






Color Vision and Fitness Variation in Monkeys 

Table 1. Female Capuchin Color Vision Phenotypes, Survivorship, and Production of Infants. M-L pigment sensitivity describes the
 
peak spectral sensitivity (lmax) of the constituent middle-to-long wavelength sensitive photopigment(s) (red = 561 nm,
 
yellow = 543 nm, green = 532 nm).
 

Color Vision M-L Pigment Age at Departure mean IBIa mean IBIb 

Animal ID Phenotype sensitivity(ies) (years) Depart Type # of Offspring (years) (years) 

BAL Dichromat Red 9.55 End of Study 1 

CHA Dichromat Red 8.05 End of Study 1 

ED 

KIA Dichromat Red 10.56 End of Study 2 2.88 

LIM 

NEM Dichromat Red 8.69 End of Study 1 

NYL 

PIC Dichromat Yellow 9.60 End of Study 2 2.06 

PUM 

SAR Dichromat Red 11.88 End of Study 3 1.86 

SER 

SHA Dichromat Red 9.71 End of Study 2 3.04 

SHE 

SIM Dichromat Red 14.29 End of Study 4 2.06 

TIM 

ZAZ Dichromat Red 13.80 End of Study 3 2.56 

ROS 

RIT Dichromat Red 12.88 End of Study 3 1.96 

FAW 

QUI Dichromat Red 5.55 End of Study 0 

GAI 

ABU Trichromat Green/Red 7.57 End of Study 0 

BLA 

CHU Trichromat Yellow/Red 13.30 End of Study 5 2.24 0.90 

DOS 

KAT Trichromat Yellow/Red 23.19 Death 11 1.83 0.88 

MAY 

ORE Trichromat Green/Red 7.61 End of Study 1 

SAL 

VEL Trichromat Green/Red 6.22 Death 0 

BEA 

ARI Trichromat Green/Red 6.45 End of Study 0 

PAN 

MIN Trichromat Green/Yellow 22.88c End of Study 3 2.27 1.69 

MAX 

LUN Trichromat Green/Yellow 22.88c End of Study 3 2.05 1.84 

FLE 

LIL Trichromat Yellow/Red 15.88c End of Study 4 2.67 0.99 

PET 

MRS Trichromat Green/Red 18.88c End of Study 6 2.21 0.98 

PAD 

CHO Trichromat Green/Red 9.35 Death 2 0.74 

ATH 

ELE Trichromat Green/Yellow 13.88c End of Study 3 1.95 

CAL 

HEL Trichromat Yellow/Red 9.88 End of Study 3 2.05 1.00 

CRE 

Dichromat Red 12.52 End of Study 5 2.34 0.93 

Dichromat Red 22.05 Death 8 2.21 0.67 

Dichromat Red 11.11 Death 4 1.83 1.16 

Dichromat Red 10.59 End of Study 3 1.95 

Dichromat Red 23.44 End of Study 7 2.26 

Dichromat Red 3.58 Death 0 

Dichromat Red 16.51 End of Study 4 1.93 

Dichromat Red 19.37 Death 2 1.49 

Dichromat Yellow 1.21 Death 0 

Dichromat Yellow 4.36 End of Study 0 

Trichromat Green/Yellow 26.75 Death 10 2.05 1.02 

Trichromat Green/Red 20.15 Death 8 1.77 1.01 

Trichromat Yellow/Red 6.20 Death 1 

Trichromat Green/Yellow 16.72 End of Study 6 1.83 

Trichromat Green/Red 6.69 End of Study 0 

Trichromat Green/Red 2.35 Death 0 

Trichromat Yellow/Red 19.81c Death 3 1.80 

Trichromat Green/Red 15.88c End of Study 3 2.08 

Trichromat Green/Red 13.88c End of Study 3 2.61 

Trichromat Green/Yellow 9.88 End of Study 1 

Trichromat Yellow/Red 12.14c Death 3 3.16 

Trichromat Green/Red 11.88c End of Study 5 1.65 0.78 

Trichromat Green/Red 2.77 Death 0 
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Table 1. Cont. 

