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Abstract

Quantitative estimation of rock physics properties, such as porosity, lithology, and uid

saturation, is an important part of reservoir characterization. Most current seismic workows

in this �eld are based on amplitude variation with o�set (AVO). Full waveform inversion

(FWI) methods, although computationally more complex than AVO approaches, can produce

more accurate elastic models by extracting the full information content in the seismogram.

Progress has been reported in using elastic FWI results as intermediate quantities to derive

rock properties from seismic data. However, the question of whether FWI can be geared

towards the direct determination of rock physics properties remains open. In this thesis, I

formulate FWI with rock physics model parameterizations to directly estimate parameters

of immediate interest in reservoir characterization. This approach allows examination of any

rock physics property that has a well-de�ned relationship with elastic parameters. It also

shares the same numerical structure as the conventional elastic FWI, allowing various existing

inversion strategies to be used. The reliability of the approach is systematically examined

using di�erent synthetic examples and is quanti�ed by comparing it to conventional two-step

inversions.

Building on this approach, I formulate a time-lapse FWI framework for quantitative

seismic monitoring of CO2 storage. The method is tested on synthetic data generated for the

Johansen formation model. The results demonstrate this approach’s robustness for retrieving

static properties, such as porosity and mineral volumes, and dynamic reservoir properties,

such as CO2 saturation. Moreover, with a joint rock physics model combining Gassmann’s

equation with empirical pressure relations, I illustrate the potential of this approach for the

simultaneous prediction of CO2 saturation and pore pressure.

Finally, I apply a sequential inversion scheme combining elastic FWI and Bayesian rock

physics inversion to a vertical seismic pro�le (VSP) dataset acquired with accelerometers and

a collocated distributed acoustic sensing (DAS) �ber at the Carbon Management Canada’s

Newell County Facility. The inverted porosity and lithology models are reasonably accurate
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at the well location and are geologically meaningful in spatial distribution. This baseline

(before injection) study can be used to support later monitoring of CO2 storage.
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Preface

This thesis is written in a manuscript-style format, based on two published peer-reviewed
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Chapter 1

Introduction

1.1 Full waveform inversion

The retrieval of physical properties of the earth using seismic data is critical for subsurface

explorations. As such it has been subject to intensive research for the last decades (Russell,

1988; Sheri� and Geldart, 1995; Yilmaz, 2001; Aki and Richards, 2002; Sen, 2006; Menke,

2018). In parallel, because of the increase in computational power, complex forward model-

ing has become more a�ordable. One of the methods that potentially allows to extract more

information from seismic data is Full Waveform Inversion (FWI) (Pratt et al., 1998; Taran-

tola, 2005; Virieux and Operto, 2009; Warner et al., 2013). In FWI an attempt is made to

construct elastic models of the subsurface matching the full amplitude and phase information

of the measured waveform data. Theoretically, it can provide models of physical parame-

ters with a higher spatial resolution than other methods such as travel-time tomography

(Schuster, 2017).

FWI is commonly formulated as an iterative process that seeks to improve the model by

minimizing the discrepancy between measured data and the synthetic data obtained using

a reference model (which can be poor in high wavenumber content), through minimizing

an objective function. The synthetic data are modeled using wave equations, to exploit the
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full information content in the seismogram. However, given the computational cost of one

simulation of the data, stochastic methods such as Monte-Carlo are not feasible for practical

FWI. Therefore FWI is generally formulated as a local optimization problem, in which the

model is only allowed to update in a direction that decreases the objective function (Virieux

and Operto, 2009). In this sense, the centerpiece of FWI is the adjoint-state method (Lions,

1971), which allows us to obtain the gradient of the objective function for the current model

by cross-correlating the incident and back-propagated wave�elds (Lailly, 1983; Tarantola,

1984). A detailed review of the adjoint-state method with illustrations from several seismic

problems is given in Plessix (2006).

Several simpli�cations in the physical description of the subsurface are generally consid-

ered for the modeling of wave propagation. The most basic of these considers the subsurface

to be an acoustic medium that can be parameterized by the P-wave velocity only (Ravaut

et al., 2004; Mulder and Plessix, 2008; Barnes and Charara, 2009; Shin and Ho Cha, 2009).

One advantage of acoustic FWI is dealing with less computationally expensive forward mod-

eling than in the elastic case. Also, mono-parameter acoustic FWI is better conditioned

than multiparameter FWI because only one physical parameter is involved in the inversion

(Virieux and Operto, 2009). However, the full wave�eld has more than just P waves, so

it is natural to include more realistic physics in the forward modeling to better match the

observed data, which have viscosity, elasticity, and anisotropic e�ects (Operto et al., 2013;

Alkhalifah and Plessix, 2014). Acoustic FWI cannot invert for such information e�ectively.

Although high-resolution P-wave velocity models can provide useful inferences for geologi-

cal interpretation, a more realistic description of the subsurface physical properties, and in

particular the elastic properties, is required for lithology and uid characterizations (Prieux

et al., 2013a).

The very �rst attempt to achieve realistic seismic inversion would be to use the isotropic

elastic wave equation (Tarantola, 1986). We are now able to estimate multiple elastic prop-

erties, such as P-wave velocity, S-wave velocity, and density, using the elastic FWI (EFWI).
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Despite the increasing implementation of EFWI in properly imaging and interpreting the

subsurface, several key challenges remain. The �rst one is known as cycle skipping, which

occurs when the synthetic data corresponding to a candidate FWI model matches peaks

and troughs of the measured data at a di�erent cycle from the correct match. This type of

model represents a local minimum in the optimization. Second, the fact that more degrees

of freedom are considered in the parameterization and that the sensitivity of the inversion

can change signi�cantly from one parameter class to another increases the ill-posedness of

the inverse problem. Moreover, EFWI su�ers from the trade-o�/crosstalk between di�er-

ent parameter classes, which arises from the complex manner in which multiple subsurface

elastic properties co-determine seismic waveforms, and occurs when errors in one property

are mapped into the updates of other parameters (Pan et al., 2018a; Keating and Innanen,

2019b). This unwanted "interparameter contamination" increases the uncertainty of inver-

sion outcomes. Various approaches have been proposed to address these fundamental issues

of EFWI. For example, the multiscale approach of Bunks et al. (1995), in which the data

are inverted from low to high frequencies, is widely used to avoid cycle-skipping. When low

frequencies are unavailable, it is suggested to consider objective functions with improved

convexity than the conventional L2-norm of data residuals (Bozda�g et al., 2011; M�etivier

et al., 2018). The uniqueness and stability of the solution can be improved using techniques

such as preconditioning and regularization (Guitton et al., 2010; Asnaashari et al., 2013).

Radiation pattern analysis has proven e�ective in predicting crosstalk (Tarantola, 1986; Op-

erto et al., 2013; Pan et al., 2019; Yang et al., 2019). Guided by analysis of the patterns

to select inversion parameters with minimal overlap between their radiation patterns, the

extent of crosstalk can be reduced (Operto et al., 2013; Pan et al., 2019; Yang et al., 2019).

The Hessian operator in Newton-based optimization methods also plays an important role

in decoupling the elastic parameters (M�etivier et al., 2017; Pan et al., 2017). These studies

to improve the accuracy of EFWI could facilitate its use in reservoir characterization.
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1.2 Rock physics

Rock physics provides the relationship between intrinsic rock properties such as porosity,

mineralogy, and pore uids to elastic properties that drive the seismic response such as P-

and S-wave velocities and density (Mavko et al., 2020). Rock physics analysis therefore

enables rock properties that were previously only available from drilling to be estimated

from remotely sensed data. During the early years of the exploration of seismology, seismic

data were interpreted primarily for structures that might trap hydrocarbons (Yilmaz, 2001).

With the advancement of computing power and seismic processing techniques, seismic data

are now commonly analyzed for determining rock physics properties (Doyen, 2007; Avseth

et al., 2010; Dvorkin et al., 2014; Grana et al., 2021).

To characterize rock properties based on the behavior of seismic waves propagating

through them, it is essential to have an understanding of how the composition of rock dictates

its overall elastic properties. This process is often referred to as "rock physics modeling"

(Dvorkin et al., 1999; Bachrach and Avseth, 2008; Grana, 2014). In theory, we make the

simplifying assumption that the inherently heterogeneous rocks have some e�ective, i.e. av-

eraged homogeneous properties over the scale of the measurements. Seismic studies therefore

require e�ective elastic moduli to be de�ned. This depends on the elastic properties of the

rock constituents and their geometric relationships. Because it is essentially impossible to ob-

tain su�cient information to uniquely de�ne the e�ective moduli, the theoretical maximum

and minimum moduli, known as the Voigt and Reuss bounds are often used (Mavko et al.,

2020). More re�ned e�ective moduli can be de�ned by accounting for the arrangement of the

components. There are two general methods of doing so, depending on the relative volume

fraction of the component being considered. For large relative volumes, a granular approach

is usually taken, where the e�ective moduli are determined by considering how the contact

forces on grains change the overall moduli (Dvorkin and Nur, 1996). Such methods are used

for high porosity, more unconsolidated to conventional sands. For low relative volumes, the

components are considered as isolated deviations from a background medium (Kuster and
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Toks�oz, 1974; Berryman, 1995), suitable for low porosity, unconventional isotropic rocks.

A complete rock physics modeling process can be broken down into four di�erent parts:

1) minerals, 2) uids, 3) the dry-rock frame, and 4) how the parts are assembled. Assem-

bling the di�erent parts of the model accounts for the sti�ening of the rock frame due to

the presence of uids. The most common approach to include the uid e�ect and com-

pute the saturated-rock elastic properties is based on Gassmann’s equation (Biot, 1956;

Gassmann, 1951). Gassmann’s equation assumes a homogeneous mineral modulus and sta-

tistical isotropy of the pore space. Most importantly, it is valid only at su�ciently low

frequencies such that the induced pore pressures are equilibrated throughout the pore space

(Mavko et al., 2020). This limitation to low frequencies makes it especially suitable for seis-

mic data. While many e�ective medium theories allow direct prediction of saturated-rock

moduli, they assume that the pores are isolated concerning uid ow, thus simulating very

high-frequency behavior appropriate to ultrasonic laboratory conditions. When applied to

seismic or well-log data, these models are generally used to simulate the dry rock, the results

of which are then used as input in Gassmann’s equation.

In addition to theoretical models, the study of rock physics has also produced a large

number of empirical relations/models. These relations are derived from experiments: physi-

cal properties of a suite of rock samples are measured, analyzed, and a mathematical function

is �t to the data points. Some commonly used empirical models include the time-average

equation of Wyllie et al. (1962), the velocity-density relations of Gardner et al. (1974) and

Castagna et al. (1993), the velocity-porosity relations of Raymer et al. (1980), and the

velocity-porosity-clay model of Han (1987). These models do not explicitly account for the

mechanisms of elastic parameter variations due to various rock constituents and their overall

architecture in the manner that theoretical rock physics models do. They often work very

well for the data they were derived from but can be di�cult to compare from one research

project to the next. With empirical relations, one must be careful about ascribing physical

meaning to what are essentially generic mathematical formulae (Wang, 2001).
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1.3 Seismic reservoir characterization

Seismic reservoir characterization plays an important role in comprehensive reservoir studies

from prospect identi�cation to detailed reservoir delineation. Reservoir simulations that are

based on accurately developed static reservoir models are of signi�cant value in developing,

monitoring, and managing a reservoir (Lie, 2019). Some key reservoir parameters to which

geophysical measurements can contribute include (Van Riel, 2000):

� rock type and porosity

� uid content and properties

� ow conduits and ow barriers

� pressures

� fracture orientation

� associated uncertainties

� changes over time for all of the above

To improve the accuracy of reservoir property prediction and minimize the uncertainties,

considerable attention needs to be placed on generating good quality seismic data, selecting

the most suitable seismic inversion method, and integrating multiple domain data, such

as well data, seismic attributes, and rock physics measurements, for the calibration and

interpretation phases.

From a geophysical perspective, reservoir characterization has traditionally used seismic

amplitude data. This dates back to when seismic amplitudes were used for "bright spot"

detection. Shortly afterward, the �rst attempts were made to invert amplitude data for

acoustic impedance (Dubrule et al., 1998; Pendrel, 2001). There are two main bene�ts of

using the inverted impedance compared to using amplitudes or amplitude attributes. First,

inversion partially removes wavelet e�ects, increases the resolution, and provides impedance

values that can be directly correlated with the absolute values of rock properties. This
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is not the case for amplitude attributes which are related to relative changes in reservoir

properties across elastic interfaces (Doyen, 2007). Second, the inverted impedance can be

directly calibrated at well locations with log-derived impedance values (i.e., seismic-well

tie). This calibration step is often crucial in the construction of a seismic-constrained rock

property model. Nevertheless, the use of acoustic impedance for reservoir characterization

has certain limitations because it is di�cult to separate the e�ects of porosity, lithology, and

uid saturation using a single inversion parameter.

The emergence of pre-stack seismic inversion technology, primarily the amplitude-variation-

with-o�set (AVO) inversion, has greatly expanded the application potential of seismic data

in reservoir characterization. This amplitude variation is typically associated with changes

in lithology and uid content in rocks above and below the reector. The AVO inversion is

based on the Zoeppritz equations, a set of equations that describe the partitioning of seismic

wave energy at an interface, typically a boundary between two di�erent layers of rock. Vari-

ous authors have derived slightly di�erent versions of linear approximations of the Zoeppritz

equations (Shuey, 1985; Aki and Richards, 2002). These approximations express the P-wave

reection amplitude as a function of the incidence angle and the reectivities of three elastic

parameters, such as P-wave velocity, S-wave velocity, and density. Today, AVO inversion is

widely used to obtain the elastic properties of the reservoir, which also leads to a sequential

workow for seismic prediction of reservoir properties: AVO inversion is performed �rst to

estimate elastic properties from seismic data, followed by rock physics analysis/inversion

to transform these elastic properties to reservoir properties (Bachrach, 2006; Bosch et al.,

2010; Grana, 2016a). Another widely used approach is the joint or simultaneous inversion

approach, in which the combination of seismic inversion and rock physics models is not step-

wise but uni�ed in a single formulation (Spikes et al., 2007; Buland et al., 2008; Grana et al.,

2020). It is debatable whether a sequential or joint approach is better. As illustrated by

Doyen (2007), the sequential workow is less demanding and gives the user more control

over parameter calibration for the di�erent steps. On the other hand, the more ambitious
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joint approach guarantees better consistency between inverted elastic and rock properties.

However, the joint approach is becoming more and more popular in the industry.

Figure 1.1: Seismic inversion for rock-physics properties: (a) workow; (b) current research
status

In light of these remarks, a natural research direction arises. Currently, rock physics

or reservoir properties are determined using reection amplitude information rather than

full waveform information. Can we formulate FWI algorithms that do something similar?

The application of FWI in the construction of high-resolution rock property models is still

at an early stage. Although some studies revealed the potential of multiparameter elastic

FWI in reservoir characterization (Pan et al., 2018a; Singh et al., 2018; Zhang et al., 2018),

they were performed in the elastic domain of velocity and density and did not go into the

rock physics domain. In other words, these analyses are qualitative in terms of reservoir

parameters. There are few reports on quantitative reservoir parameter prediction based

on FWI (Quei�er and Singh, 2013a; Dupuy et al., 2021a), and these studies all use the
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conventional two-step inversion scheme. As elastic FWI technology is gradually becoming

practical, we need to fully explore the way of combining FWI and rock physics, to maximize

the role of FWI in reservoir characterization. The previous work in the �eld of AVO provides

us with a reference, prompting us to think about whether the direct update and sensitivity

analysis of rock physics parameters can be realized under the framework of FWI. Also, what

are the advantages and limitations of this direct inversion compared to the conventional two-

step inversion? These are important points that I hope to explore in the thesis. In Figure

1.1, I briey summarized the seismic inversion-based reservoir characterization framework

and research status.

1.4 Seismic monitoring of carbon dioxide

Carbon capture and storage (CCS) in geological formations is becoming a key technology for

the permanent reduction of carbon dioxide (CO2) concentrations in the atmosphere (Davis

et al., 2019; Ringrose, 2020). Several large-scale CO2 storage experiments have already been

conducted around the globe, for example at Sleipner in Norway (Arts et al., 2008), Quest

in Canada (Duong et al., 2019), and Ketzin in Germany (Ivandic et al., 2015). In 2020, 26

large-scale facilities were operating, the majority of which are CO2 enhanced oil recovery

(EOR) projects, and six are dedicated geological storage projects. The last decade has seen

the emergence of most of the projects (19). Worldwide, the facilities capture and store 40

Mt of CO2 per year (Macquet et al., 2022).

The Containment and Monitoring Institute (CaMI) of Carbon Management Canada

(CMC), in collaboration with the University of Calgary, has developed, and now operates,

a comprehensive �eld research station in Newell County, Alberta, Canada (Lawton et al.,

2019; Macquet et al., 2022). The injection at this pilot site (at approximately 300 m depth)

is designed to simulate an unplanned CO2 leakage from a deeper and larger scale CO2 stor-

age project. CREWES has been closely involved in seismic surveys that have already been

acquired to characterize the subsurface baseline for the monitoring of CO2 injection (Isaac
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and Lawton, 2016; Eaid et al., 2022; Pan et al., 2023). CaMI and CREWES are now devel-

oping new seismic technologies to monitor the CO2 injection program, with an emphasis on

time-lapse analysis. Changes in rock properties through uid substitution impact seismic ve-

locity and density of the target formation which can be detected as a change in the reection

amplitudes relating to the baseline survey (Lumley, 2001). Numerous papers demonstrate

the potential of using time-lapse seismic to monitor the evolution of the CO2 plume in a

large-scale CO2 reservoir (Johnston, 2013; Furre et al., 2015; Ivandic et al., 2015). The

CaMI site has already been instrumented with optical �bre for Distributed Acoustic Sensing

(DAS) in wells and a 1.1 km long trench. CREWES has participated in several VSP DAS

surveys, yielding promising baseline images of the target reservoir around the CO2 injection

well (Hall et al., 2019). This facility available to CREWES through collaboration with CaMI

will enable testing and real data applications of methods described in this thesis.

The overall objective of a CO2 storage site monitoring program is to verify storage and

minimize the risk of leakage. In addressing the technical objectives of monitoring, there are

two main goals which are generally de�ned as 1) Containment: activities to ensure and verify

that the injected CO2 is contained within the storage unit, and 2) Conformance: the pro-

cess of verifying that storage performance in the subsurface proceeds as expected (Ringrose,

2020). The conformance monitoring should prove that the operator understands the behav-

ior of the CO2 in the reservoir, i.e. that there is consistency between the model predicted

behavior and the CO2 accumulation estimated from monitoring data. For reliable confor-

mance veri�cation, the monitoring (from well log measurements or seismic data) should, in

addition to locating the plume, provide quantitative information, ideally on both CO2 sat-

uration and pore pressure, to be compared to reservoir modeling predictions (Dupuy et al.,

2021a). Given these needs, basic consideration of how to optimally extract rock and uid

properties from seismic data becomes increasingly important. In CO2 storage applications,

rock properties are typically extracted sequentially, with the seismic inversion process geared

towards the determination of elastic properties, from which the actual properties of interest

10



are subsequently determined, often qualitatively. Reports of quantitative, waveform-based

saturation and pressure predictions are uncommon.

1.5 Thesis overview

Combining full waveform inversion with rock physics can extend the role of FWI from seismic

imaging to quantitative prediction and monitoring of reservoir parameters. I �rst introduce

the forward and inverse problems in FWI and rock physics, then provide novel approaches

to FWI integrating rock physics, and �nally apply FWI methods to the �eld data acquired

at the CMC Newell County Facility. The focus of each chapter is as follows:

In Chapter 2, I detail the frequency-domain elastic FWI implementation and some wave

propagation and optimization strategies used extensively in this thesis. Optimization meth-

ods such as gradient and Newton-based methods are explained, key concepts such as virtual

sources and radiation patterns in model parameterization studies are illustrated, and a reg-

ularized FWI framework incorporating prior model information is described. I then perform

a numerical comparison of the ability of di�erent optimization methods and acquisition ge-

ometries to reduce parameter crosstalk and illustrate how regularization techniques could

help constrain the inversion results.

In Chapter 3, I introduce the forward and inverse problems in rock physics. The forward

problem is to construct a rock physics model that converts rock and uid properties into

elastic properties. A complete rock physics modeling process generally includes multiple

theoretical models to gradually simulate the e�ects of minerals, pores, and uids on the

elastic properties of saturated rocks. The inverse problem is the process of estimating rock

properties from elastic parameters based on a constructed rock physics model. Solving

this problem requires some deterministic or stochastic inversion algorithm. This chapter

introduces several commonly used isotropic rock physics models in detail, most of which

will be used in conjunction with FWI in later chapters. I then investigated two classes

of algorithms for solving rock physics inverse problems: global optimization and Bayesian
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methods. Understanding the principles and limitations of these algorithms would facilitate

a step-wise seismic reservoir characterization workow: �rst, the elastic parameters are

obtained by FWI, and then the reservoir parameters are obtained by rock physics inversion.

This approach will be applied to the �eld data in Chapter 6.

In Chapter 4, I propose a new FWI algorithm: direct inversion of rock physics parameters

by FWI. My approach to this is to modify the model parameterization of FWI through a

rock physics model. I verify the feasibility of this algorithm through di�erent types of rock

physics models and di�erent numerical experiments. I perform an analysis of the inversion

sensitivity for three key rock physics properties including porosity, clay content, and uid

saturation. In addition, I focus on comparing the new method with the traditional indirect

inversion method of rock physics parameters, and analyze the advantages and limitations of

the new algorithm. What I want to emphasize is that this algorithm has the same numerical

structure and similar computational cost as the conventional FWI method, so it is easy

to integrate various strategies proposed to improve the accuracy of FWI and enhance its

practicability. For instance, in Appendix C I give an example of FWI regularization in the

rock physics domain.

In Chapter 5, I formulate a time-lapse FWI framework based on the rock physics parame-

terized FWI approach proposed in Chapter 4, to predict the time evolution of CO2 saturation

from seismic data. To set out the results of these tests, I �rst describe the time-lapse FWI

strategy. I then systematically examine the response of the inversion to a synthetic time-

lapse dataset. Speci�cally, I recover porosity and lithology parameters from the baseline

seismic data, and then use these results as input in the monitor seismic survey, producing

estimates of CO2 saturation. The reliability of the approach is quanti�ed by comparing it to

conventional approaches. I end this chapter by discussing how uncertainties related to data

and rock physics model a�ect CO2 saturation reconstructions. In Appendix D, I discuss the

FWI prediction of pore pressure, another key dynamic reservoir parameter in CO2 monitor-

ing. This discussion is for the case where the time-lapse seismic response is a�ected by both
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uid substitution and pressure build-up.

In Chapter 6, I apply a sequential inversion scheme combining elastic FWI (Chapter 2)

and Bayesian rock physics inversion (Chapter 3) to a VSP dataset acquired with accelerom-

eters and DAS �ber at the CMC’s Newell County Facility. The goal is to build a baseline

model of porosity and lithology parameters to support later monitoring of CO2 storage. The

key strategies include an e�ective source approach to cope with near-surface complications,

a modeling strategy to simulate DAS data directly comparable to the �eld data, and a Gaus-

sian mixture approach to capture the bimodality of rock properties. I perform FWI tests on

the accelerometer, DAS, and combined accelerometer-DAS data, and compare and analyze

the results. I note that the direct rock physics FWI method in Chapter 4 could also be

applied to this set of data, but in the hope of doing more analysis in the elastic domain,

and to compare with previous FWI results for the �eld site, I ended up implementing the

sequential inversion approach.

In Chapter 7, I provide a summary of the novel contributions of this thesis. I go on to

explain some of the challenges with combing FWI and rock physics, and suggest possible

avenues for future research in FWI-based reservoir characterization and monitoring.
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Chapter 2

Implementations of elastic full

waveform inversion

In this chapter, I introduce the forward and inversion problems in the frequency-domain

EFWI. Optimization methods such as gradient and Newton-based methods are explained,

key concepts such as virtual sources and radiation patterns in model parameterization stud-

ies are illustrated, and a regularized FWI framework incorporating prior model information

is described. I then numerically compare the ability of di�erent optimization methods and

acquisition geometries for reducing parameter crosstalk, and show how regularization tech-

niques constrain the inversion results.
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2.1 Theory

2.1.1 Forward modeling

In this analysis, I consider isotropic elasticity and a 2D medium. In the frequency domain,

the 2D elastic wave equations can be written as
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(2.1)

where ! is the angular frequency, � = �(x; z) is the density, � = �(x; z) and � = �(x; z)

are the Lam�e parameters, u = u(x; z; w) and v = v(x; z; w) are Fourier components of

the horizontal and vertical displacements, f = f(x; z; w) and g = g(x; z; w) are Fourier

components of the horizontal and vertical body forces (Pratt, 1990). Equation 2.1 can be

discretized and solved using �nite di�erence approaches, which take the form

A(m; !)u(m;xs; !) = f(xs; !); (2.2)

where m = (�; �; �) is the model vector, u = (u; v) is the displacement vector, f = (f; g)

is the source vector, xs is the source location, and A is the impedance matrix, which is a

sparse matrix with the number of non-zero diagonals related to the �nite-di�erence scheme

(Marfurt, 1984). The wave�eld u can be obtained by the inverse of the impedance matrix,

which is usually replaced by direct matrix factorization methods, such as lower and upper

(LU) triangular decomposition (Virieux and Operto, 2009).

2.1.2 Objective function and its derivatives

As a nonlinear optimization problem, FWI seeks to estimate subsurface parameters through

an iterative process by minimizing the di�erence between the synthetic data dsyn and ob-

served data dobs (Tarantola, 1986). The objective function is formulated in a least-squares
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form:

E(m) =
1
2

X

ns

X

n!

kdobs(xs; !)� dsyn(m;xs; !)k2
2; (2.3)

where dsyn(m;xs; !) = Ru(m;xs; !) is the synthetic data generated using the current model

m, and R is the sampling operator that extracts the wave�elds at receivers’ locations. ns

and n! are the number of sources and the number of frequencies, respectively.

