use in proving results from Section 6.

Lemma B.3. Suppose that vectors

u1, u2, . . . , uk, w, w2, w3, . . . , wk

are chosen uniformly and independently from Fn×1
q , and that

~z = z1, z2, . . . , zk is a fixed sequence of vectors in Fn×1
q . If

w1 = A·w, va = A·wa for 1 ≤ a ≤ k, and ~y = v1, v2, . . . , vk,
and s and t are positive integers, then

E[xnullL(H~u,~y,s,t +H~u,~z,s,t)] ≤ E[xnullL(H~u,~y,s,t)]

and

E[xnullR(H~u,~y,s,t +H~u,~z,s,t)] ≤ E[xnullR(H~u,~y,s,t)].

Proof. As in the previous proof, one should consider in-
dicator random variables that are defined after the vectors
~u = u1, u2, . . . , uk have been selected and that are func-
tions of the vectors ~w = w,w2, w3, . . . , wk for a given vector
x ∈ Ftk×1

q : For a given vector x ∈ Ftk×1
q ,

• I~u,x depends on the vectors ~w, is equal to one if

H~u,~y,s,t · x = 0,

and is equal to zero otherwise, and

• Î~u,x depends on the vectors ~w and is equal to one if

(H~u,~y,s,t +H~u,~z,s,t) · x = 0

and is equal to one, otherwise.

As in the previous proof one should consider two cases.

• Case: There exist ŵ, ŵ2, ŵ3, . . . , ŵk ∈ Fn×1
q such that

if ŵ1 = A · ŵ, v̂a = A · ŵa for 1 ≤ a ≤ k, and ~y′ =
v̂1, v̂2, . . . , v̂k, then

H~u,~y′,s,t · x = H~u,~z,s,t · x

• No such vectors ŵ, ŵ2, ŵ3, . . . , ŵk exist.

In the first case one argues as in the first case for the previous
proof that

E[Î~u,x] = E[I~u,x],

which certainly implies that E[Î~u,x] ≤ E[I~u,x]. In the second
case one should observe (as for the second case in the previ-

ous proof) that E[Î~u,x] = 0, so that E[Î~u,x] ≤ E[I~u,x] in this
case as well.

The rest of the proof proceeds just as before.

Proof of Lemma 4.2. Let Hk,r,s be the set of matrices

H = K̂Tk,~u,s · Kk,~v,t ∈ Fsk×tkq defined from vectors ~u and
~w (where w1 = A · w, vh = A · wh for 1 ≤ h ≤ k and
~v = v1, v2, . . . , vk) as described in the claim. Similarly let
Wk,r,s ⊆ Fsk×tkq be the set from which the matrices W de-
scribed in the claim are selected. In order to establish the
claim in the lemma about left exponential nullities it is nec-
essary and sufficient to show that∑

W∈Wk,r,s

∑
H∈Hk,r,s

ρ(H,W ) · xnullL(H +W ) (38)

is less than or equal to∑
W∈Wk,r,s

∑
H∈Hk,r,s

ρ(H,W ) · xnullL(H) (39)

where ρ(H,W ) is the probability that the matrix H is se-
lected from Hk,r,s and W is selected from Wk,r,s, for H ∈
Hk,r,s and W ∈ Wk,r,s. Now, since the matrices H and W
are chosen independently,

ρ(H,W ) = ρ1(H) · ρ2(W )

where ρ1(H) is the probability that H is selected fromHk,r,s
and ρ2(W ) is the probability that W is chosen from Wk,r,s.

Consequently∑
W∈Wk,r,s

∑
H∈Hk,r,s

ρ(H,W ) · xnullL(H +W )

=
∑

W∈Wk,r,s

ρ2(W ) ·

 ∑
H∈Hk,r,s

ρ1(H) · xnullL(H +W )


≤

∑
W∈Wk,r,s

ρ2(W ) ·

 ∑
H−Hk,r,s

ρ1(H) · xnullL(H)

 .