Animal ID 
Color Vision 
Phenotype 

M-L Pigment 
sensitivity(ies) 

Age at Departure 
(years) Depart Type # of Offspring 

mean IBIa 

(years) 
mean IBIb 

(years) 

THY Trichromat Green/Red 4.47 End of Study 0 

CAS Trichromat Green/Red 2.97 Death 0 

a = Mean of uncensored (complete) IBIs when the first infant in the interval lived $ one year of age. 
b = Mean of uncensored (complete) IBIs when the first infant in the interval died,one year of age. 
c = entered study as an adult or subadult, age estimate based on morphological features at first sighting in 2007. 
doi:10.1371/journal.pone.0084872.t001 

allele), AB193778 (P543 allele) and AB193784 (P532 allele). 
Amino acid residues at the three critical tuning sites (exon 3, site 
180; exon 5 sites 277 and 285) were determined to assign the color 
vision genotype [26]. We minimized the chances of allelic dropout 
by requiring that at least one fecal sample from each female 
contained no less than 200 pg of genomic DNA. Further details, 
including our PCR and sequencing protocols, are described in 
previous publications [24,26]. 

Measures of Fitness and Reproductive Success 
The rate of infant production (fertility) and survival of those 

infants, and longevity of the mother herself, are three important 
components of female fitness [38,47,48]. We address these three 
variables in turn. 

In iteroparous organisms that habitually give birth to one infant 
at a time (most primates), fertility rates depend on the length of 
time between parturition events, i.e., the interbirth interval, or IBI 
[49]. We calculated the intervals between live births as our 
measure of fertility rate. IBIs are commonly used in primatology as 
a proxy for the number of infants born per female in a given time 
interval [38,50], and since our data on births were unavoidably 
constrained by the arbitrary start and stop dates of our study, it 
was more appropriate to use IBIs rather than number of infants 
born as our measure of female fertility. We included in our 
analyses intervals that were right censored by the stop date of our 
study or death/departure of the mother, since their exclusion may 
result in systematic bias toward shorter intervals [51]. Further­

more, our previous finding that death of an infant prior to 1 year 
of age shortens the length of the interbirth interval [39] led us to 
distinguish between intervals in which the first infant died prior to 
the age of 1 year and those in which the first infant survived. By 
separating out IBIs in which the first infant died prematurely, we 
were also able to remove any effects of early infant death/ 
infanticide on IBI length. 

To be reproductively successful, a female primate needs not 
only to produce infants but also to experience high rates of survival 
in her offspring and to live a comparatively long life herself. We 
examined the survival of a female’s infants from their births to two 
years of age. We used age two as the cut-off point for calculating 
offspring survival on the assumption that prior to this age, an 
immature monkey’s survival would be primarily a function of their 
mother’s rather than their own color vision phenotype. This is 
because in the first year or two of life, prior to weaning, a young 
capuchin depends on its mother for milk and because the mother’s 
ecological fitness and health determine the availability of her milk 
and the amount of care (e.g., transportation) and protection she 
can provide to the infant. 

Our second measure of survival was that of the mother herself 
(longevity) which we calculated from two years of age (i.e. post-

weaning) until her death or the end of our study. Sometimes we 
find the cadaver of a deceased study animal on the forest floor, or 

we observe them to be wounded or ill before they disappear, in 
which case we record them as dead. Females seldom disperse 
(,12% of females have emigrated out of, or immigrated into our 
study groups) and in the few cases where females have dispersed 
from our study groups, we have tracked them to a neighboring 
group. Therefore, we assume that any cases of post-weaning 
female disappearances are deaths. 

For both IBIs and the survival of infants, we accounted for 
potential autocorrelations in the fitness events experienced by each 
particular mother by introducing a random effect of the identity of 
the mother in the analyses. As noted by Jones et al. [49], 
introducing the random effect of the mother’s identity also 
provides an indirect measure of ‘‘phenotypic quality’’ or ‘‘frailty.’’ 