The Newton optimization approach is based on the second-order Taylor expansion of the

objective function:

E(m + �m) � E(m) + �mTrmE +
1
2
�mTH�m; (2.4)

where the superscript T denotes the transpose, �m is the search direction, rmE is the

gradient, and H is the Hessian. To minimize equation 2.4, the search direction �m is the

solution of

H �m = �rmE; (2.5)

and the updated model m0 can be written as

m0 = m + � �m; (2.6)

where � is the step length, a scalar constant calculated by a line-search method (Nocedal

and Wright, 2006).

The gradient is the �rst-order partial derivative of the objective function with respect to

model parameters:

rmE =
@E(m)
@m

= �<

(
X

ns

X

n!

"�
@(Ru(m;xs; !))

@m

�y
�d

#)

; (2.7)

where y is the adjoint operator (conjugate transpose), �d = dobs(xs; !) � dsyn(m;xs; !),

and < denotes the real-part operator. The sensitivity matrix J = @(Ru(m;xs; !))=@m
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is composed by the Fr�echet derivatives of the synthetic data with respect to the model

parameters (Virieux and Operto, 2009). To calculate the Fr�echet derivatives, I take the

partial derivative of equation 2.2 with respect to m:

A(m; !)
@u(m;xs; !)

@m
= �

@A(m; !)
@m

u(m;xs; !): (2.8)

This illustrates that the �rst-order partial derivative of the wave�eld, @u(m;xs; !)=@m, can

be obtained by solving the wave equation with a virtual source (Pratt et al., 1998) :

fv = �
@A(m; !)

@m
u(m;xs; !): (2.9)

The radiation pattern of each parameter class @A=@m is included in the virtual source, and

the calculation for it depends on the details of the �nite approximation method.

Substituting the virtual source back to the gradient, the gradient becomes
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(2.10)

where �(m;xs; !) is the adjoint variable/state that is the solution of

Ay(m; !)�(m;xs; !) = Ry�d: (2.11)

Equation 2.7 illustrates that the gradient with respect to a single parameter is based on the

product of data residuals and the wave�eld scattered by a perturbation of this parameter

recorded by the receivers. As a result, the model perturbation �m given by the gradient is

built through the extraction of the speci�c contribution of each parameter from the residuals,

assuming the residuals contain only single scattered events (M�etivier et al., 2017). There-

fore, relying only on the gradient direction is dangerous, because any residuals coming from
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multi-scattered events are wrongly accounted for as single-scattered events. In addition, for

two parameter classes p and q with similar radiation patterns, @A
@mp(x) = @A

@mq(x) , their model

perturbations provided by the gradient will also be similar, while in reality their true per-

turbations might be completely di�erent. This is usually referred to as parameter crosstalk.

The Hessian operator is important in model updating because it helps to mitigate these

issues.

For multiparameter FWI, the Hessian is a large block matrix. If the number of parameter

classes is N , then the Hessian has N�N blocks, with each element in the blocks representing

the second-order derivative of the mis�t function with respect to model parameters:

Hmpmq(x;x
0) = <

�X

ns

X

n!

��
@u(m;xs; !)
@mp(x)

�y
RyR

@u(m;xs; !)
@mq(x0)

�
�

@2u(m;xs; !)
@mp(x)@mq(x0)

�y
Ry�d

��
:

(2.12)

When p = q, equation 2.12 indicates the elements in diagonal blocks, and when p 6= q,

it indicates o�-diagonal blocks. When the spatial position x = x0, it indicates diagonal

elements within a single block, and when x 6= x0, it indicates o�-diagonal elements. The

�rst-order term in 2.12 measures the correlations of two Fr�echet derivatives and is essential

in overcoming crosstalk in multiparameter FWI. The second term contains the second-order

partial derivative of the wave�eld and accounts for the second-order scattering (M�etivier

et al., 2017).

2.1.3 Optimization methods

FWI is classically formulated as a local optimization problem, where model updates are

designed based on the derivatives of the objective function at the current model location

and only steps decreasing the objective function are allowed.

The full Newton method uses the quadratic search direction from equation 2.5: 4mk =

�H�1
k gk. The Gauss-Newton method approximates the full Hessian by only accounting for
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the �rst term in equation 2.12. Although the Newton methods bene�t from a fast convergence

rate, the computation, storage, and inversion of Hessian at each iteration are prohibitively

expensive, this limits their applications for large-scale inverse problems (Pan et al., 2018a).

Gradient-based methods, such as steepest-descent (SD) and nonlinear conjugate-gradient

(CG) are computationally more attractive when inverting a large number of unknown model

parameters. SD simply determines the search direction to be the negative of the gradient:

�mk = �rmkE; (2.13)

and CG uses a linear combination of the current gradient and the previous search direction:

�mk = �rmkE + �k�mk�1; (2.14)

where �k is a scalar selected such that �mk and �mk�1 are conjugate. The gradient-based

methods are known to converge to the global minimum, but possibly very slowly. In most

cases, preconditioning is necessary to ensure the fast convergence of CG methods (Pan et al.,

2017).

As a low-rank approximation of the Hessian, the L-BFGS method is an attractive alter-

native to Newton-based and gradient-based methods, by approximating the inverse Hessian

iteratively instead of constructing the Hessian explicitly (Nocedal and Wright, 2006). Using

a pair of vectors sk = mk+1 �mk and yk = rmk+1E �rmkE that indicate the model and

gradient changes that satisfy the condition sykyk > 0, the inverse Hessian approximation

H�1
k+1 is given by

H�1
k+1 = vykH

�1
k vyk + wksksyk; (2.15)

where wk = 1=yyksk;vk = I � wkyksyk, and I is the identity matrix. The initial inverse

Hessian approximation is usually set as an identity matrix to make sure that the updated

matrix maintains positive de�niteness (Pan et al., 2017). The model and gradient are stored
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for a limited number (typically <10) of previous iterations. For multiparameter FWI, the

L-BFGS algorithm provides a suitable scaling of the gradient computed for each parameter

class and can help reduce crosstalk.

Instead of constructing inverse Hessian approximations, the truncated-Newton (TN) opti-

mization (M�etivier et al., 2017) �nds the search direction by numerically solving the Newton

linear system (equation 2.5). This optimization problem is given by

�mk = min
�
�mTrmkE +

1
2
�mTHk�m

�
: (2.16)

The CG method is often used as the optimization strategy for the inner-loop problem because

it only requires computing the Hessian-vector products instead of forming the Hessian matrix

explicitly. The Hessian-vector products can be calculated via the �nite-di�erence method

or the adjoint-state method (Plessix, 2006). Compared to the L-BFGS approach, the TN

approach can work with an e�ective level of second-derivative information even at the �rst

step of the optimization.

2.1.4 Model parameterization

The term "model parameterization" is understood as a set of independent parameter classes

that fully describe the subsurface properties (Operto et al., 2013). For example, we need

three elastic parameters to de�ne isotropic-elastic media, such as the two Lam�e parameters

and density, or P-wave velocity, S-wave velocity, and density. Although, in theory, these are

equivalent, the reconstruction of these constants from seismic will not yield the same results.

The main reason behind this is the trade-o� between di�erent physical parameters and the

resolution with which they can be reconstructed.

The choice of model parameterization is often based on the analysis of scattering/radiation

patterns, which represent the amplitude variation of Fr�echet derivative wave�eld with vary-

ing scattering angles, and can be used to evaluate the sensitivity of a seismic wave�eld to
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small perturbations of the material properties. A good choice of parameterizations should

give radiation patterns that are as di�erent as possible, to allow easy identi�cation of pa-

rameters. Tarantola (1986) examined the resolving abilities of various model parameteriza-

tions for isotropic-elastic FWI based on radiation patterns. His analysis suggested that the

velocity-density parameterization is more appropriate for inversion with large-o�set data,

while impedance-density parameterization is more suitable for near-o�set data. Virieux and

Operto (2009) showed the radiation pattern of di�erent parameter classes in acoustic FWI

and also pointed out that velocity and density are di�cult to reconstruct from short-o�set

data because of the same radiation pattern at short apertures. Pan et al. (2018a) analyzed

the resolving abilities of various model parameterizations in a vertical seismic pro�le (VSP)

environment. His study showed that all model parameterizations can reconstruct the P-wave

velocity and S-wave velocity models reasonably, but only the velocity-density parameteriza-

tion is able to provide relatively reliable density estimations.

There are two ways to calculate the radiation pattern. One is to compute the scattered

wave�eld numerically by perturbing one parameter and keeping other parameters �xed at its

background value (Operto et al., 2013). The amplitude variations of the scattered wave�eld

are representative of the radiation pattern of the virtual source. The other is to extract the

analytical expressions for the radiation patterns based on the Born approximation (Wu and

Aki, 1985; Stolt and Weglein, 2012). A summary of the analytic scattering coe�cients of

isotropic-elastic parameters can be found in Pan et al. (2018a) and Chen (2018).

For example, the analytical expressions for the radiation patterns of Lam�e parameters

plus density [��=�; ��=�; ��=�] are given by:
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where W P�P
� represents the P- to P-wave scattering coe�cient due to the perturbation ��=�,

and W P�SV
� represents the P- to SV-wave scattering coe�cient due to the perturbation ��=�,

and so on. � represents the opening angle between the incident wave and scattered wave,

and � is the VS=VP ratio of the unperturbed medium.

Similarly, the radiation patterns of P- and S-wave velocities plus density are given by:
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Figure 2.1: Radiation patterns of di�erent physical parameters in the �� �� � parameteri-
zation
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Figure 2.2: Radiation patterns of di�erent physical parameters in the VP � Vs � � parame-
terization

In Figures 2.1 and 2.2, I plot the radiation patterns for the two parameterizations, �����

and VP � Vs � �, respectively. These provide information for us to understand the potential

parameter crosstalk in the inversion. In general, the higher the degree of overlapping of

radiation patterns with di�erent parameters, the lower the ability of inversion algorithms to

di�erentiate responses caused by them. According to this criterion, the radiation patterns

in the ���� � parameterization overlap more signi�cantly than they are in the VP�Vs� �

parameterization, indicating a lower parameter resolution. In the VP � Vs � � parameter-

ization, the three variables will be more distinguished in a transmission survey than they

would be in a reection survey because a change in density mostly alters the back-scattered

wave�eld. For each parameterization, introducing a more powerful survey of wide apertures

will help to mitigate the crosstalk.
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2.1.5 Regularization

EFWI methods hold strong potential to provide high-resolution estimates of subsurface prop-

erties. However, the nonlinearity of EFWI and parameter crosstalk can prevent convergence

toward the global minimum, delivering results not consistent with existing data, such as

those contained in wells.

Regularization techniques allow stabilizing ill-posed inverse problems by incorporating

prior information about the model in the inversion (Sen and Roy, 2003). This essentially

involves modi�cation of the objective function by adding a model penalty term:

E(m) = Ed(m) + Em(m); (2.19)

where the data mis�t term Ed(m) is based on a norm of the residuals between observed

data and synthetic data, and the model term Em(m) is based on a norm of a model penalty

function.  is the trade-o� parameter that controls the relative importance of the data and

model terms.

The model term can take di�erent forms, depending on the type of prior information.

The prior information can consist of the estimates of model parameters (Asnaashari et al.,

2013) and desired structure of the model, e.g., smoothness (Tikhonov and Arsenin, 1977)

or blockiness (Guitton, 2012). In recent years, some authors propose using the physical

relationships between elastic parameters to constrain the inversion. Because this type of

model constraint is often derived from well data and is related to the distribution of facies in

the subsurface, it is often called petrophysical constraint (Rocha and Sava, 2018; Aragao and

Sava, 2020) or facies-based rock-physics constraint (Kamali et al., 2017; Zhang et al., 2018;

Singh et al., 2020). Their methods distinguish from each other by the form of the penalty

function included in the objective function. For example, Rocha and Sava (2018) use a

logarithmic function to con�ne the inverted models to a feasible region. Aragao and Sava

(2020) use probability density functions to impose complex petrophysical relations. Zhang
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et al. (2018) use a facies-based prior estimate and update it iteratively during the inversion.

These approaches have been demonstrated to guide the inversion toward high-resolution and

geologically plausible models.

I have developed a method for EFWI that enforces explicit physical relationships between

the model parameters (Hu and Innanen, 2021). The underlying assumption is that a strong

correlation between the desired physical parameters can be observed from existing data. In

this approach, the model term is de�ned as

Em =
1
2

X

x

(m1 � f(m2))2; (2.20)

where x denotes model space coordinates, m1 = m1(x) and m2 = m2(x) are di�erent physical

parameters, and f = f(x) is a prede�ned function mapping m2 to m1. For example, let m1

represent density and m2 represent P-wave velocity, this term forces the inverted velocity and

density models to satisfy the relation � = f(VP). I make this function position-dependent

so that each model cell, based on its associated lithology or geologic facies, is subject to a

speci�c velocity-density trend (Gardner et al., 1974; Castagna et al., 1993; Martin et al.,

2006). This method is easy to implement when the lithology is relatively simple and the

regression relationship can be derived from existing data, such as well logs. For complex

lithology, prior information for the spatial distribution of lithofacies is required for imposing

this constraint.

2.2 Numerical Examples

2.2.1 Importance of Hessian and wide-aperture data

The importance of acquisition geometry to the reduction of parameter crosstalk in FWI can

be inferred from the radiation patterns. In the velocity-density parameterization, we observe

that the perturbation of velocity scatters the same energy for di�erent angles, and density
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has the same radiation pattern as velocity at short apertures but does not scatter energy

at wide apertures. This implies that the two parameters are di�cult to reconstruct using

only short-o�set data. In the theory section, I also pointed out that for multi-parameter

FWI, the Newton-based algorithms have more advantages than the gradient-based ones,

because the information of Hessian is used, which can theoretically alleviate the coupling

between di�erent parameters. Therefore, an ideal inversion environment should include a

wide observation aperture and an inversion framework based on the Newton algorithms. To

verify this, I conduct the following inversion test.

I consider a Gaussian anomaly model where the velocity anomaly and density anomaly

are on the left and right sides of the model respectively. The initial models are homogeneous,

with a constant velocity of 3000 m=s and a constant density of 2300 kg=m3. The model is

constructed of 50 � 100 grid cells with a grid interval of 10 m. The default acquisition

con�guration is surface-only sources and receivers. A total of 10 sources are deployed at 20

m depth and spread from 20 to 980 m with an interval of 100 m in the horizontal direction.

A total of 100 receivers are distributed on the surface from 10 to 1000 m with an interval of

10 m. I use a multiscale approach by successively iterating over 10 frequency bands, from 3

HZ to 21 HZ, with 20 iterations per band. In this environment, I examine respectively the

steepest descent (SD) method and L-BFGS method for inversion. Finally, I consider a more

complete acquisition geometry by adding a receiver line at the bottom of the model space

and rerun the L-BFGS test.

Figure 2.3 summarizes the inversion results. The velocity estimates are reasonably accu-

rate in all tests, but the density inversion is di�cult. We can observe signi�cant parameter

crosstalk in the SD models, especially density, which also su�ers from insu�cient updates.

The L-BFGS method alleviates the parameter crosstalk to some extent and improves the

convergence by introducing Hessian information in the inversion, but it still underestimates

the density anomaly. By further introducing subsurface geophones, the accuracy of density

estimates is signi�cantly improved. This is consistent with our observations of the velocity-
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Figure 2.3: (a,b) True P-wave velocity and density models. (c,d) Initial models. (e,f)
Inverted models by steepest-decent FWI of surface-recorded seismic data. (g,h) Inverted
models by L-BFGS FWI of surface-recorded seismic data. (i,j) Inverted models by L-BFGS
FWI of surface- and subsurface-recorded data.
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Figure 2.4: Convergence histories of (a) P-wave velocity and (b) density for the inversion
tests in Figure 2.3.

density radiation pattern. However, it should be pointed out that the above-mentioned

acquisition geometry considering that the geophones are arranged horizontally underground

is too ideal, and it is only to illustrate the importance of the observation aperture. In re-

ality, a good alternative is to add subsurface sources and receivers through wells, such as

the vertical seismic pro�le (VSP) and cross-well techniques. In Figure 2.4, the convergence

properties of the above inversion tests are summarized.

2.2.2 Regularized full waveform inversion

In this section, I examine the behavior of the penalty term that is based on explicit rela-

tions between model variables. I give two examples, corresponding to single lithofacies and

complex lithofacies.

The �rst example uses a three-layer model, in which a constant P-wave velocity VP, S-

wave velocity VS, and density � are assigned to each layer (Figures 2.5a-2.5c). The initial

models (Figures 2.5d-2.5f) are smoothed versions of the true models. In Figure 2.6, the

inversion results are summarized. Without regularization, apart from some mild oscillatory

behavior, the recovered VP and VS models (Figures 2.6a and 2.6b) match closely with the
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Figure 2.5: (a{c) True models and (d{f) initial models of VP, VS, and �, respectively.
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Figure 2.6: Inverted VP, VS, and � models: (a-c) without regularization and (d{f) with
regularization.
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true ones. However, the recovered � model appears particularly distorted (Figure 2.6c). In

contrast, the recovered � model with regularization exhibits reduced artifacts and the spatial

extent of each layer can be identi�ed (Figure 2.6f). In addition, the VP and VS models are

recovered with slightly higher resolution (Figures 2.6d and 2.6e).

2.4 2.6 2.8 3 3.2 3.4 3.6

2.1

2.2

2.3

2.4 initial
true

2.4 2.6 2.8 3 3.2 3.4 3.6
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2.3

2.4 inverted
true

Figure 2.7: VP-� crossplots of the (a) initial model, (b) inverted model without regularization,
and (c) inverted model with regularization. The gray line denotes the VP-� relationship used
as a model constraint.

In Figure 2.7 I display the true, initial, and inverted models in the VP-� crossplot; As the

iteration proceeds, I expect the blue dots in Figure 2.7a, which denote the initial models,

to move toward the red dots that denote the true models. However, we observe a poor

convergence of the unconstrained inversion, with the updated � values deviating signi�cantly

from the true ones (Figure 2.7b). In Figure 2.7c, by enforcing an explicit relationship between
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VP and �, which takes the form of � = �0:02V 2
P +0:3VP+1:4, I obtain a reliable model update

for �. My explanation is that imposing the constraint reduces undesired model updates,

which can be caused by parameter crosstalk, the low sensitivity of seismic data to density,

and the nonlinearity of the inverse problem, thereby improving the inversion convergence.

Figure 2.8: Marmousi case. True models of (a) P-wave velocity, (b) S-wave velocity, and (c)
density

(a) (b)

Figure 2.9: Facies classi�cation. (a) Model points are classi�ed into three groups, and each
group is described by a quadratic function: � = aV 2

P +bVP +c. (b) The corresponding spatial
distribution of facies.

The second example is based on a selected target of the Marmousi model (Figure 2.8). In

Figure 2.9a I display the true models using a VP-� crossplot. The model points (black dots)
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can be classi�ed into three categories, each corresponding to a single facies or VP-� relation.

Labeling every point based on the facies it falls into, a facies map can be generated (Figure

2.9b). Notably, the solution of the facies map is not unique. It depends on how I separate

those points. More groups and di�erent �tting equations are allowed. Even the terminology

"facies" I use is not strict, it is rather a tool for us to assign the correct VP-� relation to each

grid.

Figure 2.10: Comparison between (a,b) unconstrained and (c,d) constrained inversion results.
(e) Model pro�les of density at x=0.58km.

However, it is unrealistic to obtain the facies map from the true model. A facies classi-

�cation technique is required. Some authors have proposed using an iterative approach to

impose facies-based constraints (e.g., Singh et al., 2018; Zhang et al., 2018), which consists

of estimating the facies distribution based on the current inverted model and then using this

facies distribution to constrain the inversion at the next iteration. By doing so the facies

map is updated interactively with the model during the inversion. They ended up achieving
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a good estimation of both subsurface models and facies maps. Unfortunately, I have not

yet found this approach e�ective for imposing the kind of constraint I propose. My study

indicates that the iterative approach will inevitably assign the wrong facies to part of the

model at each iteration, and hinder the model from updating towards reducing data mis�t.

As a result, it can be less e�cient than the unconstrained inversion.

While my research into facies classi�cation is ongoing, I examine the proposed method

using the exact facies distribution (Figure 2.9). In Figure 2.10 I compare the inversion

results between the unconstrained and constrained approaches. The recovered density model

using the constrained approach has a higher resolution (Figure 2.10d) and matches the true

model more closely (Figure 2.10e). Figure 2.11 illustrates that the inverted model points

are con�ned to di�erent lines honoring their corresponding facies, thus being more likely to

recover the true model points.

Figure 2.11: Comparison between (a) unconstrained and (b) constrained inversion results.
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2.3 Conclusions

In this chapter, I presented a general form of EFWI and the challenges associated with EFWI,

such as nonlinearity, ill-posedness, and parameter crosstalk. I introduced three important

factors that a�ect the performance of EFWI: optimization method, acquisition geometry, and

model parameterization. I demonstrated that the Newton-based optimization algorithms

outperform the gradient-based ones in mitigating crosstalk and ensuring convergence. Based

on the analysis of radiation patterns, I illustrated the importance of wide aperture data for

improved parameter resolution. I also proposed a regularized EFWI scheme that encourages

the interdependence of di�erent physical parameters. Although my research is based on 2D,

frequency-domain, isotropic-elastic FWI, the considerations in this chapter should apply to

most multiparameter FWI frameworks, such as time domain, viscoelastic, or anisotropic

inversions. Also under this framework, I combined FWI with rock physics in various ways,

which will be discussed in detail in subsequent chapters.
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Chapter 3

Rock physics modeling and inversion

In this chapter, I will introduce the forward and inverse problems in rock physics. The for-

ward problem is to construct a rock physics model that converts rock and uid properties

(such as porosity, lithology, and saturation) into elastic properties (such as velocity, den-

sity, and modulus). A complete rock physics modeling process generally includes multiple

theoretical models to gradually simulate the e�ects of minerals, pores, and uids on the

elastic properties of saturated rocks. The inverse problem is the process of estimating rock

physics variables from elastic parameters based on a constructed rock physics model. Solv-

ing this problem requires some deterministic or stochastic inversion algorithm. This chapter

introduces several commonly used isotropic rock physics models in detail, most of which

will be used in combination with FWI in later chapters. I then investigated two classes of

algorithms for solving the rock physics inverse problem: global optimization and Bayesian

methods. Understanding the principles and limitations of these algorithms would facilitate

a step-wise seismic reservoir characterization workow: �rst, the elastic parameters are ob-

tained by FWI, and then the reservoir parameters are obtained by rock physics inversion.

This approach will be applied to the �eld data in Chapter 6.
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3.1 Rock physics models

According to the Hooke’s law, only two elastic moduli are needed to specify the stress{strain

relation of an isotropic elastic medium. The majority of theoretical rock physics models have

been developed in the domain of bulk modulus K and shear modulus � (Mavko et al., 2020).

The former is de�ned as the ratio of hydrostatic stress to volumetric strain, while the latter

is de�ned as the ratio of shear stress to shear strain. The P- and S-wave velocities of the

saturated rock can be computed from K and � as:

VP =

s
K + 4

3�
�

; VS =
r
�
�
: (3.1)

where the density � is generally computed as a linear average of the densities of mineral and

uid phases, �m and �f , weighted by porosity �:

� = (1� �)�m + ��f : (3.2)

A complete rock physics modeling process includes several steps (Grana et al., 2021): if

there are multiple minerals and uids, the elastic moduli of an e�ective solid matrix and

an e�ective uid are calculated using mixing laws; then, based on the assumption for the

geometric details of how pores are arranged relative to mineral grains, the elastic moduli of

the dry rock are calculated; �nally, the uid e�ect is included to obtain the elastic moduli

of the saturated rock.

3.1.1 Elastic bounds

The solid matrix is a composite of several pure minerals. Based on the elastic moduli of each

component and their volume fractions, it is possible to de�ne the upper and lower bounds

of the elastic moduli of the e�ective mineral.
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The Voigt upper bound is de�ned as:

MV =
NX

i=1

viMi; (3.3)

where N is the number of mineral components, Mi is the elastic modulus of the ith com-

ponent, and vi is the volume fraction of the ith component, assuming
PN

i=1 vi = 1. M can

represent any modulus, such as the bulk modulus K and the shear modulus �. The Voigt

bound represents the isostrain average because it gives the ratio of the average stress to the

average strain when all components are assumed to have the same strain.

The Reuss lower bound MR is
1
MR

=
NX

i=1

vi
Mi

: (3.4)

This bound represents the isostress average because it gives the ratio of the average stress

to the average strain when all constituents are assumed to have the same stress.

The e�ective moduli of the solid phase are often computed as the arithmetic average

(also referred to as Hill’s average) of the Voigt and Reuss bounds (Hill, 1952):

MVRH =
MV +MR

2
: (3.5)

In Figure 3.1, I provide an example of the Voigt{Reuss{Hill average for a mixture of

quartz and clay. A very similar approach can be used with more rigorous elastic bounds,

such as the Hashin-Shtrikman upper and lower bounds.

3.1.2 Fluid mixing laws

Similar to the solid matrix case, the mixing laws based on volumetric averages are generally

used to compute the bulk modulus of the uid mixture, the components of which may include

water, oil, and gas. Since most uids do not resist shear deformation, the shear modulus

is zero. Contrasting to mineral properties, the bulk modulus and density of individual
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Figure 3.1: Voigt, Reuss, and Voigt{Reuss{Hill averages for the (a) bulk modulus and (b)
shear modulus of a mixture of quartz and clay. In this example, the quartz properties are
Kq = 37 GPa and �q = 44 GPa, and the clay properties are Kc = 21 GPa and �c = 7 GPa.

uid components are more variable, depending on reservoir properties (e.g., temperature

and pressure) as well as uid composition (e.g., water salinity, oil gravity, and gas gravity).

The formulas for calculating uid properties are mostly based on the empirical equations

summarized by Batzle and Wang (1992).

The Reuss average (weighted harmonic mean) is used to compute the e�ective bulk

modulus Kf when the uid components are mixed at the �nest scales:

1
Kf

=
Sw
Kw

+
So
Ko

+
Sg
Kg

: (3.6)

where Kw, Ko, and Kg are the bulk modulus of water, oil, and gas, and Sw, So, and Sg are

the corresponding saturations, assuming Sw + So + Sg = 1.