The final inequality shown here is a consequence of Lemma B.2,
above, since ∑

H∈Hk,r,s

ρ1(H) · xnullL(H +W )



and ∑
H∈Hk,r,s

ρ1(H) · xnullL(H)

are, respectively, the expected values of the left exponential
nullities of H +W and of H, for a fixed matrix W ∈ Fsk×tkq

when H is randomly selected as described as these claims.
Now, since

∑
W∈Wk,r,s

ρ2(W ) ·

 ∑
H∈Hk,r,s

ρ1(H) · xnullL(H)


=

∑
W∈Wk,r,s

∑
H∈Hk,r,s

ρ(H,W ) · xnullL(H),

it follows that the sum at line (38) is less than or equal to
the sum at line (39), as required to complete the proof.

C. PROOFS OF RESULTS IN SECTION 5

C.1 Summary of Prior Results
We will begin with a summary of results from the technical

report [5]. Unfortunately the notation used in that report
differs from what is being used here, so a translation is also
being provided.

Note that for every matrix A ∈ Fn×nq there exists an inte-

ger N ≤ n and a matrix Â ∈ FN×Nq such that

X ·A ·X−1 =

[
Â 0
0 0

]
(40)

for a nonsingular matrix X ∈ Fn×nq , Â has the same number
of nontrivial invariant factors as A, and every invariant fac-

tor of Â (in Fq[x]) is either divisible by x2 or not divisible
by x. Furthermore, for vectors u,w ∈ Fn×1

q , if

u = XT ·
[
û
ũ

]
and w = X−1 ·

[
ŵ
w̃

]
where û, ŵ ∈ FN×1

q and ũ, w̃ ∈ F
(n−N)×1
q , and s ≥ 1, then

uT ·As · w

=

[
û
ũ

]T
·X ·As ·X−1 ·

[
ŵ
w̃

]
=

[
û
ũ

]T
· (X ·A ·X−1)s ·

[
ŵ
w̃

]
=

[
û
ũ

]
·
[
Â 0
0 0

]s
·
[
ŵ
w̃

]
= ûT · Âs · ŵ.

Note as well that if u1, u2, . . . , uk, w1, w2, . . . , wk are cho-
sen uniformly and independently from Fn×1

q then the cor-
responding vectors û1, û2, . . . , ûk, ŵ1, ŵ2, . . . , ŵk are chosen
uniformly and independently from FN×1

q .

The matrices A and Â have the same rank and the same
number h of nontrivial invariant factors. Furthermore, since

each invariant factor of Â is either divisible by x2 or not
divisible by x at all, it can be shown that

N − h ≤ r ≤ N

if A has h nontrivial invariant factors and rank r. Indeed,
r is equal to the difference between N and the number of

invariant factors of Â that are divisible by x2.
As in Section 5, let

f(h, k) =


6 · logq N if k = h+ 1,

4 if k = h+ 2,

1 + 2qh−k+1 if k ≥ h+ 3.

(41)

Lemma C.1. Suppose A, Â and N are as above, k > h,
and vectors

~u = u1, u2, . . . , uk

(respectively, ~w = w1, w2, . . . , wk) are chosen uniformly and
independently from Fn×1

q . If s is an integer such that 1 ≤
s ≤ bN/kc, then

E[xnullR(K̂~u,s)],E[xnullR(K~w,s)] ≤ 1 + f(h, k) · qsk−N .
Proof. The bound given here for the expected right ex-

ponential nullity of K~w,s is a consequence of Lemma 2.20
of [5], which presents an upper bound for the product the ex-
pected value of xnullR(K~w,r) and the number qkN of choices
of the vectors w1, w2, . . . , wk when n = N . In the report,
m is being used as the block size instead of k, ` is the num-
ber of nontrivial invariant factors instead of h, and i is the
number sk of columns of the matrix being considered.

Since AT has the same number of nontrivial invariant fac-
tors as A the claimed bound for the expected exponential

nullity of K̂~u,r follows by the same argument.

When sampling from the null space one is generally work-
ing with a matrixK~v,r for ~v = v1, v2, . . . , vk where vs = A·ws
for 1 ≤ s ≤ k instead.