Statistical Analyses 
To assess the pace of infant production, we used mixed effects 

Cox regressions (coxme and coxph procedures) [52] in R [53] and 
analyzed the length of 139 interbirth intervals (IBIs, Table 1). 
There were a total of 101 complete/uncensored and 38 censored 
intervals for 37 mothers of known visual phenotypes. The model 
included IBI as the dependent variable, a fixed effect of the 
mother’s color vision phenotype (dichromatic or trichromatic), a 
fixed effect of whether the first infant in the interval died prior to 
age 1, and a random effect of the identity of the adult female. 
Censored values included cases where the female was still alive at 
the end of the study but had not yet given birth to another infant 
and cases where a female had died. Thus, if a female had N births, 
there were N values for IBI, the first being the interval between 
births 1 and 2, and the last being the censored interval between 
last birth and death/end of study. 

To determine the effect of the mother’s color vision type and of 
the mother’s identity on the survival of her infants, we used mixed 
effects Cox regressions (combining coxme and coxph procedures) 
in R to analyze the survival of infants from birth to age 2. We 
included all 139 infants born to 37 females with known color vision 
phenotypes (Table 1). The model included age of the infant at 
death or at the end of the study if the infant was still alive but less 
than 2 years of age, as well as a fixed effect of the mother’s color 
vision type and a random effect for the identity of the adult female. 

To examine the longevity of trichromatic versus dichromatic 
females, we used a Cox proportional hazard regression (the coxph 
procedure in R) to analyze the survival of individual females from 
the age of two years on. There were a total of 48 females included 
in this analysis for which we know their color vision phenotype and 
that they survived beyond two years of age (Table 1). The model 
included a survival function for the females as a function of being 
trichromatic or dichromatic. The age at death was right-censored 
for those individuals still alive at the end of the study. The age of 
entry into the study was left censored if the individual did not enter 
the study at birth (in which case we estimated her age, based on 
age-related morphological features such as brow and nipple 
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length, and based on 26 years of observing the aging process in 
females of known age). 

Because the advantage proposed to exist for trichromats is 
hypothesized to be particularly strong for those that have 
maximum sensitivity near the green or red end of the spectrum, 
we repeated all three analyses (IBI, offspring survival, maternal 
survival), using only reproductive data from Green/Red trichro­

mats and comparing them to dichromats. 

Results 

Interbirth Interval Duration in Trichromatic versus 
Dichromatic Females 

We examined the length of interbirth intervals (IBIs; N = 139) as 
a function of the effect of: (1) the mother’s color vision phenotype; 
(2) the death of the first infant in the interval at ,1 year of age; 
and (3) the random effect of the mother’s identity. The interbirth 
intervals of trichromatic versus dichromatic females did not differ 
significantly (x 2 = 0.445, df = 1, p = 0.504, Figure 2). For IBIs 
where the first infant in the interval lived at least one year, the 
fitted median IBI was 2.05 years (N = 56) for trichromatic females 
and 2.19 years (N = 45) for dichromatic females. 

In accordance with a previous study [39], we found that 
interbirth intervals in which the first infant died before age 1 were 
significantly shorter than intervals in which the first infant survived 
(x 2 = 59.5, df = 1, P,0.001) and this was true for both trichromats 
and dichromats (Figure 2). For IBIs where the first infant in the 
interval died before age 1, the fitted median IBI was 1.01 years 
(N = 28) for trichromatic females and 1.13 years (N = 10) for 
dichromatic females. 

Finally, we found that the individual identity of the mother (i.e., 
the random effect of the mother independent of her vision 
phenotype) contributed significantly to the explanatory power of 
the model (x 2 = 4.460, df = 1, p = 0.035). 

Survival of Infants Born to Trichromatic versus 
Dichromatic Mothers 

We assessed the survival of infants (N = 139) from birth to the 
age of two years, the typical timing of weaning, as a fixed effect of 
the mother’s color vision phenotype and the random effect of the 
mother’s identity. Infants of trichromatic mothers did not live 
longer (up to two years) than those born to dichromatic mothers 
(x 2 = 1.49, df = 1, p = 0.221), nor did the identity of the mother 
contribute to explaining variation in the probability of the 
offspring surviving to the age of two (x 2 = 0.005, df = 1, 
p = 0.940, Figure 3). For trichromatic females, 61.9% of their 
offspring survived to age 2, whereas for dichromatic females, 
79.6% of their offspring survived to age 2. 