The Voigt average (weighted arithmetic mean) is used when each uid component is

grouped in relatively large patches and the hydraulic communication between these patches

is restricted (Dvorkin, 2004):

Kf = SwKw + SoKo + SgKg: (3.7)
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Brie et al. (1995) suggest an empirical uid mixing law:

Kf =

"�
Sw
Kw

+
So
Ko

��1

�Kg

#

(1� Sg)e +Kg: (3.8)

where e is an empirical constant, equal to 3 in the original experiments.

The e�ective uids modeled by Reuss average, Voigt average, and Brie’s equation are

often referred to as ’uniform’, ’patchy’, and ’semi-patchy’ mixtures, respectively (Mavko

et al., 2020; Dupuy et al., 2021b). In Figure 3.2, the three mixing laws and the impact of

Brie’s exponent e are examined. We see that by changing the e value, Brie’s model alone

can determine the range for the e�ective uid modulus. In fact, this exponent is often

used to describe the degree of patchiness for the uid mixture, with low values (down to 1)

corresponding to patchy mixing and high values (up to 40) corresponding to uniform mixing

(Dupuy et al., 2021b).

Figure 3.2: (a) Voigt, Reuss, and Brie’s mixing laws for a mixture of water and gas. (b)
Impact of Brie’s empirical constant. In this example, the water bulk modulus is 2.25 GPa
and the gas bulk modulus is 0.1 GPa.
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3.1.3 Granular media models

A dry rock is a porous rock with no uid. Alternatively, it can be modeled by setting the

uid moduli and density to zero. The prediction of dry-rock elastic moduli is a relatively

complex step in rock physics modeling because it needs to specify the geometric details of

how rock constituents are arranged relative to each other. Popular approaches include the

approximation of the rock by a random pack of spherical grains, whose elastic properties are

determined by the sti�ness of grain contacts, and the description of the rock as an elastic

solid containing cavities (inclusions) representing the pore space. These two classes of models

are referred to as granular media models and inclusion models (Dvorkin, 2004; Grana et al.,

2021).

The widely used granular media models include the Hertz{Mindlin model, soft-sand

model, and sti�-sand model. The Hertz-Mindlin model (Mindlin, 1949) provides an estima-

tion of the bulk and shear moduli of a dry rock, KHM and �HM, under the assumption that

the rock frame is a random pack of spherical grains, subject to an e�ective pressure Pe, with

a given porosity �, and an average number of contacts per grain n (coordination number):

KHM =
�
n2(1� �)2�2

m

18�2(1� vm)2Pe

�1=3

; (3.9)

�HM =
2 + 3f � vm(1 + 3f)

5(2� vm)

�
3n2(1� �)2�2

m

2�2(1� vm)2 Pe

�1=3

; (3.10)

where �m and vm are the shear modulus and Poisson’s ratio of the solid matrix, and f is the

degree of adhesion between the grains.

The soft-sand and sti�-sand models (Dvorkin and Nur, 1996) both act as a connector

between two endpoints in the porosity{elastic-modulus domain: the zero-porosity endpoint

is simply the elastic moduli of the solid matrix, while the high-porosity endpoint is the dry-

rock moduli at the critical porosity �c (about 0.4), estimated by the Hertz-Mindlin model.

The soft-sand model connects these two endpoints with a modi�ed Hashin{Shtrikman lower
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Figure 3.3: Illustration of the soft-sand and sti�-sand models (modi�ed lower and upper
Hashin{Shtrikman bounds) for the estimation of dry-rock modulus. The grains are pure
quartz, the e�ective pressure is 20 MPa, the critical porosity is 0.4, and the coordination
number is 9.

bound as an interpolator:

Kdry =
�

�=�c
KHM + 4=3�HM

+
1� �=�c

Km + 4=3�HM

��1

� 4=3�HM; (3.11)

�dry =
�

�=�c
�HM + �

+
1� �=�c
�m + �

��1

� �; (3.12)

where

� =
�HM

6
9KHM + 8�HM

KHM + 2�HM
; (3.13)

while the sti�-sand model connects them with a modi�ed Hashin{Shtrikman upper bound

as an interpolator:

Kdry =
�

�=�c
KHM + 4=3�m

+
1� �=�c

Km + 4=3�m

��1

� 4=3�m; (3.14)
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�dry =
�

�=�c
�HM + �

+
1� �=�c
�m + �

��1

� �; (3.15)

where

� =
�m
6

9Km + 8�m
Km + 2�m

: (3.16)

In Figure 3.3, I provide an example for the prediction of dry-rock modulus using the

soft-sand and sti�-sand models.

3.1.4 Inclusion models

Most of the granular media models assume that the rock is initially formed by an unconsoli-

dated grain pack at the critical porosity, and then the porosity decreases as a result of either

diagenesis or grain sorting. Rather than from the critical porosity, the inclusion models

build a rock from the zero-porosity endpoint by placing cavities (inclusions) into the solid

matrix (Dvorkin, 2004). While these models are perhaps more relevant to carbonate rocks

where the pores appear as inclusions in a calcite or dolomite matrix, they can also be applied

to clastic rocks (Grana et al., 2021). Several commonly used inclusion models include the

Kuster and Toks�oz (KT) model, the self-consistent approximation (SCA) model, and the

di�erential e�ective medium (DEM) model.

The KT model for predicting the e�ective elastic moduli, K� and ��, for a variety of

inclusion shapes can be written as

(K� �Km)
Km + 4

3�m
K� + 4

3�m
=

NX

i=1

vi(Ki �Km)Pi;

(�� � �m)
�m + �
�� + �

=
NX

i=1

vi(�i � �m)Qi;

(3.17)

where

� =
�m
6

9Km + 8�m
Km + 2�m

: (3.18)

where subscripts m and f indicate solid and uid phases, respectively. The summation is over
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the di�erent inclusion types with volume fraction vi and geometric factors Pi and Qi. Typical

inclusion shapes include spheres, needles, disks, and penny cracks. However, arbitrary shapes

can be de�ned by the parameter called \aspect ratio �", and the corresponding P and Q

values can be analytically obtained (Berryman, 1995).

Dry rock can be modeled by setting the inclusion moduli to zero. Assuming a single,

spherical inclusion type (� = 1), the dry-rock elastic moduli are

Kdry =
4Km�m(1� �)
3Km�+ 4�m

;

�dry =
�m(9Km + 8�m)(1� �)

9Km + 8�m + 6(Km + 2�m)�
:

(3.19)

The KT model regards a certain phase in the multiphase medium as a matrix and other

phases as inclusions embedded in this in�nite background matrix, therefore it is formally

limited to the case where inclusions are very sparsely distributed, i.e., low porosity. An

alternative model that may apply to slightly higher concentrations of inclusions is the SCA

model (Berryman, 1995), which replaces the background matrix with the as-yet-unknown

e�ective medium:

NX

i=1

vi(Ki �K�)Pi = 0;

NX

i=1

vi(�i � ��)Qi = 0;

(3.20)

where the summation is over all phases, including minerals and pores. The equations are

coupled and must be solved iteratively.

The DEM model (Zimmerman, 1990) is a coupled system of ordinary di�erential equa-

tions, which is used to simulate two-phase composites by incrementally adding inclusions
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(phase 2) to the host material (phase 1)):

(1� y)
d
dy

[K�(y)] = (K2 �K�)P2(y)

(1� y)
d
dy

[��(y)] = (�2 � ��)Q2(y);
(3.21)

with initial conditions K�(0) = K1 and ��(0) = �1. The DEM model is di�erent from the

SCA model in that it speci�es one rock constituent as the host material and the others as

inclusions. In Figure 3.4, I compare the dry-rock moduli computed by KT, SCA, and DEM

models for two types of pores: a sti�, spherical pore with an aspect ratio of 1 and a more

compliant one with an aspect ratio of 0.1. It reveals that the pore shape has a large impact

on the elastic properties of the rock. For spherical pores, the inclusion model predictions

are generally higher than those of the granular media models. The prediction results of the

three inclusion models are very similar when the porosity is less than 0.1, as the porosity

increases, they deviate from each other more signi�cantly. For a �xed inclusion shape and

porosity, the SCA e�ective moduli are smaller than the KT and DEM predictions.

Figure 3.4: Comparison of the KT, SCA, and DEM predictions of the dry-rock (a) bulk
modulus and (b) shear modulus. The grains are pure quartz. Two pore shapes, with aspect
ratios � = 1 and � = 0:1, are examined.
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Unlike the granular medium model, which is established in the elastic domain of dry rocks,

the inclusion models can directly simulate uid-saturated rocks, only needing to regard the

inclusions as uids. However, an important assumption of the inclusion theory is that the

cavities are isolated with respect to ow, resulting in unequilibrated pore pressures (Mavko

et al., 2020). Therefore this approach simulates very high-frequency behavior appropriate to

ultrasonic laboratory conditions. For low-frequency seismic data applications, it is better to

use the inclusion models to compute the dry-rock elastic moduli, and then use Gassmann’s

equation to include the uid e�ect.

3.1.5 Gassmann’s equation

Gassmann’s equation (Gassmann, 1951; Biot, 1956) is the most common approach to com-

pute the saturated-rock elastic properties. Two of its major applications include predicting

the elastic changes when one uid is replaced with another, a problem called uid substi-

tution, and predicting saturated-rock moduli from dry-rock moduli. Gassmann’s equation

assumes that the solid phase is homogeneous, the pore space distribution is statistically

isotropic, and that there is su�cient time for the pore uid to ow and eliminate wave-

induced pore-pressure gradients (Mavko et al., 2020). This limitation to low frequencies

explains why Gassmann’s equation works best for seismic data (<100 Hz) and may perform

less well for well-log data (� 104 Hz) and laboratory ultrasonic measurements (� 106 Hz).

According to Gassmann’s equation, the shear modulus of the saturated rock �sat = �dry,

and the bulk modulus of the saturated rock Ksat is given by

Ksat = Kdry +
(1�Kdry=Km)2

�=Kf + (1� �)=Km �Kdry=K2
m
; (3.22)

where Km is the solid-matrix bulk modulus, Kf is the uid bulk modulus, and � is porosity.

In Figure 3.5, I provide an example of computing the saturated-rock modulus from the dry-

rock modulus using Gassmann’s equation. If the water-saturated rock is taken as a reference,
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it can be seen from the �gure the gas-induced decrease in the elastic modulus of the rock.

This reduction in the uid-saturated rock modulus (and also density) caused by the presence

of gas is the basis for our prediction of gas using seismic properties.

Figure 3.5: Bulk modulus of water-saturated rock and gas-saturated rock computed by

Gassmann’s equation, based on the dry-rock modulus predicted by the soft-sand model in

Figure 3.3.

Eventually, combining those theoretical models to calculate Ksat and �sat, through equa-

tions 3.1 and 3.2, we build a rock physics model, fRPM, that links rock physics properties to

seismic attributes:

(VP; VS; �) = fRPM(porosity; lithology; saturation; :::): (3.23)
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3.2 Global optimization for rock physics inversion

In rock physics inversion, we invert the elastic attributes obtained from seismic inversion

to estimate a model of rock properties, such as porosity, lithology, and uid saturations.

Because rock physics models are generally nonlinear, the inverse problem requires nonlinear

optimization algorithms, such as gradient-based methods, or global optimization methods,

such as simulated annealing and genetic algorithms (Sen and Sto�a, 2013). Unlike gradient-

based methods that attempt to �nd a local minimum in the neighborhood of the starting

model, global optimization methods are stochastic in nature, making use of randomness

as part of the search procedure. This may increase the probability of locating the global

minimum of the objective function. Due to the high cost and large model dimension of

forward modeling, global optimization methods are usually not suitable for FWI but can be

used for rock physics inversion. One reason is that most rock physics models are analytic,

so the forward process is very fast. Another reason is that the inversion is performed in a

point-by-point manner, allowing a parallel computation for multiple low-dimensional inverse

problems. In this section, I introduce three well-developed global optimization algorithms,

including simulated annealing (SA), genetic algorithm (GA), and neighborhood algorithm

(NA), for solving the rock physics inverse problem.

The general form of the inverse problem can be written as

d = fRPM(m) + e; (3.24)

where the model vector m contains the rock physics properties to be estimated, the data

vector d contains elastic attributes such as velocity and density, e is the data error, and

fRPM is a nonlinear rock physics model. The optimization aims to minimize the least squared

di�erence between the observed data d and calculated data fRPM(m):

E(m) =
1
2

[(d� fRPM(m))TC�1
d (d� fRPM(m))]; (3.25)
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where C�1
d is the data covariance matrix, which contains information on data uncertainties.

3.2.1 Simulated Annealing

SA is based on an analogy with the physical process of annealing, which occurs when a solid

in a heat bath is initially heated by increasing the temperature such that all the particles

are distributed randomly in a liquid phase. This is followed by slow cooling such that all the

particles arrange themselves in the low-energy ground state where crystallization occurs. In

geophysical inverse problems, the energy function is identi�ed with the objective function.

We are interested in �nding the state (or model) to minimize this function.

SA is implemented using an algorithm that simulates the physical annealing process.

SA based on the Metropolis algorithm can be described as follows (adopted from course

materials of Dr. Jan Dettmer):

1) Pick starting model m with upper and lower bounds for all parameters, and starting

temperature T .

2) Perturb m to m0, therefore, the di�erence in the energy between the two states �E =

E(m0)� E(m).

3) Accept or reject m0 as a new state according to:

a. if �E � 0, accept, m = m0.

b. if �E>0, draw random number � � U(0; 1).

i. If � � exp(��E=T ), accept, m = m0.

ii. if �>exp(��E=T ), reject m0 and return to m.

4) Repeat steps 1 and 2 many times and periodically reduce T by a small amount.

Therefore, SA provides a random walk that always accepts a downhill step (in E) and

sometimes accepts an uphill step (allows escape from local minima). As T reduces, the

probability of accepting uphill steps decreases, and our search spends more time in regions
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of minima, but can climb out. As T approaches zero, the probability of accepting uphill

steps also approaches zero, and eventually, no more downhill steps are available, leading SA

to converge.

3.2.2 Genetic Algorithm

GA is based on an analogy with the processes of biologic evolution. Unlike SA, an initial

population of models is selected at random, and the GA seeks to improve the �tness of

the population generation after generation. This is principally accomplished by the genetic

processes of selection, crossover, and mutation (Sen and Sto�a, 2013). Also, because GA

works with models that are coded in some suitable form, we need to design a coding scheme

that represents the model parameters. The basic steps of GA are:

1) Coding. In the simple binary coding scheme, each bit corresponds to a gene that can

take a value of 0 or 1, and each individual in the population is completely described

by its bit string or chromosome.

2) Selection. Once the �tness (data �t) of each individual model in the population is

determined, the selection pairs individual models for reproduction. Models with higher

�tness values are more likely to get selected.

3) Crossover. Once the models are selected and paired, crossover allows genetic informa-

tion between the paired models to be shared. New models will be generated via the

exchange of some information between the paired models.

4) Mutation. The mutation is the random alteration of a bit, which represents a random

walk in model space.

After mutation, a new population of models is generated, and it often contains new

models and some of which are identical to previous models. We then repeat the genetic

processes, i.e., from step 2) to step 4), many times to update the population.
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3.2.3 Neighborhood Algorithm

NA is proposed by Sambridge (1999), which was motivated by a fundamental question: How

can a search for new models be best guided by all previous models for which the forward

problem has been solved (and hence the data mis�t evaluated)? To address this, NA makes

use of the geometrical constructs known as Voronoi cells to derive the search in model space.

Each cell is simply the nearest neighbor region of one of the previous samples. For example,

the Voronoi cell about point mi is given by

V (mi) = fxjkx�mik2 � kx�mjk2 for j 6= ig: (3.26)

The algorithm uses the spatial properties of Voronoi cells to directly guide the sampling of

parameter space. It can be summarized in four steps:

1) Generate an initial set of ns models uniformly (or otherwise) in parameter space;

2) Calculate the mis�t function for the most recently generated a set of ns models and

determine the nr models with the lowest mis�t of all models generated so far;

3) Generate ns new models by performing a uniform random walk in the Voronoi cell of

each of the nr chosen models (i.e. ns/nr samples in each cell);

4) Go to step 2.

The philosophy behind the algorithm is that the mis�t of each of the previous models

is representative of the region of space in its neighborhood (de�ned by its Voronoi cell).

Therefore at each iteration, new samples are concentrated in the neighborhoods surrounding

the better data-�tting models. In this way, the algorithm exploits the information contained

in the previous models to adapt the sampling.
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3.2.4 Numerical Examples

For all of the numerical tests carried out in this section, I assume a rock frame consisting

of quartz and clay saturated with water and gas, therefore I de�ne three model unknowns:

porosity, clay content, and water saturation (�;C; Sw). The input data are P-wave velocity,

S-wave velocity, and density (VP; VS; �). The rock physics relation used to connect the model

and data vectors is the KT model, namely (VP; VS; �) = fKT(�;C; Sw). First, I conduct a

single-point test to compare the convergence of SA, GA, and NA. Next, I test the algorithm

on synthetic well logs to check how errors in the input data would a�ect the inversion.

Finally, I combine EFWI for elastic attributes and the global optimization scheme to predict

the spatial distribution of rock physics properties.

Convergence properties

I consider a sample with porosity, clay content, and water saturation of 0.1, 0.2, and 0.3,

respectively. The corresponding elastic parameters, P-wave velocity, S-wave velocity, and

density, are computed by rock physics modeling and used as input data. The ranges of

possible values in model space are 0 � � � 0:4, 0 � C � 1, and 0 � Sw � 1. I try to

avoid exhaustive testing and do not expect the values to be perfect. If an extremely large

number of random walks is allowed, each algorithm can resemble a grid-search method, which

involves searching through every point in the model space, but this is not usually a practical

approach.

Figure 3.6 shows the evolution of data mis�t and the inverted model using Metropolis

SA. I employ a cooling schedule Tk = T0(0:9)k, where T0 is the starting temperature and

k is the temperature step (or iteration number). The starting temperature T0 = 200 is

picked so that most random walks are accepted at the beginning of the simulation. As the

temperature reduces, the probability of accepting uphill steps decreases. Eventually, the

algorithm converges to near the global optimal solution within 250 iterations. The porosity

and clay contents are correctly estimated, whereas the inverted water saturation deviates
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from its true value.

(a) (b)

Figure 3.6: Simulation results using simulated annealing. Variations of (a) data mis�t and
(b) inverted models as a function of temperature.

(a) (b)

Figure 3.7: Simulation results using a genetic algorithm. Evolution of (a) data mis�t and
(b) the best-�t model.

Figure 3.7 shows the simulation process using GA. I use a population size of 100 models,

a crossover probability of 0.5, and a mutation probability of 0.5. Unlike the SA curve where

an uphill step is allowed, in GA the best-�t model of the current generation is saved for the

next generation, making GA always converge toward models with lower data mis�ts. The
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best-�t model is reasonably accurate after 200 iterations.

Figure 3.8 illustrates the process of searching the model space using NA. At each iteration,

the NA generates 200 samples of a uniform random walk inside each of the Voronoi cells of

the current �ve best models (i.e. ns = 200, nr = 5). The initial 200 samples are generated

randomly. As the algorithm proceeds, the information in the mis�t surface is exploited to

concentrate sampling in the regions where the mis�t is low. Consequently, the porosity and

clay content are well estimated, with only one main minimum located close to the true value

in the �� C space. However, the water saturation is not well estimated, displaying several

local minima.

Figure 3.8: Simulation results using a neighborhood algorithm. The dots represent the

models produced by NA and are color-coded by data mis�t. The red cross marks the true

model.
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We observe in the preceding example that water saturation is more di�cult to estimate

than porosity and clay content. This is explained in Figure 3.9. The rock physics template

is generated by �xing C and calculating the velocity and density for each combination of �

and Sw. It illustrates that VP and � are far more sensitive to � than to Sw (note that the Sw

is given a wider range). The contour plot reveals that the mis�t function has a at trough

with respect to Sw.

(a) (b)

Figure 3.9: Sensitivity study. Variations of (a) velocity and density and (b) data mis�t as a

function of porosity and water saturation.

I compare the three algorithms in Figure 3.10, where the mis�t function is plotted against

the number of models for which the forward problem has been solved. There are three runs in

each case. I note that the mis�t reduction of NA has a more favorable character, exhibiting

more large steps in the early stage. As a result, two of the three NA curves have lower data

mis�ts than the best SA and GA curves. Therefore, with the speci�c details I design for the

three algorithms, NA is the most e�cient and is therefore selected for my further study on

larger models.
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(a) (b)

(c)

Figure 3.10: Convergence properties for three runs of (a) simulated annealing, (b) genetic

algorithm, and (c) neighborhood algorithm.
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Inversion stability

To test the inversion stability, I generate synthetic well-logs of �, C, and Sw, and use them

to compute the velocity and density logs based on the KT model. These logs are denoted by

the black solid lines in Figure 3.11. If the exact velocity and density logs are used as input

data for rock physics inversion, the � and C logs can be accurately reconstructed, whereas

the Sw estimate exhibits visible oscillation around the true model. Still, this is due to the

very low sensitivity of velocity and density to Sw. Nonetheless, the Sw estimate is acceptable

since it captures the major structures.

Figure 3.11: Test with noise-free data. The back lines denote the true models and the blue
lines denote the inverted models. The true elastic models are used as input data for the rock
physics inversion.

However, after we add some mild Gaussian noise to the input data, as denoted by the

black dashed line in Figure 3.12, the inverted rock physics properties become far from sat-

isfactory. The relatively small errors as they appear in the elastic model are magni�ed

signi�cantly in the �, C, and Sw recoveries. The Sw estimate appears to fair the worst,

covering the entire search space. I conclude that the simultaneous inversion of the three rock

physics parameters is ill-conditioned (i.e., lack of stability and robustness), as the model is

very sensitive to errors in the data.
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Figure 3.12: Test with noisy data. Mild Gaussian noises are added to the elastic models, as
denoted by the black dashed lines. The blue lines represent the inverted models.

Given that it is di�cult to retrieve the whole set of (�, C, Sw) from noisy data, I treat

Sw as an a priori parameter rather than an unknown variable, and only update � and C.

The result is shown in Figure 3.13. Although the prior Sw has a large error, we observe a

signi�cant improvement in the � and C recoveries, which exhibit mild oscillation around the

true model.

Figure 3.13: Test with noisy data. Only porosity and clay content are inverted, with water
saturation �xed with erroneous values.
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FWI models as input

Finally, I present a synthetic example to combine EFWI with rock physics using global

optimization methods. For the EFWI algorithm, a 2D, frequency-domain, three-parameter

elastic inversion is set up. I select a 1 km � 1 km part of the elastic Marmousi2 model and

assign rock property values to each cell. Figure 3.14 shows the true elastic model, the initial

model which is a smoothed version of the true model, and the EFWI result. The recovered

model slightly underestimates the deep part of the model, but overall has a good agreement

with the true one. These recovered models are next used as input data for rock physics

inversion.

Figure 3.14: True, initial, and inverted models of P-wave velocity, S-wave velocity, and
density.
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Figure 3.15 plots the true and inverted rock property models. Also, I treat a coarse Sw

model as prior information, which will not be updated in the inversion. The structure and

values of the porosity model are well recovered, whereas the clay content model is more

contaminated by artifacts.

Figure 3.15: True and inverted rock property models.

3.2.5 Conclusions

In this work, I studied three global optimization methods: simulated annealing, genetic

algorithm, and neighborhood algorithm for a rock physics inversion problem: estimating

porosity, clay content, and water saturation from velocities and density. It is illustrated that

the neighborhood algorithm is more e�cient in reducing data mis�ts for the experiment I set

up, however, this conclusion may vary with user-de�ned parameters of the algorithms. I also

illustrate that the simultaneous inversion of porosity, clay content, and water saturation is

ill-conditioned, because the results are very sensitive to data errors. Removing less sensitive

parameters like uid saturation from the inversion stabilizes the inversion, but also makes

us lose access to uid information. My conclusion is that the inversion of multiple rock
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physics parameters cannot only rely on data residuals, and needs to be combined with certain

prior information of the model. This prior information can be added through regularization

techniques or Bayesian methods.

3.3 Bayesian rock physics inversion

Bayesian rock physics inversion refers to a set of probabilistic methods for the prediction

of rock physics properties from elastic attributes, based on di�erent statistical assumptions

for the model variables (Grana et al., 2021). The solution is represented by the posterior

distribution of rock physics properties m conditioned on the elastic data d:

P (mjd) =
P (m;d)Z
P (m;d)dm

=
P (djm)P (m)Z
P (djm)P (m)dm

; (3.27)

where P (m;d) is the joint distribution of the rock and elastic properties, P (m) is the prior

distribution, and P (djm) is the likelihood function of the data.

Under some restrictive assumptions, we can derive a closed-form solution of equation 3.27

and signi�cantly reduce the computational cost. These assumptions generally include that

the forward model is linear, the prior distribution is Gaussian, and the data error term is

Gaussian (Buland and Omre, 2003; Tarantola, 2005; Grana, 2016a). However, the Gaussian

assumption is not valid in many applications, where the lithofacies are complex and the

rock properties are multimodal. Also, the linearization of the rock physics model might

fail for highly nonlinear models. Grana and Rossa (2010) extend the Bayesian approach to

Gaussian mixture models (GMM), which allow modeling each lithofacies as a single Gaussian

component of the mixture. Moreover, the analytical results valid for Gaussian distributions

can be extended to Gaussian mixtures, provided the rock physics model is not too far from

linearity. If these assumptions with respect to the forward model and prior distribution are

not in agreement with well-log data, the posterior distribution must be evaluated numerically.
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In this case, Bayesian approaches based on kernel density estimation have been proposed in

Mukerji et al. (2001), Doyen (2007), and Grana and Rossa (2010), where the joint distribution

of model and data is described by a non-parametric probability density function (PDF).

Compared to the GMM approach, the non-parametric approach is more computationally

demanding and it requires tuning of the kernel widths.

This study examines the three Bayesian approaches (Gaussian, Gaussian mixture, and

non-parametric) using an actual set of well-log data. I �rst describe the methods and then

present their applications.