Lemma C.2. Suppose A, Â and N are as above, k > h, A
has rank r, vectors ~w = w1, w2, . . . , wk are chosen uniformly
and independently from Fn×1

q , and ~v = v1, v2, . . . , vk where
vs = A · ws for 1 ≤ s ≤ k. If s is an integer such that
1 ≤ s ≤ br/kc then

E[xnullR(K~v,s)] ≤ 1 + f(h, k) · qsk+1−r.

Proof. See Section 3.1 of [5], noting that the expected

value discussed here is the ratio of the value“D̂A,m,i”defined
in this report to qNm when (once again) m is being used as
the block size instead of k and i is the number sk of columns
in the matrix being considered.

A generalization of “exponential nullity” is useful in order
to consider the block Hankel matrices H~u,~v,a,b being con-
sidered in this report. Once again, consider an arbitrary
matrix B ∈ Fs×tq for positive integers s and t, and let X
and Y be subspaces of Fs×1

q and Ft×1
q , respectively. Let us

define the right-X -nullity of B, xnullR(X , B), to be the num-
ber of vectors y ∈ Ft×1

q such that B ·y ∈ X , and let us define
the left-Y-nullity of B, xnullL(Y, B), to be the number of
vectors x ∈ Fs×1

q such that xT ·B ∈ Y.

Since AT has the same number of nontrivial invariant fac-
tors as A, the following is easily established from the results
in [5].

Lemma C.3. Suppose A, Â and N are as above. Let X
be a subspace of Fn×1

q with dimension d, let vectors

~u = u1, u2, . . . , uk



be chosen uniformly and independently from Fn×1
q , and let s

be an integer such that 1 ≤ s ≤ b(N − d)/kc. Then

E[xnullR(X , K̂~u,s)] ≤ 1 + f(h, k) · qsk+d−N

Proof. Recalling that the matrices AT and A have the
same number of nontrivial invariant factors, this follows by
the results presented in Section 3.2 of [5] — note, in partic-
ular, Lemma 3.5.

This remaining extension was not explored in the previous
report — the arguments in Sections 3.1 and 3.2 were never
combined. However, with the benefit of hindsight it is clear
that this is not difficult, and that the following result can be
established from Lemma C.1 along with an extremely minor
modification of Lemma 3.5 of [5] and its proof.

Lemma C.4. Suppose A, Â and N are as above. Let X
be a subspace of Fn×1

q with dimension d, let vectors

~w = w1, w2, . . . , wk

be chosen uniformly and independently from Fn×1
q and let

~v = v1, v2, . . . , vk where va = A · wa for 1 ≤ a ≤ k, and let
s be an integer such that 1 ≤ s ≤ b(r − d)/kc. Then

E[xnullR(X ,K~v,s)] ≤ 1 + f(h, k) · qsk+d+1−r.

C.2 Modifying the Initial Vectors
Recall that in the algorithm described in Section 2, vectors

u1, u2, . . . , uk, w, and w2, w3, . . . , wk are chosen uniformly
and independently from Fn×1

q , w1 is set to A ·w+ b, and va
is set to be A · wa for 1 ≤ a ≤ k.

An intermediate situation will be considered here first:
Suppose, as above, that u1, u2, . . . , uk, w and w2, w3, . . . , wk
are chosen uniformly and independently from Fn×1

q , w1 is set
to be A ·w, instead, and va is set to be A ·wa for 1 ≤ a ≤ k,
once again. In this case the following is easily established.

Lemma C.5. Let

~v = v1, v2, . . . , vk and ~z = w1, v2, v3, . . . , vk

for the factors described above. Let t be an integer such that
t ≤ br/kc where r is the rank of A. Then

xnullR(K~v,t) ≤ xnullR(K~z,t+1)

and, if X is a subspace of Fn×1
q then

xnullR(X ,K~v,t) ≤ xnullR(X ,K~z,t+1)

as well.

Proof. Note that, since v1 = A ·w1, the columns of K~v,t
are also columns of K~z,t+1, so there exists a permutation

matrix P ∈ F
k(t+1)×k(t+1)
q such that

K~z,t+1 · P =
[
K~v,t Y

]
for a matrix Y ∈ Fn×kq . Now, for an arbitrary vector y ∈
Fkt×1
q , let

ŷ = P ·
[
y
0

]
∈ Fk(t+1)×1

q

noticing that if y1, y2 ∈ Fkt×1
q and y1 6= y2 then ŷ1 6= ŷ2 as

well. It now suffices to notice that

K~z,t+1 · ŷ = (K~z,t+1 · P ) ·
[
y
0

]
=
[
K~v,t Y

]
·
[
y
0

]
= K~v,t · y.