Survival of Trichromatic versus Dichromatic Females Post 
Weaning 

When we examined the survival of females past the age of 2 
years as a function of their color vision phenotype we found that 
survival did not differ between trichromats and dichromats 
(x 2 = 0.91, df = 1, p = 0.339, Figure 4). The median predicted 
survival time for dichromatic females was 22.1 years (N = 20) and 
19.8 years for trichromats (N = 28). Additionally, if we consider 
only those females who actually died before the end of our study, 
we can see from Table 1 that they lived between 1.21 and 26.75 
years. The mean age of survival for the trichromatic females who 
died before the end of the study (n = 11) was 11.99 years and the 
mean age of survival for dichromatic females who died (N = 5) was 
11.46 years. 

Comparison of Green/Red Trichromats to Dichromats for 
Interbirth Intervals, Offspring Survival and Maternal 
Survival 

Because the L/M photopigments of Green/Yellow and Red/ 
Yellow trichromats are less spectrally-separated (equivalent to 
‘‘anomalous’’ trichromacies in humans) than the photopigments of 
Green/Red trichromats, it is possible that the former phenotypes 
might experience lower fitness and bring down the trichromatic 
group mean. To test for this, we performed the same analyses as 
those presented above, but this time we limited the sample of 
trichromats to the Green/Red phenotype. 

We found that the results for all of these analyses were 
qualitatively identical to those presented above for the trichromat­

dichromat comparison. There were no significant differences 
between Green/Red trichromats and dichromats on any of our 
three measures of female fitness. Specifically, the phenotype of the 
mother (Green/Red trichromat versus dichromat) has no discern­

ible effect on the length of her IBI (x 2 = 1.41, df = 1, p = 0.234), 
and the early death of the first offspring in an IBI leads to a shorter 
IBI for both Green/Red trichromats and dichromatic mothers 
(x 2 = 34.0, df = 1, p,0.001). Second, the mother’s vision pheno­

type does not affect the offspring’s survival up to 2 years (x 2 = 2.54, 
df = 1, p = 0.109). Third, the survival of females after the age of 2 is 
not significantly affected by their vision phenotype (x 2 = 3.66, 
df = 1, p = 0.055) and the trend is in the direction of dichromats 
surviving better than the Green/Red trichromats. 

Discussion 

Although heterozygote superiority appears from the literature to 
be a widely accepted mechanism explaining primate color vision 
polymorphism, we found no significant advantage to trichromats 
over dichromats for the three measures of fitness we examined in 
female monkeys. Not only did the differences fail to reach 
significance, the trends for infant and maternal survival were in the 
opposite direction than predicted by the heterozygote superiority 
hypothesis (Figures 3 & 4). The one clear and consistent prediction 
from the literature is that Green/Red trichromats should 
experience visual advantages (and therefore fitness advantages) 
in comparison to the five other phenotypes found in capuchins, 
and in particular Green/Reds should do better than the 
dichromats [54–60]. However, even when we limited our analyses 
to the Green/Red trichromat females, there was no indication 
whatsoever that green/red trichromatic females do better than 
dichromats on any measure of fitness (fertility rates, offspring 
survival, maternal survival). We suggest therefore that an alternate 
selective mechanism is operating to maintain color vision 
polymorphism in our study animals. 

Despite the lack of fitness differences due to color vision 
phenotype, we did find significant variation in IBIs attributable to 
the mother’s identity, indicating that some aspect of phenotypic 
quality, other than color vision, is influential in the pace of infant 
production in our capuchins. These results are in accordance with 
other recent studies on female primates (e.g., 49]) in which the 
effect of the mother’s identity was investigated. Dominance rank 
and age are unlikely to explain these characteristic IBI lengths that 
are consistent over a female’s lifetime, in particular because rank 
and age change over the course of a female capuchin’s life and 
because our previous studies of the effects of dominance and age 
failed to demonstrate that these variables are significant predictors 
of IBI length in our study animals [39]. However, other aspects of 
a female’s behavior may affect her life-long fertility pattern, in that 
some females may consistently behave in ways to enhance their 
probability and frequency of producing offspring. For example, 
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