3.3.1 Gaussian linear inversion

Grana (2016a) proposes a mathematical approach for the linearization of slightly nonlinear

rock physics models, using �rst-order Taylor series approximations:

d � fRPM(m0) + Jm0 (m�m0) + e (3.28)

where Jm0 is the Jacobian of the function fRPM evaluated at the value m0, which can be the

mean of the prior distribution. Equation 3.28 can be rewritten as

d � Jm0 m + fRPM(m0)� Jm0 m0 + e = Gm + c + e; (3.29)

where G = Jm0 is the linearized rock physics model and c = fRPM(m0) � Jm0 m0 is a

constant.

If we assume that the model m is Gaussian distributedN (� m;�m) and the data error � is

Gaussian N (0;�e), then the posterior distribution P (mjd) is also Gaussian N (� mjd;�mjd),

and it can be analytically estimated through the following expressions for the conditional

61



mean and covariance:

� mjd = � m + �mGT (G�mGT + �e)�1(d�G� m)

�mjd = �m ��mG(GT�mGT + �e)�1 �G�m:
(3.30)

The mathematical derivation of these expressions can be found in Tarantola (2005). The

main limitation of this approach is the Gaussian (unimodal) assumption of the model prop-

erties. Many rock properties in the subsurface, for example, porosity and uid saturation,

are multimodal. In addition, owing to the linearization of the rock physics operator, this

approach may fail for highly nonlinear models.

3.3.2 Gaussian mixture approach

In many applications, the multimodal behavior of rock properties can be approximated by

Gaussian mixture distributions, i.e. linear combinations of Gaussian distributions:

P (m) =
NfX

k=1

�kN (m; � k
m;�

k
m); (3.31)

where the distributions N (m; � k
m;�k

m) represent the kth Gaussian component and the coe�-

cients �k represent the weights of the linear combination. One of the advantages of Gaussian

mixture models in geophysical applications is the possibility to identify the components of

the mixtures with facies classi�cations.

For nonlinear rock physics models, Grana and Rossa (2010) propose a semi-analytical

approach based on Monte Carlo simulations. According to this approach, we randomly

sample the prior distribution (equation 3.31) and apply the rock physics model to obtain the

corresponding set of elastic properties d. We then use these samples as a training dataset to

estimate the joint distribution of rock and elastic properties assuming a Gaussian mixture
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distribution:

P (m;d) =
NfX

k=1

�kN (y; � k
y;�

k
y); (3.32)

where y = (m;d). The joint mean and covariance of each component are given by

� k
y =

2

64
� k
m

� k
d

3

75 ; �k
y =

2

64
�k
m;m �k

m;d

�k
d;m �k

d;d

3

75 ; (3.33)

These quantities of the joint distribution can be inferred from the training dataset using

maximum likelihood estimation methods such as the expectation-maximization algorithm.

Then the conditional distribution P (mjd) is again a Gaussian mixture:

P (mjd) =
NfX

k=1

�
0

kN (m; � k
mjd;�

k
mjd); (3.34)

with conditional mean and covariance are given by

� k
mjd = � k

m + �k
m;d(�

k
d;d)
�1(d� � k

d)

�k
mjd = �k

m;m ��k
m;d(�

k
d;d)
�1�k

d;m:
(3.35)

This approach is robust when the rock physics model is not highly nonlinear.

3.3.3 Kernel density estimation

If the assumptions for the aforementioned approaches are not in agreement with well-log

data, a non-parametric approach for the conditional probability estimation P (mjd) should

be adopted. Kernel density estimation is a non-parametric technique that allows us to

estimate the probability distribution by �tting a base function at each data point including

only those observations close to it.

Let m = (m1; :::;mM) represent a model vector with M variables, for instance, M = 3

when the model consists of porosity, clay content, and water saturation at a single point,
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d = (d1; :::; dD) represent a data vector with D parameters, for instance, D = 3 when using

the P- and S-wave velocities plus density at the same point as input data, and fmi;digi=1;:::;Ns

represent the set of Ns Monte Carlo samples, then the joint distribution P (m;d) can be

estimated as

P (m;d) =
1

Ns

MY

u=1

hmu
DY

v=1

hdv

NsX

i=1

MY

u=1

�(
mu �mui

hmu
)
DY

v=1

�(
dv � dvi
hdv

); (3.36)

where � is the kernel function, such as the Gaussian kernel and the Epanechnikov kernel,

and hm and hd are the vectors of kernel bandwidths of each variable (Grana et al., 2021).

Then, the conditional distribution P (mjd) can be numerically evaluated using equation

3.27. Because the joint and conditional distributions are numerically evaluated in a dis-

cretized domain for all the possible combinations of (m;d), one of the limitations of the

proposed approach is the memory requirement for the �ne discretization of the model and

data domains.

3.3.4 Examples

I present the application of the method to well-log data analysis. The well logs in this

example were measured in the Countess 10-22 well at the Carbon Management Canada

(CMC) Newell County Facility, located in Southwest Brooks, Alberta. The well was drilled

to a depth of 550 m, with the shallow stratigraphy composed of interbedded mudstone,

�ne-grained sandstone, and uncleated coals (Lawton et al., 2019). A comprehensive log

suite including a dipole sonic log was acquired at the well. The wireline logs were further

studied using Schlumberger’s elemental log analysis (ELAN) which provided depth pro�les

of porosity and lithology parameters.
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Figure 3.16: Well-log data of the Countess 10-22 well at the CMC Newell County Facility.

From left to right: P-wave velocity, S-wave velocity, density, porosity, and the volume frac-

tions of quartz and clay. The blue, red, and yellow curves denote the real data, the data

predicted by the nonlinear rock physics model, and the data predicted by the linearized rock

physics model. The rightmost column shows the result of facies classi�cation based on the

measured data, assuming two facies.

Figure 3.16 plots the well logs of velocities, density, porosity (�), and the volume fractions

of quartz (Vqu) and clay (Vcl) within the depth interval 220m-530m. I construct a rock physics

model combining the soft-sand model and Gassmann’s equation to link the elastic and rock

property logs. The rock physics model fRPM can be written as

(VP; VS; �) = fRPM(�; Vqu; Vcl; Vco; Pe); (3.37)

where Vco is the coal volume and Vqu + Vcl + Vco = 1. The brine saturation was assumed

to be 100%, according to Macquet et al. (2019). The e�ective pressure Pe initially used in
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rock physics modeling increases linearly with depth. However, using an average pressure

value of 5 MPa, we can still obtain a good match between the predicted and measured logs.

Therefore, I simplify the rock physics model by reducing the number of unknown variables:

(VP; VS; �) = fRPM(�; Vqu; Vcl); (3.38)

The implementation of the linear Bayesian approach requires the linearization of the rock

physics model. In Figure 3.16, we notice that the linearized model approximates the exact

rock physics model very well.

Figure 3.17: Prior distribution of rock physics variables: Gaussian case. The curves rep-
resent the 2D joint distribution of porosity and clay content with associated 1D marginal
distribution, obtained by �tting the well-log data (black dots).

Figures 3.17-3.19 show the parametric and non-parametric distributions �tted to the

well-log data of the rock physics properties. For illustration purposes, I only display the bi-

variate projections in the domain of porosity and clay content. I assume a Gaussian mixture

distribution of two components, corresponding to high-porosity sand and low-porosity shale,

based on the result of facies classi�cation at the well (Figure 3.16); Compared to the Gaus-
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Figure 3.18: Prior distribution of rock physics variables: Gaussian mixture case. The pa-
rameters of the Gaussian mixture model are obtained via facies classi�cation of well data

Figure 3.19: Prior distribution of rock physics variables: non-parametric case. The Epanech-
nikov kernel is used.
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sian assumption (Figure 3.17), the Gaussian mixture PDF might be more appropriate for

this application, given the bimodality of the data (Figure 3.18). The non-parametric PDF

is calculated using the Epanechnikov kernel (Figure 3.19), and it provides an even more

accurate description of the joint distribution, compared to the Gaussian mixture model.

Figure 3.20: Filtered velocity and density logs used as input data for the rock physics
inversion.

To mimic seismic resolution, I �lter the velocity and density logs using a step size of 5 m

(Figure 3.20) and then use the smooth logs as input data for the rock physics inversion. The

Bayesian linearized inversion provides the posterior mean, the posterior covariance matrix,

and the full posterior distribution evaluated on the multidimensional grid for each measured

data. The marginal distributions are obtained by numerically integrating the posterior dis-

tribution. Overall, the probability distributions capture the trend of the actual logs (Figure

3.21). Given the good match between the actual rock-physics model and the linearized ap-

proximation, I point out that the prediction errors are mainly caused by the errors in the

original rock-physics model and those in the input data (smooth elastic logs).

I then repeat the inversion using the Gaussian mixture approach. To compensate for the
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Figure 3.21: Results of the Bayesian linearized rock physics inversion. The background color
represents the posterior distribution, the solid red curves represent the maximum a posteriori
predictions, and the solid black curves represent the actual well logs.

parameter values not sampled at the well, I explore the prior model space using Monte Carlo

simulations and then apply the rock physics model to obtain the corresponding set of elastic

samples. A training dataset of 1000 samples is then used to evaluate the joint distribution

of the model and data variables. The Gaussian mixture approach (Figure 3.22) provides a

slightly more accurate and precise result than the Gaussian-linear inversion, however, these

two results are similar. My interpretation is that for the depth range of the data, the

nonlinearity of the rock physics model is weak and the Gaussian assumption is acceptable.

For the non-parametric approach, I numerically estimate the joint PDF of the model and

data variables from the training dataset using kernel density estimation. The computation

is performed on a discretized six-dimensional grid. The kernel widths are assumed to be

equal to 1/10 of the length of the domain of each property. Also, this approach provides a

good estimation of the posterior probability (Figure 3.23). However, the uncertainty of the

porosity estimate is larger than the Gaussian and Gaussian mixture cases, and I might need

a �ner discretization for this property, which is more computationally demanding.
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Figure 3.22: Results of the Bayesian Gaussian mixture approach.

Figure 3.23: Results of the Bayesian non-parametric approach.

3.3.5 Conclusions

I have applied di�erent parametric and non-parametric Bayesian rock physics inversion ap-

proaches to the well-log data acquired at the CMC Newell County Facility. The solution is
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represented by the posterior distribution of porosity and lithology parameters conditioned

on elastic data. All these approaches provide reasonably accurate results. In particular, the

Gaussian mixture model is a suitable solution because of its analytical convenience and its

ability to capture the features of di�erent litho-uid classes. The non-parametric approach

based on kernel density estimation does not exhibit a clear advantage in this application

because the model variables are approximately Gaussian distributed and because it su�ers

from computational issues.

71



Chapter 4

Direct FWI prediction of rock physics

properties

4.1 Summary

Quantitative estimation of rock physics properties is an important part of reservoir char-

acterization. Most current seismic workows in this �eld are based on amplitude variation

with o�set. Building on recent work on high-resolution multi-parameter inversion for reser-

voir characterization, I construct a rock-physics parameterized elastic full-waveform inver-

sion (EFWI) scheme. Within a suitably-formed multi-parameter EFWI, in this case, a 2D

frequency-domain isotropic-elastic FWI with a truncated Gauss-Newton optimization, any

rock physics model with a well-de�ned mapping between its parameters and seismic veloc-

ity/density can be examined. I select a three-parameter porosity, clay content, and water

saturation (PCS) parameterization, and link them to elastic properties using three represen-

tative rock physics models: the Han empirical model, the Voigt-Reuss-Hill boundary model,

and the Kuster and Toks�oz inclusion model. Numerical examples suggest that conditioning

issues, which make a sequential inversion (in which velocities and density are �rst determined

through EFWI, followed by PCS parameters) unstable, are avoided in this direct approach.
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Signi�cant variability in inversion �delity is visible from one rock physics model to another.

However, the response of the inversion to the range of possible numerical optimization and

frequency selections, as well as acquisition geometries, varies widely. Water saturation tends

to be the most di�cult property to recover in all situations examined. This can be explained

with radiation pattern analysis, where very low relative scattering amplitudes from satu-

ration perturbations are observed. An investigation performed with a Bayesian approach

illustrates that the introduction of prior information may increase the inversion sensitivity

to water saturation.

4.2 Introduction

Application of multi-parameter elastic seismic full waveform (EFWI) inversion to high-

resolution reservoir-scale rock property model construction is at a relatively early stage of

research and development (e.g., Dupuy et al., 2016a; Naeini et al., 2016; Connolly, 2017).

However, progress has been reported in managing many of the challenges of practical EFWI

(Brossier et al., 2009; Virieux and Operto, 2009; M�etivier et al., 2017; Singh et al., 2018;

Brittan and Jones, 2019; Pan et al., 2019; Aragao and Sava, 2020). As this occurs, consider-

ation of how to formulate and parameterize full-wave extraction of rock properties becomes

more relevant. In this chapter, I assume that the end goal of high-frequency EFWI is the

estimation of the parameters of some suitable rock physics model. That is, I assume a de-

sired outcome that goes beyond determination of elastic attributes (e.g., velocity, density,

and modulus) within the seismic volume, and aims at determination of sets of petrophysi-

cal properties, such as lithology, porosity, and uid information (Doyen, 2007; Bosch et al.,

2010).

Rock physics inversion can occur either in a sequential (two-step) workow, where an

estimation of elastic attributes is followed by rock physics inversion, which transforms those

elastic attributes to rock physics properties (Saltzer et al., 2005; Bachrach, 2006; Grana

and Rossa, 2010; Johansen et al., 2013; Dupuy et al., 2016b,c; Grana, 2016a), or in a joint
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workow, where seismic data are directly inverted for rock physics properties, often in a

Bayesian formulation, with the likelihood combining rock physics and seismic forward mod-

elings (Bosch et al., 2007; Spikes et al., 2007; Buland et al., 2008). These seismic inversion

methods, and the considerations by which a sequential versus direct approach is decided

upon, are centered around linearized amplitude variation with o�set (AVO) and the con-

volutional model. This framework is computationally inexpensive and robust (e.g., Buland

and Omre, 2003). However, AVO inversion makes use of a limited subset of the information

contained in seismic data (i.e., amplitudes of reected events), makes strong assumptions

about the origins of those events (i.e., layered media), and has several sensitivities to un-

certainties in data pre-processing, e.g., velocity model errors (Sen and Roy, 2003). EFWI,

though not without challenges of its own, addresses these limitations through its treatment

of each datum in terms of an elastodynamic equation. Gauss-Newton EFWI updates are

furthermore understood to include a generalized AVO inversion component when pre-critical

reection amplitudes inuence the residuals (Innanen, 2014). There also exists a practical

compromise between AVO and EFWI that uses an analytical solution to the wave equation

assuming a locally 1D structures for each location. This approach is referred to as prestack

waveform inversion (PWI) (Mallick, 1999; Sen and Roy, 2003; Tetyukhina et al., 2014). The

superiority of PWI over AVO inversion has been demonstrated with both synthetic seis-

mograms (Mallick, 2007) and realistic reservoir applications (Mallick and Adhikari, 2015).

However, because PWI assumes 1D subsurface structure, it is applicable only to areas with

simple geology. For complex geology, development of EFWI with a modeling methodology

that honors 2D or 3D structures is necessary.

FWI based on the poroelastodynamic theories (e.g., Biot, 1956; Johnson et al., 1994), i.e,

poroelastic FWI, is a direct approach to retrieve rock physics parameters from seismic wave-

forms. The study of poroelastic FWI is still in its infancy, with most work investigating the

feasibility of this approach. De Barros and Dietrich (2008) derive poroelastic Fr�echet deriva-

tives in terms of the Green’s functions of a 1-D reference medium; Morency et al. (2009)
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determine the �nite-frequency sensitivity kernels based upon adjoint methods; and Yang

et al. (2019) derive analytical radiation patterns for di�erent parameterizations in poroelas-

tic media. De Barros et al. (2010) and Yang and Malcolm (2019) also test poroelastic FWI

on plane-layered synthetic models and achieve a good reconstruction of a single parameter

assuming all other parameters are perfectly known. Despite these advances, challenges asso-

ciated with poroelastic FWI have also been pointed out. With signi�cantly more subsurface

parameters and more complex physical mechanisms than EFWI, poroelastic FWI is expected

to be more nonlinear (Yang et al., 2019). The strong coupling of these parameters makes

inversion more di�cult. As a result, whether or not poroelastic FWI can simultaneously

recover multiple parameter values and their structural features remains an open question.

In this chapter, I explore a less complex issue, which is the potential of EFWI to predict

rock physics properties.

The literature contains a range of examples of EFWI incorporating rock physics informa-

tion, most often with the rock physics information supplying constraints to narrow the gap

between seismic imaging and reservoir characterization (Naeini et al., 2016; Kamath et al.,

2017; Zhang et al., 2018). Constraints can be derived from facies classi�cation using well-

logs, with linear relationships between elastic parameters subsequently included in a penalty

term (Kemper and Gunning, 2014; Kamath et al., 2017; Rocha and Sava, 2018). The spatial

distribution of the facies has been determined in recent studies by employing a Bayesian

framework (Singh et al., 2018; Zhang et al., 2018; Zhang and Alkhalifah, 2019), where the

facies with the maximum posterior probability at a speci�c grid point determines the corre-

sponding value in the model constraint. As opposed to analytic model constraints, Aragao

and Sava (2020) apply probabilistic constraints to deal with complex relationships among

elastic parameters. These rock-physics-constrained approaches have been demonstrated to

guide the inversion toward high-resolution and geologically plausible solutions. However,

their use of rock physics models has primarily been to improve elastic attribute estimation,

after which additional workows, for instance the application of rock physics templates cali-
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brated with well data (Carcione and Avseth, 2015; Picotti et al., 2018), are employed. Rock

physics inversions using FWI results as input data have also been developed (Dupuy et al.,

2016b,c).

EFWI-derived attributes which, though not constructed through direct updating of rock

physics model parameters, nevertheless lead to rock physics interpretations, have also been

reported. Shi et al. (2006) design an adaptive controller to calculate a suitable step length

for model updating. This method signi�cantly accelerates the inversion convergence, and

the inverted Lam�e parameters yield a clear image of gas sands. Pan et al. (2018b) recom-

mend that trade-o�s between di�erent parameter classes be evaluated using inter-parameter

contamination kernels. These kernels explained why the velocity-density parameterization

was optimal for characterizing a producing heavy oil reservoir (low Poisson’s ratio) with

walk-away vertical seismic pro�le (W-VSP) data (Pan et al., 2018a). Prieux et al. (2013a)

introduce a hierarchical approach, using visco-acoustic FWI to reconstruct P-wave velocity

(VP), density, and attenuation, to interpret geological features such as gas traps and soft

quaternary sediments. In a later study of visco-elastic FWI with the same �eld data (Prieux

et al., 2013b), these geological features were even more pronounced. In particular, recovery

of the VP=VS ratio allowed gas-saturated regions to be discriminated. These studies are an

expression of the potential of FWI-derived elastic attributes as lithology or uid indicators,

but the question of whether similar insights can be derived through direct EFWI prediction

of rock physics properties remains open.

Nowadays, most e�orts to involve EFWI in rock physics or petrophysical model con-

struction are of the sequential type. There has been little reported work on direct updating

of reservoir rock properties, i.e., the parameters of a rock physics model, within EFWI. In

this chapter, I examine that possibility by formulating and numerically exploring a direct

estimation of rock physics properties using isotropic-elastic FWI. This amounts to adopting

a viewpoint within EFWI similar to that of, for instance, Russell et al. (2011), within an

AVO environment, in which seismic amplitudes are directly interrogated to determine the
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parameters of a static-poroelastic uid term (Biot, 1956; Gassmann, 1951). I set out an

EFWI formulation in which the updates occur directly in terms of the parameters of one of

a large class of possible rock physics models, using descent-based optimization methods (i.e.,

steepest descent, nonlinear conjugate gradient, or Newton-type). For this initial testing,

I select three representative sets of relations between elastic and rock physics parameters:

the Han empirical model, the Voigt-Reuss-Hill boundary model, and the Kuster and Toks�oz

(KT) inclusion model. These are comparable models in the sense that each can be used to

set up a three-parameter inversion scheme for the estimation of porosity, clay content, and

water saturation.

The remainder of this chapter is organized as follows. First, I present my EFWI frame-

work which allows for direct updates in rock physics properties. Then, I use several numerical

examples to verify the e�ectiveness of my approach. I also demonstrate its advantages over an

indirect approach, in which the rock physics properties are transformed from EFWI-derived

elastic attributes. Finally, I discuss possible steps in moving this research forward.

4.3 Theory

4.3.1 Isotropic-elastic full-waveform inversion

The forward modeling approach I consider here is the frequency-domain isotropic-elastic

wave equations described in Chapter 2. For our discussion here, it is only important to note

that those equations can be discretized and formulated in a matrix form:

A(m)u = f ; (4.1)

where u is a vector containing horizontal and vertical displacements, f is the source term,

and A is the impedance matrix containing the �nite-di�erence coe�cients. A perfectly

matched layers (PML) method (Berenger, 1994) is implemented to absorb reections from
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model boundaries. The objective function I consider is the L2 data-matching term, discussed

in Chapter 2, with no added regularization term:

E(m) =
1
2
kd�Ru(m)k2

2 ; (4.2)

where d is the observed data and R is a matrix representing the receiver sampling of the

wave�eld simulated from model m.

The gradient of E with respect to the ith model parameter mi can be expressed in a

simple, general form as

rmiE =
�
@A
@mi

u; �
�
: (4.3)

where � is the adjoint wave�eld. The quantity @A=@mi, expressed in terms of the incoming

and outgoing wave vector directions, is the scattering radiation pattern associated with the

unknown model mi. I use a truncated Gauss-Newton (TGN) method (M�etivier et al., 2017)

to update the model, involving only gradient and Hessian-vector products, which can be

e�ciently calculated using the adjoint-state method (Plessix, 2006).

4.3.2 Rock physics parameterizations

A wide range of sets of isotropic-elastic parameter classes, for instance the Lam�e parameters

plus density, (�; �; �), or the P- and S-wave velocities plus density, (VP; VS; �), can be selected

for inversion (e.g., Tarantola, 1986). Although any triplet (�; �; �) can be uniquely computed

from its associated triplet (VP; VS; �), and vice versa, which suggests that the parameteriza-

tion is irrelevant, in practice the class chosen for updating is very important. It is a feature

of FWI that if one computes a model by updating (VP; VS; �) directly, and compares it to

the model determined by (1) updating (�; �; �), and (2) subsequently mapping to (VP; VS; �),

large di�erences tend to be observed (e.g., Anagaw and Sacchi, 2018; Pan et al., 2018a).

Let p = [p1; p2; p3]T represent a reference FWI parameterization, with pi being the ith

parameter class with i = (1; 2; 3), so that, in the velocity/density parameterization above,
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for instance, p2 represents the S-wave velocity. Let mpj
i represent the model parameter in

class pj at the ith spatial position. From equation 4.3 we observe that this model parameter

is changed at each iteration by an update proportional to @A=mpj
i . To transform to a new

parameterization, say q = [q1; q2; q3]T , we compute the chain rule

@A
@mqj

i
=

@A
@mp1

i

@mp1
i

@mqj
i

+
@A
@mp2

i

@mp2
i

@mqj
i

+
@A
@mp3

i

@mp3
i

@mqj
i
; (4.4)

for each of j = (1; 2; 3). Given an FWI scheme set up to update parameters p, within which

the partial derivatives of A are known, and given relations between these parameters and

any new desired set q, of the form mpj
i (mq1

i ;m
q2
i ;m

q3
i ), through equation 4.4 we can move to a

new scheme in which the q are updated. This allows us to transform between di�erent elastic

parameter sets, e.g., (VP; VS; �), (�; �; �), (�; �; �); however, it also allows us to transform

from a base elastic parameter scheme to any desired rock physics model, provided a suitable

mapping exists between the parameters of this model and the three base elastic properties.

Here I consider a rock physics model, in which q embodies porosity parameters, compo-

sitional properties, and uid saturation parameters. Three classic rock physics models are

selected to support this early-stage, broad analysis: the Han empirical model (Han, 1987),

the Voigt-Reuss-Hill (VRH) boundary model (Hill, 1952), and the Kuster and Toks�oz (KT)

inclusion model (Kuster and Toks�oz, 1974). Within these, I focus on three rock physics prop-

erties central to reservoir characterization: porosity (�), de�ned as the ratio of pore volume

to the total volume of the rock; clay content (C), the ratio of clay volume to the total volume

of mineral grains; and water saturation (Sw), the ratio of water volume to pore volume. I

parameterize my inversion in terms of these variables, which I refer to as the porosity, clay

content, and water saturation (PCS) parameterization; the base elastic parameterization is

based on P- and S-wave velocity and density (referred to as DV). Although the rock physics

models I consider arise from di�erent theories, or even empirical considerations, each pro-

vides VP, VS, and � as explicit functions of �, C, and Sw. The relations can be used as

discussed above to obtain the partial derivatives of the objective function with respect to �,

79



C, and Sw.

Han empirical model

Han (1987) introduces an empirical model relating ultrasonic P- and S-wave velocities in

km=s with porosity and clay content. The relationships take the form

VP = a1 � a2�� a3C;

VS = b1 � b2�� b3C;
(4.5)

where a1; a2; a3; b1; b2, and b3 are positive constants. Assuming a solid mixture of clay and

quartz, and a uid mixture of brine and hydrocarbon (which is assumed for each of the

models I consider), the density is computed as a weighted average of the densities of mineral

and uid components:

� = (1� �)�m + ��f ;

�m = �cC + �q(1� C);

�f = �wSw + �h(1� Sw);

(4.6)

where the subscripts m, f , c, q, w, and h indicate solid matrix, uid phase, clay, quartz,

water, and hydrocarbon (oil or gas), respectively. The partial derivatives needed for equation

4.4 to be set out for the Han model are

@VP

@�
= �a2 ;

@VP

@C
= �a3 ;

@VP

@Sw
= 0 ;

@VS

@�
= �b2 ;

@VS

@C
= �b3 ;

@VS

@Sw
= 0 ;

@�
@�

= �f � �m ;
@�
@C

= (1� �)(�c � �q) ;
@�
@Sw

= �(�w � �h) : (4.7)

The substitution of equation 4.7 into equation 4.4 re-parameterizes the three-parameter
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elastic FWI scheme such that �, C and Sw are explicitly updated as the residuals are reduced.