Consequently K~z,t+1 · ŷ = 0 if and only if K~v,t · y = 0 and
K~z,t+1 · ŷ ∈ X if and only if K~v,t · y ∈ X . The claim now fol-
lows by an application of the definitions of“right exponential
nullity” and “right-X -nullity.”

Lemma C.6. Let ~v and t be as in the previous lemma and
let H be a fixed matrix in Fn×tkq . Then, if X is a subspace
of Fn×1

q , then

E[xnullR(X ,K~v,t +H)] ≤ E[xnullR(X ,K~v,t)].

Proof. The proof is similar to that of Lemma B.2 (which
establishes the claim if X = {0}): For a fixed vector x ∈
Ftk×1
q , consider a pair of indicator random variables (that

may be thought of as functions of the vectors ~v):

IX ,x(~v) =

{
1 if K~v,t · x ∈ X ,

0 otherwise,

and

ÎX ,x(~v) =

{
1 if (K~v,t +H) · x ∈ X ,

0 otherwise.

Now, for a given vector x there are two cases to be con-
sidered.

Case (i): There exist vectors ŵ, ŵ2, ŵ3, . . . , ŵk ∈ Fn×1
q

such that if ŵ1 = A · ŵ, v̂h = A · ŵh, and ~z = v̂1, v̂2, . . . , v̂k,
then (K~z,t +H) · x ∈ X

In this case one can observe that, since vectors w−ŵ, w2−
ŵ2, w3− ŵ3, . . . , wk− ŵk are chosen uniformly and indepen-
dently from Fn×1

q if ŵ, ŵ2, ŵ3, . . . , ŵk are,

E[ÎX ,x] = E[IX ,x].

Case: There are no such vectors ŵ, ŵ2, ŵ3, . . . , ŵk. In this

case ÎX ,x(~v) = 0 for all choices of the vectors v̂, so that

E[ÎX ,x] = 0 ≤ E[IX ,x].

Now it suffices to note that

E[xnullR(X ,K~v,t +H)] =
∑

x∈Ftk×1
q

E[ÎX ,x]

and

E[xnullR(X ,K~v,t)] =
∑

x∈Ftk×1
q

E[IX ,x]

in order to use the above to establish that

E[xnullR(X ,K~v,t +H)] ≤ E[xnullR(X ,K~v,t)]

as claimed.

Now, to obtain bounds on the values

E[xnullR(K~v,t)] and E[xnullR(X ,K~v,t)]



when w,w2, w3, . . . , wk are chosen uniformly and indepen-
dently from Fn×1

q , w1 = A ·w+ b, vh = A ·wh for 1 ≤ h ≤ k,
and ~v = v1, v2, . . . , vk, it suffices to notice that

K~v,t = K~y,t +K~z,t
where ŵ1 = A · w, y1 = A · ŵ1, yh = A · wh for 2 ≤ h ≤ k,
and ~y = y1, y2, . . . , yk — so that Lemma C.5 can be applied
to bound

E[xnullR(K~y,t)] and E[X , xnullR(K~y,t)]

— and where ~z = A · b, 0, 0, . . . , 0 — so that K~z,t is a fixed
matrix in Fn×tkq , and Lemmas B.2 and C.6 can be applied
to establish that

E[xnullR(K~v,t)] ≤ E[xnullR(K~y,t)]

and

E[xnullR(X ,K~v,t)] ≤ E[xnullR(X ,K~y,t)]

as well.
Indeed, applying Lemmas C.2 and C.4 along with the

above, we can now obtain the following bounds.