I examine this possibility in contrast to an indirect approach, in which the standard FWI

scheme is used to determine VP, VS and � models, after which the system

2

66664

a2 a3 0

b2 b3 0

0 0 1

3

77775

2

66664

�

C

Sw

3

77775
=

2

66664

a1 � VP

b1 � VS

A

3

77775
; (4.8)

where

A =
�� (1�X)(�cY � �qY + �q)�X�h

X(�w � �h)
;

X =
b3VP � a3VS + a3b1 � a1b3

a3b2 � a2b3
; and

Y =
�b2VP + a2VS + a1b2 � a2b1

a3b2 � a2b3
;

(4.9)

can be solved for �, C and Sw.

Voigt-Reuss-Hill (VRH) boundary model

As described in Chapter 3, the Voigt and Reuss models de�ne the upper and lower bounds

for the elastic moduli of a mixture of mineral grains, and Hill’s average of these bounds is

used to obtain the e�ective mineral moduli. However, the Voigt and Reuss bounds also apply

to the mixture of mineral and pore uids, regardless of the geometric arrangement of these

components, although the bounds will become quite separated and their averages will be less

predictive. In this numerical study, I use the VRH model alone to predict the elastic moduli

of uid-saturated rocks, mainly because of its computational convenience. Also, this simple

theoretical model allows me to illustrate the proposed FWI framework more intuitively.

Within the VRH model, the e�ective bulk and shear moduli of the saturated rock are

given by

Ksat =
KV +KR

2
; �sat =

�V + �R

2
; (4.10)
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where

KV = (1� �)[KcC +Kq(1� C)] + �[KwSw +Kh(1� Sw)];

KR = 1
��

(1� �)C
Kc

+
(1� �)(1� C)

Kq
+
�Sw
Kw

+
�(1� Sw)

Kh

�
;

�V = (1� �)[�cC + �q(1� C)];

�R = 0: (4.11)

The velocities as functions of the elastic moduli and density are then

VP =

s
Ksat + 4

3�sat

�
;

VS =
r
�sat

�
;

(4.12)

where the density � is computed by equation 4.6. The partial derivatives needed to carry

out FWI updates of the �, C, and Sw emerging from this model are derived in Appendix A.

Kuster and Toks�oz (KT) inclusion model

For simplicity, I use the KT model to directly calculate the saturated rock moduli, instead

of combing it with Gassmann’s equation, as discussed in Chapter 3. For a single, spherical

inclusion shape, within the KT model the elastic moduli of the saturated rock are given by

Ksat =
4Km�m + 3KmKf + 4�mKf�� 4Km�m�

4�m + 3Kf � 3Kf�+ 3Km�
;

�sat =
�m(9Km + 8�m)(1� �)

9Km + 8�m + 6(Km + 2�m)�
:

(4.13)

where the subscripts sat, m, and f indicate saturated rock, solid matrix, and uid phase,

respectively. The elastic moduli of the solid matrix, Km and �m, are calculated using the

VRH average. The uid bulk modulus Kf is calculated assuming a patchy uid mixture. I

then compute density and the P- and S-wave velocities with equations 4.6 and 4.12. The
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partial derivatives needed to carry out FWI updates of the �, C, and Sw emerging from

this model are derived in Appendix B. More geometrical scenarios, with single or multiple

inclusion shapes, are possible within the KT model; these lead to more complex derivative

expressions.

4.4 Numerical Analysis

Several questions regarding direct iterative updating of rock physics model parameters within

an EFWI scheme can be answered by setting up numerical simulations in a 2D elastic envi-

ronment. In these simulations, I naturally neglect practical issues associated with �eld data

(e.g., acquisition limitations, noise, complex near-surface environment), and I furthermore

carry out FWI with data generated using the same simulation through which the inversion

quantities are computed. However, the numerical tests allow us to examine parameter resolu-

tion issues, and make clear comparisons between the model solutions which are selected when

rock physics parameters are directly updated, versus those which are indirectly determined

(i.e., computed after the fact from the results of iterative updating of elastic properties).

Each of the three rock physics models reviewed in the previous section is incorporated in a

PCS parameterization of FWI, which allows us to compare direct inversion for porosity, clay

content, and water saturation across the three; the Han empirical relations are selected as a

convenient model to compare direct and sequential approaches.

For all numerical tests carried out in this chapter, I assume a rock frame consisting of

quartz and clay saturated with water and gas. The elastic properties of each component

are listed in Table 4.1. For the EFWI algorithm, a 2D frequency-domain, three parameters

elastic inversion is set up, using vertical and horizontal components of particle velocity as the

data set and using data frequencies within the interval 2-25 Hz; within this band, the source

is considered to have a uniform amplitude spectrum (i.e., I assume a bandlimited wavelet

has been estimated and deconvolved). I adopt a multiscale approach (Bunks et al., 1995) by

inverting �ve frequency bands, each containing three evenly-spaced frequencies from 2 Hz to
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a maximum frequency; the maximum frequency is 3 Hz for the �rst band, and increases to

25 Hz for the last band (following the strategy advocated by Keating and Innanen, 2019b).

A truncated Gauss-Newton optimization method, comprising 30 inner iterations and 20

outer iterations for each frequency band. I employ an acquisition geometry with receivers

mimicking a simultaneous surface seismic and vertical seismic pro�le (VSP) con�guration:

a line of sources every 50 m at the top of the model illuminates receivers every 20 m on the

top and sides of the model.

Table 4.1: Elastic properties of minerals and uids.
Bulk modulus Shear modulus Density
(GPa) (GPa) (g=cm3)

Quartz 37 44 2.65
Clay 21 10 2.55
Water 2.25 0 1.0
Gas 0.04 0 0.1

4.4.1 Direct versus indirect EFWI of Han model parameters

I begin by reconstructing a simple geometric model, with a homogeneous background poros-

ity, clay content, and water saturation of 0.2, 0.2, and 0.4 respectively. The model is 1 km

in width and 1 km in depth, and discretized into 10 m�10 m cells. Circular porosity, clay

content, and saturation anomalies of 0.3, 0.4, and 0.8 respectively are placed in spatially sep-

arated locations within the background medium (see Figure 4.1d-4.1f). Within Han’s model

(equations 4.5 and 4.6), these imply P-wave velocity, S-wave velocity, and density anoma-

lies as plotted in Figure 4.1a-4.1c, assuming �xed Han coe�cients of a1 = 5:5, a2 = 6:9,

a3 = 2:2, b1 = 3:4, b2 = 4:7, and b3 = 1:8 (Han, 1987). In all inversions to follow (including

both DV and PCS parameterizations), the initial models are homogeneous and equal to the

background values in Figure 4.1.
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Figure 4.1: (a-c) True VP, VS, and � models; (d-f) corresponding true �, C, and Sw models

within the Han model with a1 = 5:5, a2 = 6:9, a3 = 2:2, b1 = 3:4, b2 = 4:7, and b3 = 1:8.

Note that Sw has no impact on VP in this case.

Figure 4.2: Results of the indirect/sequential rock physics EFWI approach. (a-c) Inverted

VP, VS, and � models respectively within the DV parameterization; (d-f) corresponding

indirectly estimated �, C, and Sw models.
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Figure 4.3: Results of the direct rock physics EFWI approach. (a-c) Inverted �, C, and

Sw models respectively, within the PCS parameterization; (d-f) corresponding indirectly-

estimated VP, VS, and � models.

I begin with a comparison between indirect/sequential, and direct, updating of Han

model parameters. In Figure 4.2 the results of the indirect approach are summarized. In the

top row, Figure 4.2a-4.2c, the EFWI reconstruction of the P-wave velocity, S-wave velocity,

and density models within the DV parameterization are plotted. These are next converted

to porosity, clay content, and water saturation (Figure 4.2d-4.2f) based on the Han model,

i.e., by solving the system in equation 4.8. In the context of the simple problem I have

set up, involving simulated data from receivers with both lateral and vertical coverage,

we observe the expected close match between the true and recovered density and velocity

anomalies (i.e., comparing the top rows of Figures 4.1 and 4.2). However, the relatively

small errors appearing in the elastic property model are magni�ed signi�cantly in the �,

C and Sw recoveries. The estimate of water saturation appears to fair the worst, and can

be observed to contain non-physical negative values. In Figure 4.3 the results of the direct

approach are summarized, with the recovered �, C and Sw models plotted in Figure 4.3a-4.3c
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respectively. We observe a strong di�erence between the models derived using this direct,

PCS-parameterized approach; the porosity and clay content models exhibiting particular

increases in accuracy and reduced cross-talk (Figure 4.3a and 4.3b). Cross-talk remains

present in the recovered water saturation (Figure 4.3c), but is suppressed as compared to

the indirect DV-parameterized results. Moreover, the velocity and density models (Figure

4.3d-4.3f) derived from these directly inverted rock physics properties by equations 4.5 and

4.6 also closely match the true model (Figure 4.2a-4.2c).

Figure 4.4: (a-f) Model pro�les for VP, VS, �, �, C, and Sw at diagonal position x=z.

The black, blue, and red lines denote the true model, the inverted model within the DV

parameterization, and the inverted model within the PCS parameterization, respectively.

In Figure 4.4 pro�les of the true and inverted models at diagonal position x=z are plotted.

The signi�cant magni�cation of spurious variations is observed with the DV parameterization

(comparing the blue lines in Figure 4.4d-4.4f with those in Figure 4.4a-4.4c). In contrast,
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the directly recovered rock physics properties (red lines in Figure 4.4d-4.4f) exhibit mild

oscillations around the true model, and the converted velocities (red lines in Figure 4.4a and

4.4b) overlap with the true and directly inverted velocities.

Figure 4.5: Convergence histories. (a-c) Model error reductions of VP, VS, and � and (d-f)

�, C, and Sw in the DV parameterization. (g-i) Model error reductions of �, C, and Sw in

the PCS parameterization.

The convergence properties of the solutions are examined via the relative model error

e = km�mtk2=km0 �mtk2, where m, m0, and mt represent the inverted, initial and

true models, respectively. The quantities are normalized such that each model starts its
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iteration with a unit error. In Figure 4.5a-4.5c we observe the convergence characteristics of

a reliable inversion for velocity and density with the DV parameterization. The model errors

decrease monotonically, with sudden rate-changes at iterations where the frequency band

varies. However, if the DV model parameters are mapped to their corresponding rock physics

properties iteration by iteration, we observe a very di�erent evolution (Figure 4.5d-4.5f), with

large and sustained increases in model error, especially at early stages after the introduction

of higher frequency data. Comparing this to the evolution of rock physics property error with

the direct EFWI, or PCS parameterization, the steady, monotonically decreasing reduction

of model error is once again observed. Although this convergence history comparison does

not answer precisely why the direct/PCS inversion is an improvement over the indirect/DV

inversion for the same set of rock physics properties, we observe that the two approaches

involve very di�erent paths through the PCS model space as the EFWI iteration proceeds.

There are two mathematical/numerical mechanisms which could be responsible for the

poor estimates of rock physics properties emerging from the DV parameterization. One

derives from the conditioning of the coe�cient matrix in equation 4.8 (whose condition

number is � 52), which implies that small errors in the input (VP, VS and � values) will

lead to large errors in the output (�, C, and Sw values) both after and during iterations.

The other mechanism is that our particular optimization parameters and frequency selection

strategy have led to data over�tting. That is, the model may have been forced to conform

too closely to the data in one frequency band, making it overly complex and impairing its

use of data information at other frequencies. This would also explain the increase in model

error with iterations (Figure 4.5d-4.5f), and the \ringing" in the images (Figure 4.2d-4.2f).
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Figure 4.6: Inversion test to eliminate over-�tting. (a-c) Inverted VP, VS, and � models

respectively; (d-f) �, C, and Sw models derived indirectly via the DV parameterization.

(g-i) Inverted �, C, and Sw derived directly within the PCS parameterization.
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Figure 4.7: (a-c) Model error reductions of VP, VS, and � and (d-f) �, C, and Sw in the DV

parameterization. (g-i) Model error reductions of �, C, and Sw in the PCS parameterization.

To distinguish between these two possible causes, I repeat the experiment employing a

frequency strategy which, although more expensive, is much less prone to over�tting. In

this attempt, only one outer FWI iteration is carried out per band, and each band contains

six frequencies, distributed from 2 Hz to a maximum frequency that grows as the iteration

progresses, beginning at 3 Hz, and increasing by 1 Hz per iteration to a maximum of 17 Hz.

This increase in the total number of frequencies reduces the chances of over�tting to any

particular frequency band. The results are plotted in Figures 4.6 and 4.7. The indirect/DV
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parameterization still has di�culty recovering the rock physics properties (Figure 4.6d-4.6f);

in fact similar results to those of the previous case (Figure 4.2d-4.2f) are estimated. Moreover,

the error curves (Figure 4.7d-4.7f) increase in a manner very similar to those in Figure 4.5d-

4.5f. Thus we see no evidence within the numerical tests that the issues with the indirect

approach come from over�tting. My interpretation is that the ill-conditioned mapping from

the DV parameters to the PCS parameters tends to magnify spurious variations in the DV

parameters produced through the EFWI iterations. Within the direct approach this error

magni�cation is avoided.

Figure 4.8: Layered model tests. (a-c) True models; (d-f) standard EFWI-recovered VP, VS,

and � models in the DV parameterization.

We next move away from the circular anomaly model, to one involving a simple layered

geology. A three-layer model (0.5 km � 0.5 km), where a constant porosity, clay content, and

water saturation are assigned to each layer (Figure 4.8a). The initial models are generated

by smoothing the true models. Within the DV parameterization, apart from some mild
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oscillatory behavior, the inverted velocity and density models match closely with the true

ones (Figure 4.8). After converting these recovered velocity and density model values to

the rock physics properties with the Han model, the artifacts become signi�cantly more

pronounced, and in fact begin to mimic structure (Figure 4.9g-4.9i). The recovered water

saturation appears particularly distorted. In contrast, the directly recovered models within

the PCS parameterization exhibit reduced artifacts and the spatial extent of each layer can

be clearly identi�ed (Figure 4.9j-4.9l).

Figure 4.9: Direct versus indirect inversion tests on layered model. (a-c) True models; (d-f)

the initial �, C, and Sw models respectively. (g-i) Indirectly inverted models via the DV

parameterization. (j-l) Directly inverted models within the PCS parameterization.

Extracted pro�les at a lateral position of x =250 m are plotted in Figure 4.10: we observe

more clearly the magni�cation of the oscillatory artifacts within the indirect/DV parameter-
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ization. However, we also observe that the recovered C and Sw models, though oscillatory,

appear to oscillate about a more accurate average within each layer. The direct/PCS inver-

sion appears to be selecting a smoother, more stable solution.

Figure 4.10: (a-f) Model pro�les for VP, VS, �, �, C, and Sw at x = 0.25 km. The solid,

dotted, and dash-dotted lines denote the true model, the inverted model within the DV

parameterization, and the inverted model within the PCS parameterization.

4.4.2 Structure and parameter values from EFWI: Han model

With this set of comparisons in place, I introduce a more geologically realistic reservoir model

to examine the ability of the direct rock-physics EFWI approach to identify and characterize

hydrocarbon units. I select a 1 km�1 km part of the elastic Marmousi2 model and assign

rock physics properties to each cell (Figure 4.11a-4.11c). In Figure 4.11d-4.11f the \true"

porosity, clay content, and water saturation models are plotted. A gas sand trap, at a depth

of 0.38 km and positioned at 0.4 km laterally, is distinguished by a higher porosity of 0.31,

a lower clay content of 0.13, and a lower water saturation of 0.34.

The initial rock physics property models in Figure 4.11g-4.11i are smoothed versions of

the true models. With the PCS parameterization, we observe that a high-resolution inversion

result, capturing the relevant reservoir structures, is recovered (Figure 4.11j-4.11l). Within

the recovered models, the gas sand can be identi�ed. In Figure 4.12 vertical pro�les of the
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true, initial, and inverted models at lateral position 0.4 km are plotted.

Figure 4.11: (a-c) True models of VP, VS, and �. (d-f) True models, (g-i) initial models, and

(j-l) the corresponding inversion results of �, C, and Sw.

Figure 4.12: Vertical pro�les extracted from the true, initial, and inverted (a) �, (b) C, and

(c) Sw models at lateral position 0.4 km.
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4.4.3 Structure and parameter values from EFWI: VRH and KT

I next examine direct/PCS parameterized inversions within the more complex VRH and

the KT rock physics models, both of which involve nonlinear relationships between the rock

physics properties and the standard elastic properties (i.e., velocity and density). I apply the

direct EFWI algorithm to each of the three simulated models used previously. In all of these

experiments, the true and initial rock physics properties are �xed to be the same as those

used for the Han model. Because the rock physics relations are di�erent, this means that the

P-wave, S-wave, and density values are di�erent from those in the Han examples. In Figures

4.13-4.15 the inversion results for the circular anomaly model, the layered geological model,

and the modi�ed Marmousi model, respectively, are plotted for both the VRH and KT cases.

We observe that in each experiment, the three rock physics properties can be resolved to

some extent, indicating that the direct approach is suitable for a range of di�erent rock

physics relations, even those exhibiting relatively high degrees of nonlinearity. However, we

also observe signi�cant variations between the results for the three models, though all other

features of the inversions are kept �xed. Comparing with the Han model, VRH and KT

appear to be less capable of recovering the Marmousi model parameters, but more capable

with the three-layer model. This implies that the complexity (or degree of non-linearity)

of the rock-physics relations is not the sole governing factor in how rock physics EFWI

performs. I am not in this chapter advancing any full explanation for this aspect of the

results | further study is needed. The results are suggestive that parameter cross-talk is

generally an issue for recovering rock physics properties (especially Figure 4.13d-4.13f).

Because most rock physics models are nonlinear, an analytical solution of the rock physics

inverse problem, as in the case of the Han model (equation 4.8), is not available. To im-

prove the comparison between the direct and indirect inversions, I examine here an indirect

approach for recovering KT parameters in the Marmousi case. The method adopted to

transform elastic attributes to rock physics properties is the Bayesian approach proposed by

Grana (2016a), where a linearization of the KT model is derived and validated. Combining
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Figure 4.13: Nonlinear rock physics model parameters, circular anomaly case. Inverted �, C,
and Sw models are plotted for (a-c) the VRH model and (d-f) the KT model. (g-i) Pro�les
extracted from the true and inverted models at diagonal position x=z.

this with a Gaussian assumption for the prior model, the solution of the inverse problem is

represented by a Gaussian posterior distribution with explicit expressions for the posterior

mean and covariance. In this experiment, I assume only one well is available, and it is located

at a lateral position x=0.7 km. I also assume the well-log data of elastic and rock physics

properties are exact. The prior information of �, C, and Sw is collected from this well. The

data errors in VP, VS, and � are assumed to be Gaussian distributions with zero mean and

with standard deviations estimated by comparing their EFWI results at the well location
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Figure 4.14: Nonlinear rock physics model parameters, layered geology case. Inverted �, C,
and Sw models are plotted for (a-c) the VRH model and (d-f) the KT model. (g-i) Vertical
pro�les extracted from the true, initial, and inverted models at lateral position 0.25 km.

with their logs. In Figure 4.16 the results of the indirect approach are summarized. The

true VP, VS, and � models (Figure 4.16a-4.16c) are calculated from the true �, C, and Sw

models (Figure 4.11d-4.11f) based on KT. The estimated VP, VS, and � models via the DV

parameterized EFWI are plotted in Figure 4.16d-4.16f. These are used next as input data

in the Bayesian approach to �nd the MAP (maximum a posterior) solution of �, C, and Sw

(Figure 4.16g-4.16i).

In Figure 4.17 I plot the vertical pro�les of the true model (Figure 4.11d-4.11f), the
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Figure 4.15: Nonlinear rock physics model parameters, modi�ed Marmousi case. Inverted
models of �, C, and Sw with (a-c) VRH and (d-f) KT. (g-i) Vertical pro�les extracted from
the true, initial, and inverted models at lateral position 0.4 km.

inverted model within the direct/PCS parameterization (Figure 4.15d-4.15f), and the in-

verted model within the indirect/DV parameterization (Figure 4.16g-4.16i) at lateral posi-

tions x=0.7 km (Figure 4.17a-4.17c) and x=0.4 km (Figure 4.17d-4.17f), respectively. Within

the DV parameterization, I consider the recovered rock physics properties at the well loca-

tion to be reasonably accurate, however, they deviate signi�cantly from their true models

in the gas sand area at x=0.4 km. This is because the prior information derived from the
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Figure 4.16: Indirect/sequential inversion test with KT. (a-c) True VP, VS, and � models;
(d-f) Inverted VP, VS, and � models via the DV parameterized EFWI. (g-i) MAP solution
of �, C, and Sw derived from (d-f) via a Bayesian rock physics inversion. The black dotted
lines denote two QC logs at x=0.4 km and x=0.7 km.

well is insu�cient to include lateral heterogeneity. Within the PCS parameterization, the

recovered � and C match more closely the true models, especially at the gas sand; the Sw

of the gas sand is also better estimated. However, we also observe a signi�cantly improved

overall reconstruction of Sw using the indirect approach, which, by contrast, leads to a poor

estimate of Sw in the Han model case. I explain the improved performance of the indi-

rect approach as a consequence of incorporating prior information into the inversion. The
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Figure 4.17: Vertical pro�les of �, C, and Sw at (a-c) x=0.7 km and (d-f) x=0.4 km.
The black, blue, and red lines denote the true model, the inverted model within the DV
parameterization, and the inverted model within the PCS parameterization, respectively.

prior information, including the prior marginal distribution of each rock physics property

(although not informative enough) and the exact correlation between them, helps stabilize

the inversion, and eventually brings the most bene�t to Sw, which is unlikely to be resolved

without any prior information.

We also note that the Bayesian rock physics inversion allows for uncertainty quanti�ca-

tion, but this uncertainty only makes a statement about the probability of the rock physics

properties, given the inverted elastic model, i.e., P (�;C; SwjVP; VS; �). There is no such

mode of uncertainty in the direct inversion, for which the only meaningful uncertainty re-

lates to the probability of the rock physics properties given the measured seismic data, i.e.,

P (�;C; Swjdobs). For an FWI problem, this probability is impractical to assess given the

high cost of forward modeling and the large dimensionality of the model.
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4.5 Discussion

Water saturation is evidently the most di�cult property to recover with the formulations

I have considered. This, as well as the cross-talk observed in many of the results, can be

explained via scattering radiation pattern analysis. Given the scattering coe�cients of an

elastic parameter set (e.g., Pan et al., 2018a), I derive the PCS radiation patterns using the

chain rule (Figure 4.18), assuming background porosity, clay content, and water saturation

values of 0.2, 0.4, and 0.8, respectively. We observe that the radiation patterns of the three

rock physics properties exhibit, in many cases, signi�cant correlation, which helps explain

the leakage in the circular anomaly examples. Moreover, we observe that the scattered wave

amplitude per unit water saturation is much less than that of the amplitude per unit of clay

content and porosity. Because my expectation is that each of these parameters could vary

with similar amplitude ranges, it is apparent that the water saturation will have less impact

on measured data than the other two, making it more di�cult to recover. Also, within the

Han model, the saturation has no impact on P-wave or S-wave velocities and may therefore

be expected to experience many of the same di�culties in inversion as does density.

One possible solution to manage the di�culties of extraction of water saturation is to

use a sequential strategy, in which two or more inversion stages are involved. Updating

of the water saturation could be delayed in such an approach, until it could be supported

by reasonable inverted porosity and clay content models. Another approach would be to

move away from the water saturation parameter with a new parameter to which seismic

data are more sensitive. The density and bulk modulus of the uid mixture, �f and Kf ,

are candidates. Historically various uid factors used in AVO inversion (e.g., Russell et al.,

2011), have produced useful results.

We also �nd a consistency between my sensitivity analysis and those done in poroelastic

FWI. For example, De Barros and Dietrich (2008) illustrate that, for consolidated uid-

saturated poroelastic media, the seismograms are strongly inuenced by perturbations of

porosity and solid phase properties (e.g., �s and Gs). On the other hand, changes in uid
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Figure 4.18: Scattering radiation patterns for point �, C, and Sw perturbations in the PCS
parameterization, formulated for the three rock physics models.

properties (e.g., �f and Kf ) have only a weak inuence on wave amplitudes. Moreover, the

radiation patterns of (�;C; Sw) in my study are similar to the radiation patterns of (�;Gs; �f )

within the (Ks; Gs) parameterization from Yang et al. (2019). As a result, I anticipate that

some conclusions from the poroelastic case might be applicable as well to an EFWI-based

parameter resolution study with respect to rock physics properties.

In the indirect approach, when the Bayesian framework is used, the prior information of

rock physics properties is incorporated into the inversion. In contrast, the direct inversion

for rock physics properties is a naive EFWI which relies on data residuals only. As a result,

the two approaches are not compared in a completely fair manner, as prior information can

be used as well for EFWI, e.g., through a model regularization term (Asnaashari et al.,

2013; Aragao and Sava, 2020), to deliver more reliable results. The fact that direct inversion
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generates improved results over the two-stage indirect approach, despite the lack of prior

information, is suggestive of the merit of the approach, though naturally more analysis is

required. Also, if assuming more well logs are available, in the meantime we improve the

indirect results by allowing a more informative prior model, we should explore if this prior

model can make the direct EFWI better posed. The di�erence between these two approaches

remains methodological, whereas a crucial issue is to develop the direct inversion by com-

bining prior information. In Appendix C, I provide an example of employing regularization

techniques in the rock physics parameterized FWI framework.

Examination of optimization and model type are also important steps in moving this

research forward. Optimization method changes are likely needed to reduce the degree of

cross-talk, especially within EFWI-PCS when the rock physics model is complex/nonlinear.