Lemma C.7. Suppose vectors w,w2, w3, . . . , wk are cho-
sen uniformly and independently from Fn×1

q , w1 = A ·w+ b,
va = A · wa for 1 ≤ a ≤ k, and ~v = v1, v2, . . . , vk. It t is
an integer such that 1 ≤ t < br/kc where r is the rank of A
then

E[xnullR(K~v,t)] ≤ 1 + f(h, k) · q(t+1)k+1−r

and if X is a subspace of Fn×1
q with dimension d < r and

1 ≤ t < b(r − d)/kc then

E[xnullR(X ,K~v,t)] ≤ 1 + f(h, k) · q(t+1)k+d+1−r.

C.3 Proof of Lemma 5.1
As suggested at the beginning of Appendix C, it suffices

to consider the case that n = N and Â = A, for Â as shown
at line (40) above — for if u1, u2, . . . , uk, w, w2, . . . , wk are
chosen uniformly and independently from Fn×1

q then the cor-
responding vectors û1, û2, . . . , ûk, ŵ, ŵ2, . . . , ŵk are chosen
uniformly and independently from FN×1

q .

Furthermore, if one sets ~y = û1, û2, . . . , ûk sets ŵ1 = Â ·
ŵ + b̂ where

X−1b =

[
b̂

b̃

]
for b̂ ∈ FN×1

q and b̃ ∈ F
(n−N)×1
q , sets v̂a = Â · ŵa for 1 ≤ a ≤

k and, finally, sets ~z = v̂1, v̂2, . . . , v̂k then, since uTa ·Ac ·wb =

ûTa · Âc · ŵb for 1 ≤ a, b ≤ k and c ≥ 1,

H~u,~v,s,t = H~y,~z,s,t
for all integers s, t ≥ 1.

We will therefore assume, for the rest of this proof, that

n = N and A = Â.
Suppose first that s < t < br/kc. Notice that if z ∈ Fsk×1

q ,
then

zT · H~u,~v,s,t = 0

⇐⇒ HT~u,~v,s,t · z = 0

⇐⇒ KT~v,t · (K̂~u,s · z) = 0

⇐⇒ K̂~u,s · z ∈ X

where X is the subspace of Fn×1
q consisting of the vectors

y ∈ Fn×1
q such that yT · K~v,t = 0. Thus

xnullL(H~u,~v,s,t) = xnullR(X , K̂~u,s).

Notice next that, for 0 ≤ a ≤ tk, if xnullR(K~v,t) = qa

then xnullL(K~v,t) = q(N−tk)+a by Lemma B.1, so that X
has dimension N − tk+ a and it follows by Lemma C.3 that

E[xnullR(X , K̂~u,s)] ≤ 1 + f(h, k) · q(s−t)k+a.

Consequently

E[xnullL(H~u,~v,s,t)]

≤
tk∑
a=0

Pr[xnullR(K~v,t) = qa] ·
(

1 + f(h, k) · q(s−t)k+a
)

=

tk∑
a=0

Pr[xnullR(K~v,t) = qa]

+ f(h, k) · q(s−t)k ·
tk∑
a=0

Pr[xnullR(K~v,t) = qa] · qa

= 1 + f(h, k) · q(s−t)k · E[xnullR(K~v,t)]

≤ 1 + f(h, k) · q(s−t)k ·
(

1 + f(h, k) · q(t+1)k+1−r
)

(by Lemma C.7)

= 1 + q(s−t)k
(
f(h, k) + f(h, k)2 · q(t+1)k+1−r

)
≤ 1 + q(s−t)k ·

(
f(h, k) + q · f(h, k)2)

(since t ≤ br/kc − 1).

In particular, it follows from the above that if 1 ≤ s <
br/kc −∆n,k then

E[xnullL(H~u,~vs,s+∆n,k )]

≤ 1 + q−∆n,k·k ·
(
f(h, k) + q · f(h, k)2)

≤ 1 + q(2−∆n,k)·k ·
(
f(h, k) + f(h, k) · q1−k

)
as claimed.

Suppose, next, that t < s < br/kc instead, and notice
that, for z ∈ Ftk×1

q ,

H~u,~v,r,s · z = 0

⇐⇒ K̂T~u,s · (K~v,t · z) = 0

⇐⇒ K~v,t · z ∈ X

where X is the subspace of Fn×1
q consisting of vectors y ∈

Fn×1
q such that yT · K̂~v,s = 0. Thus

xnullR(H~u,~v,s,t) = xnullR(X ,K~v,t).