Other rock physics models, empirical or theoretical, based on either e�ective media or contact

theory, are worth examining, if only because of the variations we have observed across the

three test models, Han, VRH, and KT. One possible limitation in setting up a PCS inverse

scheme arises for non-analytic rock physics models. Most rock physics models are analytic,

i.e., provide elastic attributes as explicit functions of PCS. The computation of their partial

derivatives is straightforward. However, for models such as the self-consistent approximation

and the di�erential e�ective medium (Berryman, 1995) that can only be numerically solved,

it might be di�cult to evaluate the chain rule in equation 4.4.

4.6 Conclusions

I formulate elastic FWI with rock physics model parameterizations to achieve a direct esti-

mation of parameters of immediate interest in reservoir characterization. Three rock physics

models, Han, VRH, and KT, are chosen to formulate the inversion with a parameterization

of porosity, clay content, and water saturation. Synthetic examples show that porosity and

clay content can be reliably recovered, whereas water saturation is prone to insu�cient up-

dating. Analysis of the relevant radiation patterns reveals the very low sensitivity of seismic
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data to this property. The proposed framework can be easily adjusted for examination of

other rock physics relations and parameterizations.

It is also demonstrated that the direct approach can generate improved results over the

two stage indirect approach, which su�ers from the ill-conditioned mapping from elastic

to rock physics properties. This conditioning issue, however, can be managed using prior

model information such as those collected in wells. A further study of how similar information

could be incorporated into the direct inversion is essential for better addressing the di�erence

between the two workows.
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Chapter 5

Seismic time-lapse monitoring of CO2

with rock physics parameterized FWI

5.1 Summary

Carbon capture and storage is an important technology for greenhouse gas mitigation. Mon-

itoring of CO2 storage should, in addition to locating the plume, provide quantitative in-

formation on CO2 saturation. I propose a full waveform inversion (FWI) algorithm for the

prediction of the spatial distribution of CO2 saturation from time-lapse seismic data. The

methodology is based on the application of a rock-physics parameterized FWI scheme that

allows for direct updating of reservoir properties. I derive porosity and lithology parameters

from baseline data and use them as input to predict CO2 saturation from monitor data. The

method is tested on synthetic time-lapse data generated for the Johansen formation model.

Practical issues associated with �eld data applications, such as acquisition limitations, con-

struction of the initial model, noise, and uncertainty in the rock physics model, are taken

into account in the simulation. The results demonstrate the robustness of this approach for

reconstructing baseline and monitor models. I also illustrate the potential of the approach as

compared to conventional two-step inversion algorithms, in which an elastic FWI prediction
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of velocities and density is followed by rock physics inversion.

5.2 Introduction

An important technology supporting reduction of greenhouse gas emissions is the geological

storage of carbon dioxide (Davis et al., 2019; Ringrose, 2020; P�ortner et al., 2022); for

instance, deep saline aquifers have been identi�ed as promising sites for carbon dioxide

(CO2) storage. To ensure and verify the safe geological containment of CO2 underground,

monitoring of CO2 storage site performance is mandatory (R�utters et al., 2013). Injection

of CO2 into the brine-saturated rocks of a saline aquifer changes the elastic moduli, and

therefore the seismic response of these media, making seismic a primary technology for

monitoring. Time-lapse seismic surveys, in which a series of seismic data sets are acquired

at time intervals, provide a monitoring mode in which migration and distribution of the

injected CO2 can be tracked, and leakage problems if any can be identi�ed (Arts et al., 2003;

Chadwick et al., 2005; Romdhane and Querendez, 2014; Ghosh et al., 2015). Ideally, for

reliable conformance veri�cation, quantitative estimates/maps of CO2 saturation would be

produced by such technology, to be compared against reservoir modeling predictions (Dupuy

et al., 2021a).

Qualitative interpretation of CO2 from analysis of amplitude changes and time shifts

on post-stack seismic images is generally insu�cient to understand detailed reservoir con-

ditions (Alemie, 2017). Moreover, multiple reections, interference e�ects such as tuning,

and attenuation introduce ambiguities into seismic images which impede estimation of CO2

position (Quei�er and Singh, 2013b; Furre et al., 2015). A promising approach to address

these issues involves seismic full waveform inversion (FWI), a set of methods with the ca-

pacity to produce high-resolution subsurface models, by involving a more complete subset

of the information content of seismic data (Tarantola, 1986; Brossier et al., 2009; Virieux

and Operto, 2009). FWI, although computationally intensive, in principle accounts for all of

these wave propagation e�ects, and high-resolution elastic parameter models (e.g., velocity,
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density, and modulus) derived from FWI can be directly linked to reservoir (or rock physics)

properties, such as porosity, uid saturation, and pore pressure. FWI therefore appears to

be a potentially powerful tool for quantitative CO2 characterization and monitoring.

Progress has been reported in managing many of the challenges of practical FWI, which

include its computational complexity, dependence on the starting model, sensitivity to in-

complete data, etc. (Operto et al., 2013; Prieux et al., 2013a; M�etivier et al., 2017; Pan

et al., 2019). Time-lapse FWI faces several additional challenges, not least of which is

the need to detect very small changes in the model, changes that are easily obscured by

ambient noise, variable near-surface conditions, and acquisition non-repeatability (Kamei

and Lumley, 2017). E�orts have been made to mitigate non-repeatability, through design

of monitoring systems (Shulakova et al., 2015), data processing strategies (Roach et al.,

2015), and inversion strategies (Asnaashari et al., 2015; Maharramov et al., 2016; Alemie,

2017; Kamei and Lumley, 2017; Fu et al., 2020). As these progress, basic consideration

of how to optimally extract critical parameters, especially uid saturation indicators, be-

comes increasingly important. In CO2 storage applications, rock properties are typically

extracted sequentially, with the seismic inversion process geared towards determination of

elastic properties, from which the actual properties of interest are subsequently determined,

often qualitatively (Johnston, 2013; Zhang et al., 2013). Quei�er and Singh (2013a) applied

elastic FWI to the Sleipner time-lapse seismic data, and correlated velocity changes with

CO2 saturation changes using Gassmann’s equation; also at Sleipner, Dupuy et al. (2017,

2021a) combined acoustic FWI and rock physics inversion to obtain spatial distribution of

CO2 saturation with uncertainty assessment. This aspect of uncertainty quanti�cation is

critical for CO2 storage monitoring as decisions have to be taken based on the monitoring

results. However, reports of quantitative, waveform-based CO2 saturation predictions are

uncommon.

The sequential approach itself is neither a necessary, nor always optimal, strategy. The

estimation of reservoir properties directly from the seismic data (as opposed to serially, after
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elastic parameters are �rst estimated) has several distinct advantages, the main one being

that it involves an integrated wave propagation and rock physics formulation, maintaining

consistency between elastic and reservoir properties (Doyen, 2007; Bosch et al., 2010). In-

versions of this type can be found in seismic amplitude variation with o�set (AVO) settings

(Bosch et al., 2007; Spikes et al., 2007; Grude et al., 2013; Liu and Grana, 2018; Grana et al.,

2020), but only very recently have FWI formulations in this mode been examined. Poroelas-

tic FWI (De Barros and Dietrich, 2008; Morency et al., 2009; Yang et al., 2019) moves in this

direction, for instance, though the inverse problem is reported to be highly under-determined

and ill-posed, and the computational burden very large (Dupuy et al., 2021a). Nonetheless,

I identify the expansion of these e�orts as a high priority, in order to take advantage of the

more general models available to FWI over AVO (Mallick and Adhikari, 2015). In Chap-

ter 4, I formulated a direct procedure for updating rock and uid properties within elastic

FWI (i.e., EFWI). This was achieved by re-parameterizing the inversion in terms of rock

physics properties, adopting a viewpoint similar to that of Russell et al. (2011) within an

AVO environment. The main advantages of this approach are: 1) it allows examination of

any rock physics property that has a well-de�ned relationship with elastic parameters; 2) it

leads to more stable solutions in comparison to those produced through sequential inversion;

and 3) it shares the same numerical structure as the conventional EFWI. I also extended the

approach to incorporate prior model information.

In this chapter, I have applied the rock physics parameterized FWI approach to the

problem of CO2 saturation prediction from time-lapse seismic data. To set out the results of

these tests, I �rst describe the time-lapse FWI framework. I then systematically examine the

response of the inversion to a synthetic time-lapse dataset. Speci�cally, I recover porosity

and lithology parameters from the baseline seismic data, and then use these results as input

in the monitor seismic survey, producing estimates of CO2 saturation. The reliability of the

approach is quanti�ed by comparing it to conventional approaches. I end by discussing how

uncertainties related to data and rock physics model a�ect CO2 saturation reconstructions.
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5.3 Theory

5.3.1 Rock physics parameterized FWI

The FWI algorithm I apply is an outgrowth of that set out in Chapter 4. I have illustrated

that if we can express the elastic variables at each spatial position as a function of the rock

physics variables at the same position: (VP; VS; �) = fRPM(r1; r2; :::; rn), using the chain rule

we can move from the conventional FWI scheme to a new scheme in which the n di�erent

rock physics variables are directly updated. The implementation of this method requires a

rock physics model fRPM. In practice, the model used for inversion depends on the local

geology and must be calibrated using well-log data or laboratory measurements, an example

of which is given in Figure 3.16. For the numerical simulations in this chapter, I still assume

that the model is known, as in Chapter 4, the di�erence is that I consider a more complete

rock physics modeling process, and will analyze the inuence of model errors on the inversion

results.

For the target rock, I assume two mineral components, quartz and clay, and two uid

components, water and supercritical CO2. Hence, I de�ne three model unknowns: porosity

(�), clay content (C), and CO2 saturation (Sc). The rock physics model fRPM includes the

following steps:

1) The mineral elastic moduli are computed using the VRH average (equation 3.5).

(Km; �m) = fVRH(C): (5.1)

2) The uid elastic moduli are computed using Brie’s equation (equation 3.8), assuming

semi-patchy mixing of water and CO2.

(Kf ; �f ) = fBrie(Sc): (5.2)
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3) The dry-rock elastic moduli are calculated using the sti�-sand model (equations 3.14-3.16).

(Kdry; �dry) = fSand(�;Km; �m): (5.3)

4) The uid e�ect is included via Gassmann’s equation to compute the elastic moduli of the

saturated rock (equation 3.22).

(Ksat; �sat) = fGassmann(�;Km; Kf ; Kdry; �dry): (5.4)

5) The density of the saturated rock is computed as a weighted average of the densities of

mineral and uid components. Consequently, we can express the velocity and density of the

saturated rock as a function of the porosity, clay content, and CO2 saturation:

(VP; VS; �) = fRPM(�;C; Sc): (5.5)

Other rock physics parameters in addition to the three variables, including the elastic

moduli and density of each mineral/uid component and the parameters of the sti�-sand

model that describe grain contact, are �xed with the values in Table 5.1. The modulus and

density of CO2 at temperature 37 oC and pressure 0.01 GPa, given by Mavko et al. (2020),

are used.

Table 5.1: Rock physics parameters used in this study

Parameter Value Parameter Value
Quartz bulk modulus 37 GPa CO2 bulk modulus 0.02 GPa
Quartz shear modulus 44 GPa CO2 density 0.68 g=cm3

Quartz density 2.65 g=cm3 E�ective pressure 0.01 GPa
Clay bulk modulus 25 GPa Critical porosity 0.4
Clay shear modulus 9 GPa Coordination number 9
Clay density 2.55 g=cm3 Degree of adhesion 1
Water bulk modulus 2.25 GPa Brie’s exponent 5
Water density 1.03 g=cm3
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5.3.2 Time-lapse FWI strategy

Quantitative CO2 monitoring requires accurate and precise predictions of the CO2 saturation

model at any time at which the data are measured. Although it is possible to jointly invert

the three parameters (porosity, clay content, and CO2 saturation) from a single seismic

survey, preliminary tests showed that uid saturation is very di�cult to estimate within

this parameterization because of the large trade-o� between rock physics parameters and

its relatively small impact on the data. Here I consider a favorable case by making two

assumptions: 1) before CO2 injection, there is only one uid component (water) in the

subsurface; 2) porosity and lithology parameters are constant in time. Therefore, I propose

to estimate the variables sequentially, a strategy similar to that of Grana et al. (2020) within

a stochastic inversion framework and Dupuy et al. (2021a) within an FWI environment.

First, I apply the rock physics FWI approach to the baseline (pre-injection) data for the

estimation of porosity and clay content; then, I use the same inverse method and use the

inverted porosity and clay content models as prior knowledge (�xed values) to estimate CO2

saturation from the monitor (post-injection) data. The objective function for baseline model

reconstruction is expressed as

Eb =
dobs b(�t; Ct)� dsyn b(�;C)

2 ; (5.6)

where dobs b and dsyn b denote the observed and synthetic baseline data, respectively. �t and

Ct denote the true porosity and clay content models. The baseline CO2 saturation model is

equal to 0 everywhere. The goal is to recover the � and C models by iteratively minimizing

the di�erence between dobs b and dsyn b.

The objective function for monitor model reconstruction is

Em =
dobs m(�t; Ct; Stc m)� dsyn m(�inv; Cinv; Sc m)

2 ; (5.7)

where dobs m and dsyn m are the observed and synthetic monitor data, respectively. �inv and
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Cinv are the inverted porosity and clay content models from the baseline survey. They are not

updated in the monitor stage. The goal is to recover the saturation model Sc m by iteratively

minimizing the di�erence between dobs m and dsyn m.

5.4 Numerical Examples

I apply the proposed approach to a synthetic model generated from the Johansen data set.

The Johansen formation is a deep saline aquifer located o�shore of the southwest coast of

Norway. The aquifer is a chosen site for the Northern Lights project, which plans to start

operations in mid-2024, for storage of 1.5 million tonnes of CO2 per year. The MatMoRA

project of SINTEF has developed a set of geological models of Johansen based on seismic

and well data (Eigestad et al., 2009; Bergmo et al., 2011). Petrophysical data including

porosity and permeability are available.

5.4.1 Model description

The original full-�eld model is discretized by a 149� 189� 16 grid, with 3 layers in Johansen.

However, I consider 100� 16 cells de�ned on an irregular grid in the vertical direction (Figure

5.1a). The uppermost layer situated approximately 600 m above Johansen is the Sognefjord

formation, which is the main reservoir for the Troll hydrocarbon �eld. The low porosity

layers above and below Johansen are the Dunlin shale and Amundsen shale, respectively. In

particular, the Dunlin shale serves as a cap rock for the Johansen formation. To account for

the lithologies of the geomodel, I introduce a clay volume (Figure 5.1b) negatively correlated

with porosity, with a correlation coe�cient of -0.9. Assuming the initial water saturation

(before injection) is equal to 1 everywhere, the CO2 saturation distribution within Johansen

(Figure 5.1c) was calculated by simulating the uid ow in year 110, 10 years after stopping

a 100-year injection with a constant injection rate of 1.4 � 104 m3/day (Grana et al., 2020).
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Figure 5.1: Johansen data set. (a-c) Full-�eld model and (d-e) corresponding model that

uses a simpli�ed geometry. The letter J indicates the location of the Johansen formation;

the dashed line indicates the location of the injection well.

Because of computational limitations and lack of data, I create a synthetic model with

the injection much shallower than in reality, and the top and bottom layers of the model are

assumed to be homogeneous: �rst, I de�ne a regular grid and interpolate the original data

over the grid. The grid consists of 101�201 node points with a depth increment of 20 m and

a position increment of 180 m; second, I change the spatial step to 10 m and use relative

depth and position. The models in Figures 5.1(d)-(f) are then used to examine the proposed

FWI method. The sandstone reservoir is distinguished by higher porosity and lower clay
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content values compared to the surrounding shale. Porosity in the reservoir varies between

0.15 and 0.29, with the porosity within a zone degrading towards south as the depth of the

formation increases. The initial CO2 saturation is 0 everywhere and then changes locally

due to the injection at 750 m depth. The maximum CO2 saturation is 0.9.

Figure 5.2: Theoretical curves of the sti�-sand model: P-wave velocity, S-wave velocity, and
density versus (a-c) porosity and (d-f) CO2 saturation.

In Figure 5.2, I compute velocities and density as a function of porosity, clay content,

and CO2 saturation based on the sti�-sand model. With CO2 replacing water, the P-wave

velocity of the saturated rock decreases due to the lower bulk modulus of CO2, the density

decreases due to the lower density of CO2, and the S-wave velocity slightly increases since

the uid only a�ects the density in the S-wave velocity expression. The P-wave velocity

does not decrease monotonically as CO2 saturation increases because the relative change in

bulk modulus is smaller than that in density when CO2 saturation is larger than 0.6. It also

shows that the sensitivity of the elastic attributes is dominated by porosity and to a lesser
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degree by clay content and uid saturation. In Figure 5.3, I plot the velocity and density

models corresponding to the rock property model (Figures 5.1d-f). The time-lapse elastic

changes are consistent with the analysis in Figure 5.2. The uid e�ect is also well illustrated

in the noise-free synthetic data (Figure 5.4).

Figure 5.3: True (a-c) baseline, (d-f) monitor, and (g-i) time-lapse models of P- and S-wave
velocities plus density.

The inversion experiments are presented in three parts. First, I carry out the direct,

rock physics parameterized FWI approach with noise-free data (Figure 5.4), and compute

the synthetic data in inversion using the same simulation through which the observed data

are generated. Then, I repeat the test using conventional two-step inversions, in which

velocities and density are �rst determined through elastic FWI, followed by rock physics

properties. These simulations allow us to examine parameter resolution issues and make

clear comparisons between the results of direct and two-step inversions. Finally, I take into

account two di�erent sources of uncertainty within the direct approach: uncertainty in the
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Figure 5.4: (a, d) Baseline, (b, e) monitor, and (c, f) di�erential seismograms computed
for the true model. (a-c) Horizontal displacement. (d-f) Vertical displacement. The shot is
located at position 1 km. Ricker wavelet source with a central frequency of 15 Hz is used.

data and uncertainty in the rock physics model.

In all tests, I consider a surface acquisition geometry, with 20 explosive sources every

100 m at 20 m depth and 100 receivers every 20 m at 10 m depth. The source signature

is assumed to be known. The recorded data are multicomponent displacements. I adopt

a multiscale approach (Bunks et al., 1995; Brossier et al., 2009) by inverting 10 frequency

bands, each containing �ve evenly spaced frequencies from 2 Hz to a maximum frequency;

the maximum frequency is 3 Hz for the �rst band, and it increases to 25 Hz for the last band

(following the strategy advocated by Keating and Innanen, 2019b). A truncated Gauss-

Newton optimization method (M�etivier et al., 2017), comprising 20 inner iterations and 1

outer iteration for each frequency band, is used.
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Figure 5.5: (a) VP� � and (b) VP�C relationships for constructing initial � and C models.

The data are from the true model (Figures 5.1d, 5.1e, and 5.3a) at lateral position 0.5 km.

Figure 5.6: Initial models: (a) P-wave velocity, (b) porosity, and (c) clay content.
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5.4.2 Direct FWI results

Baseline model reconstruction

One of the challenges of predicting rock physics properties from seismic data is the low

frequency (initial) model. In a typical elastic inversion, the low-frequency model of velocity

is often related to models used for seismic processing, for example stacking velocities. In the

rock physics domain, a low-frequency model is more challenging to de�ne because di�erent

lithologies might have di�erent rock physics models (Grana et al., 2021). Here I derive the

initial porosity and clay models from a �ltered P-wave velocity model, using regressions of

the direct measurements (well log data) of these variables, which are assumed to be available.

I use linear regressions because the nonlinearity of the VP � � and VP � C relationships are

not strong (Figure 5.5). As a result, the initial models in Figures 5.6 (b) and (c) are used in

the inversion.

The recovered porosity and clay content models are reasonably accurate, with relatively

low resolution near the left edge of the model due to limited observation aperture (Figure

5.7). The porosity seems better resolved than clay content thanks to the larger impact of

porosity on seismic attributes (Figure 5.2). In Figure 5.8, the convergence properties of the

inversion are summarized. I start iterations at low frequencies to prevent convergence of

the objective function toward local minima, and then slowly introduce higher frequencies to

image �ne structures. The objective function has a sudden increase when entering into the

next frequency band, but decreases to close to the original number after model updating. The

solutions are examined via the relative model error � = km�mtk2=km0 �mtk2, where m,

m0, and mt represent the inverted, initial and true models, respectively, so that each model

starts its iteration with a unit error. I observe the convergence characteristics of a reliable

inversion. The model errors decrease monotonically, with porosity updated more e�ciently

than clay content. Figure 5.9 shows the comparison between the initial and inverted models

in terms of the modeled data. The data residual is signi�cantly reduced after inversion.
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Figure 5.7: Inverted models: (a) Porosity and (b) clay content. (c,d) Vertical pro�les ex-

tracted from the true, initial, and inverted models at lateral positions x=0.5 km and x=1.5

km.

Figure 5.8: Convergence properties. (a-c) Frequencies, objective functions, and model errors

(after updating) within a frequency band, respectively.
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Figure 5.9: Baseline data residuals corresponding to the (a and b) initial model and (c and

d) inverted model. (e and f) Vertical pro�les of the data residuals at lateral position 0.3 km.

Monitor model reconstruction

In the monitor survey, the observed data is generated from the true model (Figure 5.1);

the synthetic data is generated from the recovered baseline model (Figure 5.7) plus the

current estimate of CO2 saturation. For the initial guess of CO2, I interpret the reservoir

horizons from baseline estimates and restrict saturation variations within the reservoir. The

interpreted horizons do not match exactly the rim of the plume (Figure 5.10a), allowing

uncertainty related to horizons to be taken into account. Regarding saturation values, I use

a Gaussian function varying only in the x direction with a maximum value of 0.9 at the

location of the injection well (Figure 5.10b). For the inversion, I incorporate the �rst-order

Tikhonov regularization term (Tikhonov and Arsenin, 1977; Asnaashari et al., 2013) into the

objective function, to encourage a small degree of smoothness in the solution. The hyper-

121



parameter is chosen such that the ratio between the regularization term and data mis�t is

1�10�4 at each iteration. The recovered model (Figure 5.10c) shows a good agreement with

the true one, with both the spread of the plume and saturation values well estimated. The

data residuals corresponding to the initial and inverted models are shown in Figure 5.11.

One of the advantages of the direct approach is that it allows elastic attributes to be

jointly output with rock physics properties. In Figures 5.12 and 5.13, the velocity and density

models corresponding to the rock physics estimates (Figures 5.7 and 5.10) are summarized.

The elastic models are correctly retrieved, in particular, the predicted time-lapse elastic

changes match closely the true ones, showing great consistency between the baseline and

monitor reconstructions.

Figure 5.10: (a-c) True, initial, and inverted CO2 saturation models, respectively. (d) Errors

in the inverted model.
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Figure 5.11: Monitor data residuals corresponding to the (a and b) initial model and (c and

d) inverted model. (e and f) Vertical pro�les of the data residuals at lateral position 0.3 km.

Figure 5.12: Reconstructed velocity and density models via the rock physics parameterized

FWI: (a-c) Baseline, (d-f) monitor, and (g-i) time-lapse change.
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Figure 5.13: Vertical pro�les extracted from the true and inverted models (Figures 5.3 and

5.12) at lateral position 0.5 km.

5.4.3 Two-step inversion results

The two-step inversion combines FWI for elastic attributes and rock physics inversion that

transforms the elastic attributes into reservoir properties. For the elastic inversion, I pa-

rameterize FWI in terms of P-wave velocity, S-wave velocity, and density. I use the parallel

di�erence strategy (Plessix et al., 2010; Asnaashari et al., 2015) which independently inverts

the baseline and monitor data sets (Figure 5.4) starting from the same initial model (Figure

5.6). The time-lapse variation is simply the subtraction between the recovered monitor model

and the recovered baseline model. The results are plotted in Figures 5.14 and 5.15. The ve-

locity and density models are well recovered, but less accurately compared to the result of the

rock physics FWI approach, and the predicted time-lapse variations are contaminated by ar-

tifacts more seriously. I attribute this de�cit to a slower convergence of the velocity-density

parameterized FWI, when compared to that of the rock physics parameterized inversion,

which results from the fact that more variables are inverted simultaneously.
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Figure 5.14: Reconstructed velocity and density models via velocity-density parameterized

FWI: (a-c) Baseline, (d-f) monitor, and (g-i) time-lapse change.

Figure 5.15: Vertical pro�les extracted from the true and inverted models (Figures 5.3 and

5.14) at lateral position 0.5 km.
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I examine two approaches for the prediction of rock physics properties from velocities and

density. One is a Bayesian non-parametric approach, in which the joint distribution of elastic

and rock physics properties is described by a non-parametric probability density function

estimated using kernel density estimation (Doyen, 2007; Grana et al., 2021). I compute the

joint distribution based on a training dataset collected from wells and then use it to compute

the conditional probability of rock physics variables given velocities and density. The most

likely model (i.e., maximum a posteriori estimate) is subsequently used for analysis. The

other one is a global optimization method called the neighborhood algorithm (NA), which

involves random sampling of model space but makes use of previous samples to guide the

search (Sambridge, 1999; Sen and Roy, 2003; Dupuy et al., 2016c). For both approaches,

I predict porosity and clay content from baseline velocity and density estimates, and CO2

saturation from monitor estimates. Each inversion is tuned to provide robust results.

Figure 5.16: Inverted porosity, clay content, and CO2 saturation models within the (a-c)

Bayesian and (d-f) NA approaches.
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Figure 5.16 shows that the two approaches yield comparable results of porosity and clay

content to the direct inversion, capturing the relevant reservoir structures. The recovered

CO2 model is less than satisfactory, with the shape of the plume clearly distorted and the

variation in saturation underestimated. Overall, the direct approach predicts CO2 saturation

more accurately (Figure 5.10c). In Table 5.2, the quality of the inverted models within

di�erent approaches, measured using root mean squared error, is summarized.

Table 5.2: Root mean squared error of the inverted models within di�erent approaches.