Notice next that, for 0 ≤ a ≤ sk, if xnullR(K̂~u,s) = qa

then xnullL(K̂~u,s) = q(N−sk)+a by Lemma B.1, so that X
has dimension N − sk+a and it follows by Lemma C.7 that

E[xnullR(X ,K~v,t)] ≤ 1 + f(h, k) · q(t−s+1)k+N−r+1+a.



Consequently

E[xnullR(H~u,~v,s,t)]

≤
sk∑
a=0

Pr[xnullR(K̂~u,s) = qa]

·
(

1 + f(h, k) · q(t−s+1)k+N−r+1+a
)

=

sk∑
a=0

Pr[xnullR(K̂~u,s) = qa]

+ f(h, k) · q(t−s+1)k+N−r+1·
sk∑
a=0

Pr[xnullR(K̂~u,s) = qa] · qa

= 1 + f(h, k) · q(t−s+1)k+N−r+1 · E[xnullR(K̂~u,s)]

≤ 1 + f(h, k) · q(t−s+2)k · E[xnullR(K̂~u,s)]
(since N − r ≤ h ≤ k − 1)

≤ 1 + f(h, k) · q(t−s+2)k ·
(

1 + f(h, k) · qsk−r
)

(by Lemma C.1, since r ≤ N)

≤ 1 + f(h, k) · q(t−s+2)k ·
(

1 + f(h, k) · q−k
)

(since s ≤ br/kc − 1)

= 1 + q(t−s+2)k ·
(
f(h, k) + f(h, k)2 · q−k

)
.

In particular, when s = t+ ∆n,k < bn/kc,

E[xnullR(H~u,~v,t+∆n,k,t)]

≤ 1 + q(2−∆n,k)k ·
(
f(h, k) + f(h, k)2 · q−k

)
,

which suffices to establish the claim.

D. PROOFS OF RESULTS IN SECTION 6
Suppose once again that A ∈ Fn×nq has Frobenius normal

form Cf1,f2,...,f` and that at least k of the invariant factors
of A are nontrivial. By the definition of “Frobenius normal
form,” there exists a nonsingular matrix Y ∈ Fn×nq such that

A = Y −1 ·


Cf1 0

Cf2
. . .

0 Cf`

 · Y. (42)

Now, as in Section 6, let h be an integer 1 ≤ h ≤ k − 1
and let

N =

h∑
a=1

deg(fa),

the sum of the first h invariant factors of A. Let

A1 = A · Y −1 ·
[
IN 0
0 0

]
· Y (43)

and let

A2 = A · Y −1 ·
[
0 0
0 In−N

]
· Y. (44)

Then it is easily checked that, since

A = Y −1 ·
[
Cf1,f2,...,fh 0

0 Cfh+1,fh+2,...,f`

]
· Y,

A1 = Y −1 ·
[
Cf1,f2,...,fh 0

0 0n−N

]
· Y,

and

A2 = Y −1 ·
[
0N 0
0 Cfh+1,fh+2,...,f`

]
· Y,

so that A = A1 + A2, A1 · A2 = A2 · A1 = 0, and A1 has h
nontrivial invariant factors — namely, f1, f2, . . . , fh.

Suppose now that vectors u1, u2, . . . , uk, w, w2, w3, . . . , wk
are chosen uniformly and independently from Fn×1

q . Then,
for 1 ≤ a ≤ k,

ua = Y T ·
[
ûa
ũa

]
where ûa ∈ FN×1

q and ũa ∈ F
(n−N)×1
q , and

w = Y −1 ·
[
ŵ
w̃

]
and wb = Y −1 ·

[
ŵb
w̃a

]
for 2 ≤ b ≤ k, where

ŵ, ŵ2, ŵ3, . . . , ŵk ∈ FN×1
q

and

w̃, w̃2, w̃3, . . . , w̃k ∈ F(n−N)×1
q .

Furthermore, since Y (and Y T ) is nonsingular, it is not dif-
ficult to argue that the vectors

û1, û2, . . . , ûk, ũ1, ũ2, . . . , ũk,

ŵ, ŵ2, ŵ3, . . . , ŵk, w̃, w̃2, w̃3, . . . , w̃k

are uniformly and independently selected from their respec-
tive vector spaces.