FWI+Bayesian FWI+NA Direct FWI
VP (km/s, base) 0.060 { 0.048
VS (km/s, base) 0.040 { 0.033
� (g=cm3, base) 0.022 { 0.015
VP (km/s, monitor) 0.062 { 0.050
VS (km/s, monitor) 0.040 { 0.033
� (g=cm3, monitor) 0.023 { 0.016
� 0.011 0.012 0.011
C 0.038 0.043 0.044
Sc 0.062 0.046 0.035

5.4.4 Direct FWI with noisy data and imperfect rock physics

model

To make the numerical study more realistic, I repeat the experiments in section 5.4.2 con-

sidering two sources of uncertainty: uncertainty in the measured data owing to noise, and

uncertainty in the rock physics model owing to the assumption of the way uid phases are

mixed. The two uncertainties are examined separately.

First, I add white Gaussian noise to the noise-free data (Figure 5.4) using a signal-to-

noise ratio of 10. As a result, the time-lapse seismic events are obscured by noise (Figure

5.17). However, the inversion results (Figure 5.18) remain consistent with the noise-free test,

even though more noisy. The prediction error of porosity and clay content is larger toward

the left side of the model due to the lack of illumination, and this likely causes data residuals

127



that have been back-projected to the CO2 estimate. Also, the sharpness of the recovered

model is a bit degraded, indicating that the noise has impeded the convergence.

Figure 5.17: Synthetic noisy data with signal-to-noise ratio equal to 10.

I next consider an imperfect rock physics model that has errors on a priori parameter:

the patchiness exponent e of Brie’s equation, which describes the way CO2 and water are

mixed in the pore space. In Figure 5.19(a), I plot P-wave velocity as a function of CO2

saturation, assuming patchy (e = 1), semipatchy (e = 5), and uniform (e = 40) mixing

behaviors, respectively, following the analysis of Dupuy et al. (2021b). It shows that the

patchiness exponent has a large impact on P-wave velocity, especially when CO2 saturation

is low (but nonzero). To account for the uncertainty in the rock physics model, I generate

the observed data using a patchiness exponent (e = 1 and e = 40) di�erent from that used

to compute the data in inversion (e = 5). The results are shown in Figure 5.19(b). In

the case of e = 40, we observe a similar result to the previous example, where the rock
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physics model is assumed perfect (Figure 5.10c). This is attributed to the bimodality of

the true model and the fact that the velocity di�erence between e = 5 and e = 40 at high

CO2 saturations (Sc > 0:6) is almost negligible. In the case of e = 1, the estimation error

increases, but may still be considered acceptable. Since the patchiness exponent only a�ects

P-wave velocity, my interpretation is that the use of multicomponent elastic data helps to

constrain the saturation estimation.

Figure 5.18: Direct inversion results with noisy data: (a) Porosity, (b) clay content, and (c)

CO2 saturation.
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Figure 5.19: (a) P-wave velocity versus CO2 saturation for di�erent mixing behaviors of uid

phases. (b) Recovered CO2 saturation models with erroneous assumptions on uid.

5.5 Discussion

To validate the methodology some assumptions on the mineral and uid phases were made.

Indeed, I assume that the mineral phase consists of two minerals only and the uid phase

consists of water and CO2. The methodology can be extended to more complex rocks as

long as the elastic property of the minerals is known and the e�ective elastic properties

can be modeled using rock physics elastic averages. Potentially the method can be applied

in carbonate, however adequate rock physics models should be developed to account for

the interaction of the uid with fractured rocks (Vialle and Vanorio, 2011; Vanorio, 2015).

Furthermore the approach could also be extended to a three-phase uid system with water,

oil, and CO2, to model CO2 sequestration in oil reservoirs for enhanced oil recovery, but it

requires some prior knowledge or assumptions on the initial uid distribution.

In my simulation, the pressure variations are relatively small and we can assume that

the e�ect of pressure changes on elastic properties and density is negligible. In case of

130



larger variations, a joint rock physics model combining Gassmann’s equation with empirical

pressure relations (MacBeth, 2004; Grana, 2016b; Mavko et al., 2020) can be used as shown

in Landr� et al. (2003), Trani et al. (2011), Bhakta and Landr� (2014), and Dupuy et al.

(2021b). This approach requires adding one degree of freedom for pressure variations in the

inversion. In Appendix D, I describe my initial attempts to achieve simultaneous inversion

of CO2 saturation and pore pressure.

The local smoothness is not always desirable, because it causes an attenuation of the

high wavenumbers present in the model. In the CO2 case, I found this constraint helpful in

reducing undesired discontinuities and driving the convergence towards geologically mean-

ingful models. However, one needs to weigh the smoothness carefully to keep the level of

detail expected in a FWI result.

As a local inversion method, FWI bears the danger to end up in one of the numerous local

minima. A good initial model is required to mitigate this problem. In practice, the initial

porosity and clay content models can be obtained using some geostatistical interpolation of

�ltered logs following the seismically interpreted horizons, and using some correlated variable

such as stacking velocities. The initial CO2 model can be generated by simulating the uid

ow in the aquifer, according to the injection parameters and the rock properties estimated

from the baseline survey (Grana et al., 2021).

Geophysical reservoir monitoring can be integrated into history matching and data as-

similation workows (Tavakoli et al., 2013; Ghorbanidehno et al., 2015) by combining the

information from geophysical modeling with dynamic uid ow simulation to increase the

accuracy of the predicted model during injection and reduce the uncertainty in the model

predictions (Chen et al., 2020; Liu and Grana, 2020; Tveit et al., 2020). This approach is

particularly useful for CO2 sequestration and enhanced oil recovery studies where production

data such as oil production and borehole pressure can be used to validate and update the

reservoir model (Babak and Deutsch, 2008; Jahangiri and Zhang, 2012; Gao et al., 2016;

Kamali et al., 2017).
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The inversion code is written in MATLAB. The computational cost for the proposed

model including 101�201 grid cells with three unknown variables at each location for a total

of 60903 unknowns is approximately 1.5 hours, with a coarse parallelization over frequencies

on a computer with an Intel Core i5-8600 3.10GHz processor. I note that the computational

cost of this problem is about the same per iteration as for a conventional EFWI because

the additional cost for parameterization is negligible. For large-scale �eld data applications,

I recommend implementing this algorithm in a precompiled language and using massive

parallelization on high-performance computers.

5.6 Conclusion

I present a quantitative CO2 monitoring approach which is based on seismic FWI. Unlike

conventional FWI approaches which aim at determination of elastic properties, the proposed

scheme allows direct prediction of rock physics properties from seismic data. I propose

to estimate rock frame properties, such as porosity and clay content, from baseline data

(before CO2 injection), and then use the results as input to estimate CO2 saturation from

monitor data. The method was tested on a synthetic model developed from the Johansen

dataset. With a suitable initial model, the method exhibits higher prediction accuracy than

conventional two-step approaches. However, the di�erence between the direct and two-step

inversions remains methodological and depends on the availability of su�cient constraints to

the inversion. The results with noisy data and erroneous rock physics model further verify

the robustness of the direct approach. The proposed methodology was applied to a saline

aquifer but could be extended to depleted hydrocarbon reservoirs as well as enhanced oil

recovery and carbon capture, utilization, and storage (CCUS) applications.
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Chapter 6

Quantitative FWI characterization of

reservoir properties at the CMC

Newell County Facility

6.1 Summary

Combining elastic full waveform inversion (FWI) with rock physics can extend the role of

FWI from seismic imaging to quantitative prediction and monitoring of reservoir parameters.

Distributed Acoustic Sensing (DAS), a rapidly developing seismic acquisition technology, has

the potential to be an enabler for such applications of FWI. In this study, I apply a sequential

inversion scheme combining elastic FWI and Bayesian rock physics inversion to a vertical

seismic pro�le (VSP) dataset acquired with accelerometers and collocated distributed acous-

tic sensing (DAS) �ber at the Carbon Management Canada’s Newell County Facility. The

goal is to build a baseline model of porosity and lithology parameters to support later mon-

itoring of CO2 storage. The key strategies include an e�ective source approach to cope with

near-surface complications, a modeling strategy to simulate DAS data directly comparable
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to the �eld data, and a Gaussian mixture approach to capture the bimodality of rock prop-

erties. I performed FWI tests on the accelerometer, DAS, and combined accelerometer-DAS

data. While the inversion results can accurately reproduce either type of data, the elastic

models inverted from the accelerometer data outperform the other two in matching well logs

and identifying the target reservoir. I attribute this result to the insigni�cant advantage of

DAS data, in this case, over accelerometer data, which also su�ers from single-component

measurements and lower signal-to-noise ratios. The porosity and lithology models predicted

from the accelerometer elastic models are reasonably accurate at the well location and are

geologically meaningful in spatial distribution.

6.2 Introduction

The Carbon Management Canada’s (CMC) Newell County Facility is a platform for develop-

ment and performance validation of technologies intended for measurement, monitoring and

veri�cation of CO2 storage (Lawton et al., 2019; Macquet et al., 2022). In 2018, a vertical

seismic pro�le (VSP) survey was acquired using accelerometers and collocated distributed

acoustic sensing (DAS) �ber in an observation well at the �eld site (Hall et al., 2019). One

of the goals of this survey was to obtain a baseline data set to compare against later moni-

toring data, gathered during the course of CO2 storage. In this study, I propose a workow

combining full waveform inversion (FWI) and rock physics to predict reservoir properties

from the measured data, to develop the pre-injection baseline model.

A combination of seismic inversion for elastic properties (e.g., velocity, density, and mod-

ulus) and rock physics for predicting reservoir properties (e.g., porosity, lithology, and uid

saturation) is a classical procedure in reservoir characterization (Doyen, 2007; Dvorkin et al.,

2014; Grana et al., 2021). The seismic inversion is generally performed using the convo-

lutional model based on a linearized approximation of the Zoeppritz equations (Aki and

Richards, 2002; Buland and Omre, 2003). This approach is simple to implement and compu-

tationally fast. FWI methods, although computationally challenging, have the capacity to
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produce a more accurate elastic model by involving a more complete subset of the informa-

tion content of seismic data (Tarantola, 1986; Brossier et al., 2009; Virieux and Operto, 2009;

Mallick and Adhikari, 2015; Pan et al., 2018a; Hu et al., 2021). Therefore, FWI appears to be

a potentially powerful tool for reservoir characterization. The prediction of reservoir prop-

erties from elastic attributes requires a rock physics model (Mavko et al., 2020). The model

adopted in the inversion depends on the geological environment and must be calibrated using

well logs or laboratory measurements of core samples. The rock physics inversion is often

formulated in a Bayesian framework, allowing uncertainty in the model predictions to be

assessed through a probability density function (Bosch et al., 2010). Under some restrictive

assumptions (Grana et al., 2021), I can derive a closed-form solution to this problem, thus

signi�cantly reducing the computational cost. In CO2 storage applications, progress has

been reported in combining FWI and rock physics for predicting the time evolution of CO2

saturation (Quei�er and Singh, 2013a; Dupuy et al., 2016b, 2021a; Hu et al., 2023). In these

studies, the recovered baseline model of reservoir properties, such as porosity and lithology,

help to reduce the uncertainty in uid predictions of the monitor stage.

Since the estimates of elastic parameters directly a�ect the result of rock physics inter-

pretation, obtaining an accurate FWI model is the key to using FWI for reservoir charac-

terization. At the land-based Newell County Facility, one of the challenges FWI faces is

the near-surface heterogeneity. The unconsolidated nature of the sediment in proximity to

Earth’s surface leads to complex seismic wave propagation that is heavily inuenced by sur-

face waves, attenuation and dispersion, and spatially varying source signatures (Eaid, 2022).

Additionally, there is limited prior information about the near-surface that can be used to

constrain the inversion. As a result, FWI may fail to converge because of the di�culties that

exist in accurately characterizing the near-surface and the signi�cant impact it has on seismic

data. E�orts have been made to use surface wave based approaches for near-surface velocity

estimation (Dokter et al., 2017; K�ohn et al., 2019; Borisov et al., 2020; Colombo et al., 2021;

Pan et al., 2023). In the absence of robust near-surface information, Keating et al. (2021)
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proposed an e�ective source approach for VSP FWI. The idea is to remove the near surface

from inversion by introducing an unknown variable characterizing the wave�eld at a depth

that best explains the data. This approach does not require a complete understanding of

surface source signatures.

Another challenge for FWI is the incomplete nature of the data we record. Due to

limitations on the acquisition geometry and seismic bandwidth, multiparameter FWI of

land data is a di�cult proposition (Brossier et al., 2009; Plessix et al., 2013; Stopin et al.,

2014). The advent of DAS, an acquisition technology that employs optical �bers to sense

seismically induced strain (Posey Jr et al., 2000), supplies an additional subset of the data

that could contain the information required to propel FWI forward (Egorov et al., 2018; Eaid

et al., 2020; Pan et al., 2023). In fact, the conventional point sensors (e.g., 3C geophone)

directly measure multiple elastic wave�eld components, and do so with a relatively high

signal-to-noise ratio (SNR), but are limited in the low-frequencies they can sense and where

they can be cost-e�ectively deployed; DAS senses low-frequencies e�ectively (Becker et al.,

2017; Jin and Roy, 2017), and can occupy boreholes without disturbing production processes

(Mateeva et al., 2014; Harris et al., 2016; Byerley et al., 2018), but have a generally lower

SNR and are fundamentally single-component (Kuvshinov, 2016). The two sensor types

can be viewed as supplying complementary datasets, which may lead to improved inversion

results.

This study is a continuation of the FWI analysis from Eaid (2022) in the target area,

and the main purpose is to explore the potential of FWI in quantitative seismic reservoir

characterization. The chapter is organized as follows. First, I present the FWI framework

used throughout this study. I show how to convert a conventional FWI scheme into a

simultaneous inversion for source wave�elds and elastic models. I also describe the modeling

strategies that can simulate DAS data that are directly comparable to the �eld data. Then,

I describe the Bayesian approach I use to predict reservoir properties from FWI results. In

the section of �eld data application, I �rst give a brief introduction to the VSP experiment
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at the CMC Newell County Facility. I then describe the preparations before inversion,

including seismic data processing and rock physics analysis of well-log data. Finally, I apply

a sequential inversion scheme combing FWI and rock physics to the processed data, including

both accelerometer and DAS measurements.

6.3 Theory

6.3.1 FWI as a constrained optimization problem

The FWI problem can be framed as an attempt to minimize the mismatch between data and

model predictions, subject to a wave propagation model linking the wave�eld and subsurface

together (M�etivier et al., 2017). The inverse problem can be stated as

min
m

E =
1
2

nsX

i=1

n!X

j=1

kRui;j � di;jk2
2 subject to A(!;m)u = f(!); (6.1)

where E is the objective function, d is the observed data, R is a sampling matrix repre-

senting receiver measurement, and ns and n! are the number of sources and the number

of frequencies, respectively. Here I consider the 2D frequency-domain isotropic-elastic wave

equation (Pratt, 1990): A is the �nite-di�erence forward operator dependent on the mod-

eled frequency ! and the medium properties m, u is the displacement wave�eld, and f is

the source term. In the following discussion, I will not explicitly state the sums over sources

and frequencies for simplicity.

According to the adjoint state method (Plessix, 2006), the Lagrangian of the minimization

problem in equation (6.1) is

L(m;u; �) =
1
2
kRu� dk2

2 + <hAu� f ; �i; (6.2)

where � is the Lagrange multiplier, < indicates the real part, and h:; :i is the scalar product,

e.g., for two complex matrices, a and b, of the size N , ha;bi =
PN

i=1 a�ibi, where the
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superscript � represents the complex conjugate. Let u denotes the solution of the wave

equation, such that Au = f , we have

L(m;u; �) = E; (6.3)

and the gradient of E yields

rmE =
dL(m;u; �)

dm
=
@L(m;u; �)

@m
+
@L(m;u; �)

@u
@u
@m

: (6.4)

The adjoint state � is de�ned by @L(m;u;�)
@u = 0, which is equivalent to

Ay� = Ry(d�Ru); (6.5)

where the superscript y represents the conjugate transpose. Therefore, the gradient from

equation (6.4) is reduced to

rmE =
@L(m;u; �)

@m
: (6.6)

It then follows from equation (6.2) that the individual components of the gradient vector

can be expressed as

rmiE = <h
@A
@mi

u ; � i: (6.7)

Within a Newton optimization approach, the search direction �m for model update is the

solution of

H �m = �rmE; (6.8)

where H is the Hessian of the objective function. I solve equation (6.8) using the l-BFGS

method, which uses the information of gradient and model stored from a limited number of

previous iterations to approximate the inverse H (Nocedal and Wright, 2006).
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6.3.2 E�ective source approach

I consider here an e�ective source approach for VSP FWI, which attempts to remove the

near-surface from the inversion problem (Keating et al., 2021). In this approach, I imagine a

line source f� at depth z� such that, when activated, it reproduces the wave�eld that would

be obtained by propagation through the near surface. The optimization problem is given by

min
m� ;f �

E =
1
2
kR�u� � d�k2

2 subject to A�(m�)u� = f�; (6.9)

where each of the � variables is only allowed to take values at depths below z�. equation

(6.9) is e�ectively the same optimization problem as the conventional one, equation (6.1),

with the exception that I de�ne the problem on a smaller model domain, and I invert for

both an unknown model, m�, and an unknown source term f�. In e�ect, this formulation

replaces the problem of characterizing a complex, heterogeneous near surface given a known

source term with the problem of characterizing the wave�eld produced by the interaction of

the two at a chosen depth. This type of problem is illustrated schematically in Figure 6.1.

We can obtain the gradient with respect to the source term f� in a way similar to that

of the model gradient (equations 6.2-6.7). The result is

rfiE = ��i; (6.10)

where �i is the adjoint wave�eld at an e�ective source location indexed by i. In practice,

I initialize f� using the modeled wave�eld at depth z� from the initial model, and then

simultaneously update f� and m� using the data recorded at depths below z�. The choice

of z� requires testing, with the goal being to select the depth that allows the downgoing

wave�eld complexity to be explained by the e�ective source.
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Figure 6.1: Schematic depiction of the e�ective source approach for VSP FWI.

6.3.3 FWI incorporating DAS data

DAS �ber response is proportional to the strain induced in the �ber by a propagating seismic

wave�eld. Following the approach of Eaid et al. (2020), we can generate strain data directly

in forward modeling to compare with the �eld DAS data. Here I give a brief description of

this approach.

The strain tensor can be de�ned in Cartesian coordinates as

eij =
1
2

�
@ui
@xj

+
@uj
@xi

�
; i; j = 1; 2; 3: (6.11)

where ui is the particle displacement in the ith direction. To simulate �ber response, the

Cartesian strain tensor must be transformed into the local system describing the �ber, from

which the tangential component is extracted. Let the unit vectors fx̂; ŷ; ẑg denote the inline-

crossline-depth Cartesian system and ft̂; n̂; b̂g denote the local �ber coordinate de�ned by

the tangent, normal, and binormal directions, we have

e0 = PePT ; (6.12)
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where

e =

2

66664

exx exy exz

eyx eyy eyz

ezx ezy ezz

3

77775
; e0 =

2

66664

ett etn etb

ent enn enb

ebt ebn ebb

3

77775
; (6.13)

and P is the rotation matrix:

P =

2

66664

t̂ � x̂ t̂ � ŷ t̂ � ẑ

n̂ � x̂ n̂ � ŷ n̂ � ẑ

b̂ � x̂ b̂ � ŷ b̂ � ẑ

3

77775
: (6.14)

The tangential strain is then

ett =(t̂ � x̂)2exx + (t̂ � ŷ)2eyy + (t̂ � ẑ)2ezz

+ 2(t̂ � x̂)(t̂ � ŷ)exy + 2(t̂ � x̂)(t̂ � ẑ)exz + 2(t̂ � ŷ)(t̂ � ẑ)eyz:
(6.15)

For straight �bers deployed in vertical wells, the �bers have a single, vertical tangent direc-

tion, namely t̂ = ẑ, resulting in a DAS system sensitive only to the normal strain ezz. In

practice, I compute ezz on a grid staggered to that of the displacements, so the strain at

each grid cell is approximated as a weighted sum of the neighboring vertical displacements

uz.

FWI incorporating DAS data requires an objective function that compares the observed

and modeled �ber strains. The receiver matrix R in equation (6.1) can be understood more

generally as an operator that transforms the simulated wave�eld into quantities directly

comparable to the observed data. Therefore, we can include DAS data in FWI by simply

reformulating R. Speci�cally, I design some rows of R to map the displacement wave�eld

to the accelerometer positions and the others to compute the tangential strain at channel

positions along the �ber. This process of modeling the combined accelerometer and DAS
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data, d = Ru, can be expressed as

2

66666666666666666666666664

d1
x

...

dNax
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z
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dNaz

e1
tt

...

eNdtt

3

77777777777777777777777775

=

2
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1
...

1

1
...

1
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...

w1 w2 : : : w3 w4

3
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2
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x
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z

u2
x

u2
z

...

uNx

uNz

3

77777777777777777777775

; (6.16)

where N is the total number of discrete spatial positions, Na and Nd are the numbers of

accelerometer and DAS sensors, respectively, and w1; w2; w3; w4 are �nite-di�erence coe�-

cients. This formulation also allows us to include a data weighting matrix in the objective

function to control the relative importance of accelerometer data and DAS data in recovering

the subsurface model.

6.3.4 Bayesian rock physics inversion

Once I have obtained a model of elastic properties m from seismic data, I then aim to

estimate the rock properties r, from m as the solution of another inverse problem

m = fRPM(r) + �; (6.17)

where fRPM is the rock physics model and � is the data error. In this study, the vector m

includes P- and S-wave velocities plus density, and the model variable r includes porosity and

mineral volume fractions. I operate in a Bayesian setting to assess the conditional probability

142



P (rjm):

P (rjm) =
P (r;m)
P (m)

=
P (mjr)P (r)

P (m)
; (6.18)

where P (r;m) is the joint distribution of rock and elastic properties, P (r) is the prior

distribution, P (mjr) is the likelihood function, and P (m) is a normalizing constant. For the

prior distribution, I assume a multivariate Gaussian mixture distribution of Nf components:

P (r) =
NfX

k=1

�kN (r; � k
r ;�

k
r); (6.19)

where the distributions N (r; � k
r ;�k

r) represent the kth Gaussian component and the coe�-

cients �k are the weights of the linear combination. This assumption allows us to model each

litho-uid class detectable by rock physics analysis as a single component of the Gaussian

mixture.

I use the semi-analytical approach of Grana and Rossa (2010) to estimate the conditional

probability P (rjm). First, I generate a set of Monte Carlo samples from the prior distribution

P (r) and apply rock physics modeling to obtain the corresponding set of elastic properties

m; I then use these samples as a training dataset to estimate the joint distribution of rock

and elastic properties assuming a Gaussian mixture distribution:

P (r;m) =
NfX

k=1

�kN (y; � k
y;�

k
y); (6.20)

where y = (r;m), and the joint mean and covariance of each component are given by

� k
y =

2

64
� k
r

� k
m

3

75 ; �k
y =

2

64
�k
r;r �k

r;m

�k
m;r �k

m;m

3

75 : (6.21)

The quantities in equation (6.21) can be determined using maximum likelihood estimation

(Myung, 2003). As a consequence, the conditional distribution P (mjd) is a Gaussian mix-
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ture:

P (rjm) =
NfX

k=1

�
0

kN (r; � k
rjm;�

k
rjm); (6.22)

where the conditional weights are given by

�
0

k =
�kN (r; � k

rjm;�
k
rjm)

PNf
h=1�hN (r; � h

rjm;�
h
rjm)

; (6.23)

and the conditional mean and covariance can be analytically derived as

� k
rjm = � k

r + �k
r;m(�k

m;m)�1(m� � k
m)

�k
rjm = �k

r;r ��k
r;m(�k

m;m)�1�k
m;r:

(6.24)

6.4 Applications

6.4.1 VSP experiment at CMC Newell County Facility

The Carbon Management Canada’s (CMC) Newell County Facility is located 200 km south-

east of Calgary, Alberta, Canada. A key goal of this project is the development of tech-

nologies for monitoring CO2 storage (Lawton et al., 2019). The �eld site houses three wells,

including the well being used for CO2 injection, and two observation wells, colloquially re-

ferred to as the geophysics and geochemistry wells. The injection of CO2 at this site, at a

shallow depth of approximately 300 m and at a low ow rate of several tens of tonnes per

year (Macquet et al., 2022), is designed to simulate leakage of CO2 from a deep sequestration

site into formations at shallow to intermediate depths. Among the baseline surveys collected

in the �eld, I focus on the multi-azimuth walk-away vertical seismic pro�le (VSP) dataset

acquired in September 2018, which is primarily intended for use in full-waveform inversion

(FWI) and modeling studies (Hall et al., 2019).
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Figure 6.2: (a) Shot geometry of the multi-azimuth walk-away VSP experiment at the Newell

County Facility. The gray circles represent the locations of vibe points, the green square

marks the location of the injection well, and the two red squares mark the locations of the

geophysics and geochemistry wells, o�set from the injection well by 20 m to south-west and

30 m to north-east, respectively. (b) Section view of the VSP acquisition with respect to

source line 1. The horizontal dashed lines delineate the top and bottom of the Basal Belly

River Sandstone target reservoir.

.

The 2018 VSP has 12 source lines separated by counter-clockwise �fteen-degree rotations,

centered on the geophysics well (Figure 6.2a). Source lines 1, 4, 7, and 10 were acquired at

a 10 m vibe point spacing and the others were acquired at 60 m spacing. The source was

an Inova Univib running a linear sweep from 1-150 Hz over 16 seconds, using 0.2 second

half cosine tapers and a 3 second listening time. For this survey, a string of Inova 3C

VectorSeis accelerometers were deployed at 1 m spacing from the surface to the bottom hole

at about 324 m depth. In addition, the geophysics well has a straight DAS �ber and a helical

�ber cemented over the entire length of the well, which are part of a 5 km DAS �ber loop

permanently buried in the �eld. Due to computational limitations, I consider 2D FWI, and
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restrict my analysis to the data generated by source line 1, including both accelerometer and

straight DAS �ber measurements (Figure 6.2b). This line has 77 shot points. The minimum

shot o�set from the well was 6 m, and the maximum was 480 m.

Figure 6.3: Processed accelerometer and DAS data for 5 shots on source line 1. Top row:

vertical component of acceleration. Middle row: horizontal component of acceleration. Bot-

tom row: DAS-recorded strain. Each column represents the data of a single shot. Shots 1

to 5 correspond to o�sets 370 m, 170 m, -20 m, -200 m, and -430 m, respectively.