Suppose next that we set

ua,1 = Y T ·
[
ûa
0

]
and ua,2 = Y T ·

[
0
ũa

]
for 1 ≤ a ≤ k, so that ua = ua,1 + ua,2, and we set

w0,1 = Y −1 ·
[
ŵ
0

]
, w0,2 = Y −1 ·

[
0
w̃

]
,

and

wa,1 = Y −1 ·
[
ŵa
0

]
and wa,2 = Y −1 ·

[
0
w̃a

]
for 2 ≤ a ≤ k, so that w = w0,1 +w0,2 and wa = wa,1 +wa,2
for 2 ≤ a ≤ k as well. Note evaluation (using the above
expressions) suffices to confirm that

uTa,1 · w0,2 = 0 and uTa,1 · wc,2 = 0

for 1 ≤ a ≤ k and 2 ≤ c ≤ k, and that

uTa,2 · w0,1 = 0 and uTa,2 · wc,1 = 0

for 1 ≤ a ≤ k and 2 ≤ c ≤ k as well. It follows that

uTa · w = uTa,1 · w0,1 + uTa,2 · w0,2

and that

uTa · wc = uTa,1 · wc,1 + uTa,2 · wc,2
for 1 ≤ a ≤ k and 2 ≤ c ≤ k.

Next consider the vector y0 = A · w. As above, note that

y0 = Y −1 ·
[
ŷ0

ỹ0

]



for ŷ0 ∈ FN×1
q and ỹ0 ∈ F

(n−N)×1
q once again. As above, set

y0,1 = Y −1 ·
[
ŷ0

0

]
and y0,2 = Y −1 ·

[
0
ỹ0

]
;

then, as above,

uTa,1 · y0,2 = uTa,2 · y0,1 = 0

so that

uTa · y0 = uTa,1 · y0,1 + uTa,2 · y0,2.

It is now reasonably easy to establish that

uTa,1 ·A2 = uTa,2 ·A1 = 0

for 1 ≤ a ≤ k, that

A2 · y0,1 = A1 · y0,2 = 0,

and that

A2 · wa,1 = A1 · wa,2 = 0

for 2 ≤ a ≤ k as well. Since A1 · A2 = A2 · A1 = 0, it now
follows that if y1 = A · y0 and va = A · wa for 2 ≤ a ≤ k,
then

y1 = A1 · y0,1 +A2 · y0,2 and va = A1 · wa,1 +A2 · wa,2

for 2 ≤ a ≤ k. Indeed, if we set y1,1 = A1 · y0,1, y1,2 =
A2 · y0,2, va,1 = A1 ·wa,1 and va,2 = A2 ·wa,2 for 2 ≤ a ≤ k,
then it can be established from the above that

As ·y1 = As1 ·y1,1+As2 ·y1,2 and As ·va = As1 ·va,1+As2 ·va,2

for 2 ≤ a ≤ k and for every integer s ≥ 0. Finally,

uTa ·As · y0 = ua,1 ·As1 · y0,1 + ua,2 ·As2 · y0,2

and

uTa ·As · vc = uTa,1 ·As1 · vc,1 + uTa,2 ·As2 · vc,2

for 1 ≤ a ≤ k, 2 ≤ c ≤ k, and for every integer s ≥ 0 as well.
With all that noted, set

~u = u1, u2, . . . , uk (45)

as usual and set

~u1 = u1,1, u2,1, . . . , uk,1 and ~u2 = u1,2, u2,2 . . . , uk,2. (46)

Set

~c = y1, v2, v3, . . . , vk, (47)

~c1 = y1,1, v2,1, v3,1, . . . , vk,1 (48)

and

~c2 = y1,2, v2,2, v3,2, . . . , vk,2. (49)

It now follows from the above that

HA,~u,~c,s,t = HA1,~u1,~c1,s,t +HA2,~u2,~c2,s,t (50)

for all positive integers s and t.
Next consider the given vector b. Set b1 = A1 · b and

b2 = A2 · b, so that A · b = b1 + b2. Define another three
sequences of vectors, each of length k:

~d = A · b, 0, 0, . . . , 0, (51)

~d1 = b1, 0, 0, . . . , 0 and ~d2 = b2, 0, 0 . . . , 0. (52)

Note that if w1 = A · w + b, v1 = A · w1, v1,1 = A1 · w1 and
v1,2 = A2 · w1 (so that v1 = v1,1 + v1,2), and if we set

~v = v1, v2, . . . , vk (53)

as usual, and

~v1 = v1,1, v2,1, . . . , vk,1 and ~v2 = v1,2, v2,2, . . . , vk,2, (54)

then

HA,~u,~v,s,t = HA,~u,~c,s,t +HA,~u,~d,s,t (55)

for all positive integers s and t. Recalling the equation at
line (18), and the definitions of the sequences ~y and ~z of
vectors immediately preceding it, note as well that

HA1,~u,~y,s,t = HA1,~u1,~c1,s,t +HA1,~u1,~d1,s,t

and

HA2,~u,~z,s,t = HA2,~u2,~c2,s,t +HA2,~u2,~d2,s,t
.

Proof of Lemma 6.1. One can show (with a reasonably
straightforward argument) that rh is the rank of the ma-
trix A1 ∈ Fn×nq that has been described above, and that
A1 has h nontrivial invariant factors. Since h < k, and
the matrix A1 has only h nontrivial invariant factors, if fol-
lows by Lemma 5.1 (using b = 0 in this case) that if a
is an integer such that 1 ≤ a ≤ brh/kc −∆n,k − 1, vectors
u1, u2, . . . , uk, w, w2, w3, . . . , wk are chosen uniformly and in-
dependently from Fn×1

q , y0,1 = A1 ·w, y1,1 = A1 · y0, va,1 =
A1 · wa for 2 ≤ a ≤ k, and if ~u and ~c1 are the sequences of
vectors shown at lines (45) and (48), above, then

E[xnullL(HA1,~u,~c1,a,a+∆n,k )]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

and that

E[xnullR(HA1,~u,~c1,a+∆n,k,a)]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

as well, for f(h, k) as given in Lemma 5.1.
Note next, that, since ua = ua,1 + ua,2 for 1 ≤ a ≤ k, if

the sequences ~u1 and ~u2 are as shown at line (46), then

HA1,~u,~c1,s,t = HA1,~u1,~c1,s,t +HA2~u2,~c1,s,t

= HA1,~u,1~c1,s,t

since uTa,2 ·As1 ·y1,1 = uTa,2 ·As1 ·vc,1 for 1 ≤ a ≤ k, 2 ≤ c ≤ k,
and every integer s ≥ 0. Consequently it follows from the
above that

E[xnullL(HA1,~u1,~c1,a,a+∆n,k )]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

and that

E[xnullR(HA1,~u1,~c1,a+∆n,k,a)]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

as well.
Next recall that if u1, u2, . . . , uk, w, w2, w3, . . . , wk are cho-

sen uniformly and independently from Fn×1
q and the vectors

in the sequences ~u1, ~u2, ~c1 and ~c2 are defined as described
above, then the vectors in the latter four sequences are cho-
sen independently as well —so that matrices HA1,~u1,~c1,s,t



and HA2,~u2,~c2,s,t are selected independently too. It now
follows by an application of Lemma 4.2 and the equation
at line (50), above, that if a is an integer such that 1 ≤
brh/kc −∆n,k − 1 then

E[xnullL(HA,~u,~c,a,a+∆n,k )]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

and

E[xnullR(HA,~u,~c,a+∆n,k,a)]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k).

Finally, since the vector ~d shown at line (51) is fixed (it
depends only on the inputs A and b), and application of
Lemma B.3 and the equation at line (55), above, are suffi-
cient to establish that if a is an integer such that 1 ≤ a ≤
brh/kc −∆n,k − 1 then

E[xnullL(HA,~u,~v,a,a+∆n,k )]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

and that

E[xnullR(HA,~u,~v,a+∆n,k,a)]

≤ 1 + q(2−∆n,k)k · (f(h, k) + f(h, k)2 · q1−k)

as well, as needed to establish the claim.