6.4.2 Seismic data processing

The seismic data have been carefully processed to be more comparable to simulated data

generated by modeling procedures (Eaid, 2022). The accelerometer data were processed using

a standard workow for multi-component VSP data, including �rst break picking, coordinate

rotations, trace interpolation, and denoising. The DAS data underwent a similar processing
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workow but was simpli�ed due to the single-component nature of DAS sensing. However,

due to uncertainties in the trace spacing and locations, special attention was directed to the

depth registration of the DAS data. Figure 6.3 plots the processed accelerometer and DAS

data for �ve shot points on source line 1, which represent a portion of the input data for

FWI. The result is a high-�delity two-component accelerometer dataset, whereas the DAS

dataset has a relatively low signal-to-noise ratio, especially at far-o�set.

6.4.3 Rock physics analysis of well-log data

A comprehensive log suite was acquired at the injection well (before CO2 injection), which

was drilled to a depth of 550 m to characterize the overburden and the underburden within

the �eld research station. The wireline logs were further interpreted that provide depth

pro�les of porosity and mineral composition (Figure 6.4). The Basal Belly River Sandstone

(BBRS) injection zone is at a depth of 296 m below the ground surface, and it is a 7-m-thick,

�ne to medium-grained sandstone at the base of the Foremost Fm. The overlying sealing

succession is composed of interbedded mudstone, �ne-grained sandstone, and uncleated coals

that directly overlie BBRS. Additional seals are provided by a stratigraphically higher coal

zone at about 170 m depth. Together, the potential top seal has a combined average thickness

of 225 m in the study area (Lawton et al., 2019). Based on the well-log data of the range

223-520 m, I have constructed a rock physics model combining the soft-sand model and

Gassmann’s equations (Mavko et al., 2020) to predict P-wave velocity (VP), S-wave velocity

(VS), and density (�) as a function of porosity (�) and mineral volume fractions (equation

3.37):

(VP; VS; �) = fRPM(�; Vqu; Vcl; Vco); (6.25)

where Vqu, Vcl, and Vco represent the volume fractions of quartz, clay, and coal, respectively,

and Vqu + Vcl + Vco = 1. Because the in-situ hydrocarbon saturation is su�ciently small

(Macquet et al., 2019), the brine saturation was assumed to be 100%. Given its visible �t to

the data (Figures 6.4a-c), the rock physics model was then used to reconstruct the velocity
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and density logs missed at shallow depths 0-223 m, using the corresponding rock property

logs as input. The predictions have a good match with the local geology as well as the

�rst-arrival traveltimes picked on zero-o�set seismic data (Kolkman-Quinn, 2022). These

increase my con�dence in the rock physics model. In the following analysis, the velocity

and density logs I refer to contain the model predictions at shallow depths 0-223 m and the

original measured data at depths below 223 m.

Figure 6.4: Well logs (upscaled) of the injection well: (a) P-wave velocity, (b) S-wave velocity,

(c) density, (d) total porosity, and (e) the volume fractions of quartz, clay, and coal. Well-log

data are in blue and rock physics model predictions in orange.

To validate my choice of Gaussian mixture models for describing parameter distributions,

I draw crossplots of the well-log data in Figure 6.5. These data correspond to a depth range

of 50 to 350 m, in order to be consistent with the target depth range of subsequent inversions.

I assume a joint Gaussian mixture distribution with two components for the elastic and rock

properties. For illustration purposes, I only display the bivariate projections in the petro-

elastic domain of P-wave velocity and quartz volume, and in the petrophysical domain of

porosity and clay volume. The Gaussian mixture model captures the bimodal behavior of

the data, with the two components that can be associated with sandy (Vclay < 0:45) and
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shaley (Vclay > 0:45) facies.

Figure 6.5: Bivariate Gaussian mixture probability density function (PDF) estimated from

well-log data, in the domain of (a) P-wave velocity and quartz volume, and (b) porosity and

clay volume.

6.4.4 Elastic FWI results

I consider here a 2D, frequency-domain, three-parameter elastic FWI algorithm. The model

I consider is 1000 m wide by 350 m deep (as shown in Figure 6.2b), with 2.5 m grid spacing.

I use 63 shots from source line 1 that lead to both accelerometer and DAS measurements.

Each shot gather is converted from the time domain to the frequency domain through a

temporal Fourier transform. The inversion is computed over 7 frequency bands, each con-

taining 6 frequencies that are slightly overlapped, following the multiscale strategy promoted

by Keating and Innanen (2019a). The minimum frequency I use is 10 Hz, which is found to

be the lowest frequency at which the signal-to-noise ratio is acceptable, and the maximum

frequency is 25 Hz, which is limited by the computational cost of moving to the smaller

�nite-di�erence grid spacing necessary for higher frequencies. I perform 10 iterations of L-

BFGS optimization at each frequency band, simultaneously updating the model area below

50 m depth and the e�ective source at 40 m depth.
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Figure 6.6: (a)-(c) Initial models of P-wave velocity, S-wave velocity, and density. (d-f) In-

verted models from accelerometer data. (g-i) Inverted models from DAS data. (j-l) Inverted

models from the combined accelerometer and DAS data.

The initial models are created by applying Gaussian smoothing to the well logs of VP,

VS, and �. I run inversions using the accelerometer, DAS, and combined accelerometer-DAS

datasets respectively. Due to limited observation aperture, I only demonstrate the recovered

models within 200 m o�set. In Figure 6.6, the results are summarized. The inverted models

from either dataset exhibit su�cient updates from the initial one, but have di�erent features.

The accelerometer inverted models reveal a reasonable amount of detail in the vicinity of the

observation well, but lack lateral continuity, especially for P-wave velocity. The DAS model

updates are largely layer-like, possibly more geologically meaningful, but have a relatively

poor resolution in the near-o�set region. The inverted models using both datasets neutralize
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the model characteristics for each individual data, indicating that my inversion approach

is stable. Observation of the model pro�les in Figure 6.7 suggest that the accelerometer

inverted models correlate strongly to the well logs, and capture the large elastic contrast

between the caprock and reservoir formations, at approximately 300 m depth. The DAS

models correlate relatively poorly with well logs and fail to identify the reservoir of interest.

This also brings a great obstacle for us to use the DAS data alone to predict reservoir

parameters. I attribute this de�ciency to the limited sensitivity of DAS to the wave�eld

creating strain that is perpendicular to the �ber and the lower signal-to-noise ratio of the

DAS data compared to the accelerometer data.

Figure 6.7: Comparison of the well logs and the vertical pro�les extracted from the initial

and inverted models (Figure 6.6) at o�set 20 m.

In my FWI procedure, the �eld data are normalized for each source-receiver pair, to

prevent under-emphasizing measurements from deeper areas. In order to compare these re-
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scaled data to my simulated data in the inversion, the modeled data are also scaled similarly.

In Figure 6.8, the normalized frequency-domain measured data for the shot at 70 m o�set and

the corresponding modeled data, simulated from the initial and inverted models, are plotted.

As this comparison demonstrates, the data mis�t is signi�cantly reduced after inversion. In

fact, across all shots, data mis�t was reduced by 95% for the accelerometer data and 70%

for the DAS data, after each type of data was inverted alone. However, for a joint inversion

of the accelerometer and DAS data, the degree of data �tting will be reduced because each

data set will be less emphasized than their individual inversions.

Figure 6.8: Real part of frequency domain data for shot at 70 m o�set. Top row: vertical
component of acceleration. Middle row: horizontal component of acceleration. Bottom row:
DAS-recorded strain. Columns from left to right: Field data, modeled data simulated from
the initial model, modeled data simulated from the inverted model, and comparison of the
21 Hz �eld data (solid black line), initial modeled data (dotted gray line), and inverted data
(solid gray line).
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Figure 6.9: Time domain data for shot at 70 m o�set. Top row: vertical component of
acceleration. Middle row: horizontal component of acceleration. Bottom row: DAS-recorded
strain. Columns from left to right: Field data, modeled data simulated from the inverted
model, and a mixture of �eld and modeled data. In the panels of �eld data I marked the
di�erent types of waves. DP: downgoing P-waves. DS: downgoing S-waves. UP: upgoing
P-waves. CDS: converted downgoing S-waves. CUS: converted upgoing S-waves.

Next, I examine the modeled data in the time domain. To achieve this, I introduce more

frequencies to the modeled data, based on the inverted models, and then use inverse Fourier

transform to obtain synthetic shot gathers. Figure 6.9 illustrates that the modeled data

match closely the �eld data in terms of both amplitude and phase. While the prediction of

downgoing wave�eld relies on accurate source information and a reasonable initial model, the

prediction of upgoing wave�eld relies heavily on model updating. The accurate reproduction

of both downgoing and upgoing wave�elds illustrates that the e�ective source method is

fairly robust.

153



6.4.5 Rock physics inversion results

In this section, I adopt the FWI models from the accelerometer data to predict the spatial

distribution of reservoir properties, given that they outperform the results of either DAS or

combined accelerometer-DAS data in identifying the target reservoir. Based on the analysis

of well-log data, I de�ne three model unknowns: porosity, quartz volume, and clay volume.

The goal is to obtain the posterior probability distribution of these variables conditioned on

the FWI models.

I �rst build a training dataset of 1000 Monte Carlo samples, by sampling from a prior

Gaussian mixture distribution, P (�; Vqu; Vcl), estimated from the porosity and lithology logs,

and applying rock physics model to obtain the corresponding elastic parameters. I then

estimate the parameters of the joint distribution, P (�; Vqu; Vcl; VP; VS; �), from the training

dataset. Finally, I compute the posterior distribution of rock properties conditioned on each

set of the elastic parameters from FWI, P (�; Vqu; Vcl j VP; VS; �), using equations (6.22)-(6.24).

The inversion is �rst applied at the well location to compare the results with the actual

curves of porosity and mineral volumes. In Figure 6.10, we observe that the posterior

distributions capture the trend of the well logs, with a high fraction of true samples falling

inside the 0.95 con�dence interval. The maximum a posteriori (MAP) estimate of porosity,

although correlates relatively poorly with the actual log, reveals the limited variations of this

property across the depth pro�le, and has a root mean squared error of 0.017. The MAP

estimates of mineral volumes are more accurate in deep regions than in shallow ones. For

the interval from 280 to 320 m, the correlation between model predictions and well logs is

0.80 for quartz volume and 0.83 for clay volume. I point out that the misclassi�cations in

the posterior probability distributions are due to the lack of accuracy of the FWI results as

well as the rock physics model.
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Figure 6.10: Posterior distributions of (a) porosity, (b) quartz volume, and (c) clay volume,

truncated within the 0.95 con�dence interval. The black lines represent the actual well logs

and the red lines represent the maximum a posteriori.

Next, I apply the Bayesian approach to the entire FWI model. In Figure 6.11, the MAP

models of porosity and mineral volumes are plotted. The coal volume is derived from the

predicted quartz and clay volumes, as the sum of their volume fractions equals 1 in my

formulation. Due to the lack of ground-truth data to compare against, it is di�cult for us to

verify the distribution of these parameters away from the well. However, we can �nd several

positive features from this result, the most important of which is the successful identi�cation

of the laterally continuous coal zones in the depth range of 200 m to 300 m. These coal

zones are estimated to be the main sealing units above the injection area (BBRS). Also, the

inverted clay volume is relatively high throughout the model space, which is consistent with

the geology in this area, namely, the lithology of the shallow strata is dominated by mudstone

and shale-rich sandstone. The inverted porosity values are relatively stable, mainly between

0.15 and 0.2. However, its spatial distribution exhibits a strong degree of blockiness and

may contain some artifacts.
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Figure 6.11: Inverted models of (a) porosity, (b) quartz volume, (c) clay volume, and (d)

coal volume (superimposed the actual log curve).

6.5 Discussion

Although I expect that the combination of DAS and accelerometer data can improve the

results of FWI, the premise that this expectation can be realized is that the two types of data

are complementary. For example, combining permanently buried DAS �bers in wells with

sparsely distributed conventional geophones on the surface can provide the latter with larger

observation apertures, more types of seismic waves, denser sampling data, and even lower

frequencies. However, when the supplementary e�ect of DAS is limited, but there are obvious

shortcomings, it is worth thinking about whether incorporating DAS data can improve the

inversion result. Take the application of this article as an example. The acquisition geometry

corresponding to the DAS and accelerometers is the same, the sampling density is the same

(1 m), and the lowest acceptable frequency is similar (about 10 Hz), but the DAS can only

collect the vertical component of the wave�eld, and has a remarkably lower signal-to-noise

ratio. Then the help of DAS data is limited, and may even have an adverse impact on

156



the inversion due to data quality. Therefore, I believe it is reasonable to conclude that

the accelerometer inversion model is optimal in this case. However, the proposed inversion

strategy may play a greater role when DAS data has a clear advantage over conventional

geophones, or DAS is the only seismic acquisition mode.

The proposed e�ective source method can be regarded as a redatuming method for the

VSP system, which takes advantage of the one-way propagation of the wave�eld. The reason

for us to adopt this approach is that the near-surface complexities bring great di�culties

to wavelet estimation and inversions in my study. Although the e�ective source approach

can reduce the near-surface impact, it also brings new challenges, because introducing the

wave�eld at depth as a variable will increase the non-linearity and non-uniqueness of the

inverse problem. So the key is, which one is easier to address, the challenge brought by

directly characterizing the near surface with an erroneous wavelet or the challenge brought

by the e�ective source approach. The answer to this question is not unique, depends on the

near-surface conditions of the work area, and also depends on the development of inversion

strategies for these two types of problems. As far as the �eld example in this chapter is

concerned, I found that the e�ective source method is feasible, and can be viewed as a

candidate for solving the near-surface inversion problem.

For clastic rocks, porosity, clay volume, and water or gas saturation are the three most

common parameters of interest, and are usually treated as unknowns in the inversion. Al-

though some studies have simpli�ed this problem by assuming that the porosity or lithology

of the target reservoir interval is known and constant, this treatment is dangerous. There

are laboratory studies showing that porosity and clay content are the �rst and second most

important parameters a�ecting the elastic properties of sand-shale samples. This is why I

treat porosity as a model variable, even though its well log exhibits limited variation. In

the same way, because the shallow coal seams in the study area greatly reduce the velocity

and density of rock, I regard the coal volume as an implicit unknown quantity. One of my

simpli�cations for the baseline study is that the water saturation is 100%. This treatment is
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fair because previous studies have shown that the in-situ oil and gas saturation is su�ciently

low, and also because this parameter is subject to low sensitivity and large uncertainty when

it is inverted simultaneously with porosity and lithology parameters. The sensitivity issues of

uid saturation also exist in the monitor survey. To reduce the uncertainty in the prediction

of dynamic reservoir parameters, especially CO2 saturation and pore pressure, one strategy

is to derive porosity and lithology models from baseline data, and then use the results as

input for the monitor stage. This makes the baseline prediction of porosity and lithology

parameters very important in CO2 applications, which is also the signi�cance of my research.

6.6 Conclusion

Carbon capture and storage is an important technology for greenhouse gas mitigation. Due

to the limited knowledge of rock properties before injection, model predictions are often

uncertain and must be updated when new measurements are available. The 2018 CMC

VSP survey provided a dataset (accelerometers + DAS) suitable for creating a baseline

model for later time-lapse analysis. In this study, I focus on integrating FWI and rock

physics to recover porosity and lithology models from the measured data. To cope with

near-surface complications, I used an e�ective source approach that allows simultaneous

updating of wave�eld at depth and elastic models. To include DAS data in FWI, I used

a modeling strategy that can simulate DAS data that is directly comparable to the �eld

data. To capture the bimodality of rock properties, I used a Gaussian mixture approach to

predict the posterior distribution of rock physics variables conditioned on FWI results. The

inverted elastic models from the accelerometer, DAS, and combined accelerometer-DAS data

exhibited di�erent features. In the absence of other veri�cation methods, I judged that the

result with acceleration data alone is more accurate according to the degree of matching with

well-log data. I therefore used this result for predicting reservoir parameters and obtained

meaningful results. This study represents an attempt to bring FWI technology into practical

use for reservoir characterization.
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Chapter 7

Conclusions

7.1 Summary

Full waveform inversion (FWI) techniques are powerful and promise to provide high-resolution

estimates of subsurface properties. However, FWI is still viewed more as an imaging tool

than a reservoir characterization tool. Although an increasing number of studies demonstrate

the use of multiparameter elastic FWI for reservoir characterization, such characterization

remains in the elastic domain and does not involve quantitative interpretation of reservoir

or rock physics properties. This thesis fully explores the combination of FWI and rock

physics, intending to realize the potential of FWI in quantitative prediction and monitoring

of reservoir properties. In Chapter 2 and Chapter 3, I introduced the forward and inverse

problems of FWI and rock physics respectively. Most of the rock physics models mentioned

here were tested in subsequent chapters. At the same time, the inversion methods discussed

in these two chapters allow me to implement a classic reservoir characterization workow,

where seismic inversion is geared towards the determination of elastic properties, followed

by rock physics inversion that transforms these elastic properties into reservoir properties.

Estimating rock properties directly from seismic data is gaining popularity in AVO stud-

ies, but this mode of inversion is not yet examined in FWI studies. In Chapter 4, I proposed
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a novel FWI approach that allows directly extracting rock and uid properties from seismic

data. I achieved this by re-parameterizing the inversion using a rock physics model. Several

advantages of this approach were illustrated: 1) it allows examination of any rock physics

property that has a well-de�ned relationship with elastic parameters; 2) it shares the same

numerical structure as the conventional EFWI, allowing various existing inversion strategies

to be integrated; 3) it leads to more stable solutions in comparison to those produced through

sequential inversion. I also pointed out several challenges associated with this approach: 1)

parameter crosstalk is generally an issue for recovering rock physics properties; 2) uid sat-

uration su�ers from very low sensitivity when it is updated simultaneously with porosity

and lithology parameters; 3) subject to the framework of local optimization, this approach

cannot take full advantage of the prior information on parameter distributions like Bayesian

rock physics inversion (Chapter 3). Therefore, the di�erence between the direct and indirect

approaches remains methodological, whereas a crucial issue is to develop the direct inversion

by combining prior information. In Appendix C, I considered a favorable case where two of

the rock physics variables are highly correlated, I then demonstrated that by constraining

their relationship in inversion via a regularization term, the inversion convergence can be

improved. However, it is worth exploring the regularization strategies for describing more

general parameter distribution characteristics.

Based on the novel approach described in Chapter 4, I formulated a time-lapse FWI

framework to predict the time evolution of CO2 saturation from seismic data (Chapter

5). Practical issues associated with �eld data applications, such as acquisition limitations,

construction of the initial model, noise, and uncertainty in the rock physics model, are taken

into account in the simulation. The results demonstrate the robustness of the proposed

method for reconstructing both static rock properties (e.g., porosity and mineral volumes)

and dynamic reservoir properties such as CO2 saturation. To deal with the cases where

pressure variations during CO2 sequestration are relatively large, in Appendix D I proposed

a joint rock physics model combing Gassmann’s equation with the modi�ed Macbeth relation
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to account for both the uid e�ect and the pressure e�ect. I then modi�ed the time-lapse FWI

strategy discussed in Chapter 5 to allow simultaneous prediction of CO2 saturation and pore

pressure. The e�ectiveness of this approach is validated on a synthetic dataset. Potentially

the proposed methodology could be extended to depleted hydrocarbon reservoirs as well as

enhanced oil recovery and carbon capture, utilization, and storage (CCUS) applications.

In Chapter 6, I applied a sequential inversion scheme combining elastic FWI (Chapter 2)

and Bayesian rock physics inversion (Chapter 3) to a VSP dataset acquired with accelerom-

eters and DAS �ber at the CMC Newell County Facility. The goal is to build a baseline

model of porosity and lithology parameters to support later monitoring of CO2 storage. To

cope with near-surface complications, I used an e�ective source approach that allows simul-

taneous updating of wave�eld at depth and elastic models. To include DAS data in FWI, I

used a modeling strategy that can simulate DAS data that is directly comparable to the �eld

data. To capture the bimodality of rock properties, I used a Gaussian mixture approach to

predict the posterior probability distribution of rock physics variables conditioned on FWI

results. While the inversion results can accurately reproduce either type of data, the elastic

models inverted from the accelerator data outperform the other two in matching well logs

and identifying the target reservoir. I attribute this result to the insigni�cant advantage of

DAS data, in this case, over accelerometer data, which also su�ers from single-component

measurements and lower signal-to-noise ratios. The porosity and lithology models predicted

from the accelerometer elastic models are reasonably accurate at the well location and are

geologically meaningful in spatial distribution.
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7.2 Future work

For future work, I think it is especially meaningful to explore the following four areas:

(1) Field data application

In August 2022, a VSP survey was shot at the CMC Newell County Facility as a follow-

up to the 2018 survey, after years of CO2 injection at the site (Innanen et al., 2022). Based

on the work presented in Chapter 6, the FWI and rock physics methods discussed in this

thesis can be applied to the 2022 monitor survey, to predict the spatial distribution of CO2

saturation and pore pressure. Another potential application target is the 2022 rapid-repeat

time-lapse VSP experiment, conducted also at the Newell County Facility (Cai et al., 2022).

We have already veri�ed that the transient changes in CO2 can be detected by FWI, and

the next step is to carry out rock physics analysis.

(2) Scale issues in rock physics transform

Scale issues have always been at the heart of rock physics research. To interpret seismic

data for rock physics properties, an important question is whether the rock physics models

established in the laboratory or well can be used at the seismic scale. Logs and cores give a

resolution of less than 0.3 m, while seismic resolution is often no better than 15 m (Dewar

and Pickford, 2001). This can also be expressed in terms of the frequency ranges used:

laboratory frequencies are around 106 Hz, logging frequencies are around 104 Hz, whereas

the frequencies of in-situ seismic data are less than 100 Hz (Mavko et al., 2020). The rock

physics transforms are generally considered to be scale-dependent. However, Dvorkin and

Wollner (2017) illustrate that these transforms can be approximately scale-independent, and

that a rock-physics model established at the borehole approximately holds at the seismic

scale. They further point out that the real question in the subject of scale is: What are the

averaged (smeared) rock physics properties and conditions that the seismically derived elastic

properties point to? To the best of my knowledge, the scale issue has not been resolved until

now and it raises a lot of debate. In Chapter 6, I constructed a rock physics model based on
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arithmetically upscaled well logs and used it to interpret the elastic parameters derived from

FWI. However, whether this averaging method is optimal, for example, compared to the

Backus average, and what kind of \e�ective property" each average method leads to. I plan

to conduct further research and understanding on the scale issue, to guide the integration of

di�erent data.

(3) Integrated time-lapse feasibility study

A feasibility study is of crucial importance for time-lapse seismic monitoring because

the extraction of useful information is possible only if the signals are detectable and the

noise is insigni�cant (Lumley, 2001). An integrated feasibility study generally includes three

important elements: reservoir simulation, rock physics, and seismic modeling. Reservoir

simulation is used to understand how uids ow within a reservoir given a geologic model,

and the simulation provides time-dependent pressure and uid saturation of the reservoir.

Rock physics is used to produce the elastic model corresponding to the reservoir model; then

seismic modeling is used to simulate the seismic response. Macquet et al. (2019) reports an

integrated feasibility study for the CMC Newell County facility. However, due to limited

knowledge of rock properties before injection, reservoir simulation results are subject to

uncertainty and must be updated as new measurements become available. The porosity and

lithology parameter models I developed in Chapter 6 can be used to update the baseline

model and thus improve the feasibility analysis for this project.

(4) Uncertainty quanti�cation

Reservoir characterization usually requires integrating di�erent types of data. The un-

certainty associated with this process comes from several sources: measurement errors in

seismic and well-log data, data processing, approximate wave propagation model, and the

rock physics transformation from elastic properties to reservoir properties. One fundamental

reason for quantifying uncertainty is to report error bars along with interpretation results.

A more practical reason is for risk analysis and optimal decision-making (Bosch et al., 2010).
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For an inverse problem, when quantifying uncertainty a user seeks to determine the pos-

terior probability distribution of model variables conditioned on the measured data. The

Bayesian rock physics inversions discussed in Chapter 3 and Chapter 6 do not account for

the uncertainty in the estimation of elastic properties (i.e., uncertainty in FWI). Due to the

high dimensionality of the model space paired with the computational costs of the forward

problem, stochastic methods such as Monte Carlo are generally infeasible for FWI, causing

the development of uncertainty quanti�cation in FWI lagged considerably behind. Most

proposed approaches in this area are based on low-rank estimates of the posterior covariance

matrix, for example, the inverse Hessian. New approaches are also emerging (Gebraad et al.,

2020; Keating and Innanen, 2021). Comparing the pros and cons of current methods and

exploring the scheme of quantifying more general uncertainty in FWI are what I would like

to work on in the future.
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Appendix A

The VRH model partial derivatives

Let X denote any of the three rock physics properties, �, C, and Sw, and let the prime 0

denote the partial derivative with respect to X. Substituting equations 4.10 and 4.11 into

equation 4.12, I calculate the partial derivatives of P- and S-wave velocities with respect to

X:
@VP

@X
=

1
4�2VP

��
K 0V +K 0R +

4
3
�0V

�
��

�
KV +KR +

4
3
�V

�
�0
�
; (A.1)

@VS

@X
=

1
4�2VS

(�0V�� �V�0): (A.2)

When X is porosity,

K 0V = �KcC �Kq(1� C) +KwSw +Kh(1� Sw);

K 0R = K2
R

�
C
Kc

+
1� C
Kq

�
Sw
Kw
�

1� Sw
Kh

�
;

�0V = ��cC � �q(1� C);

�0 = �f � �m:

(A.3)

184



When X is clay content,

K 0V = (1� �)(Kc �Kq);

K 0R = (1� �)K2
R

�
1
Kq
�

1
Kc

�
;

�0V = (1� �)(�c � �q);

�0 = (1� �)(�c � �q):

(A.4)

When X is water saturation,

K 0V = �(Kw �Kh);

K 0R = �K2
R

�
1
Kh
�

1
Kw

�
;

�0V = 0;

�0 = �(�w � �h):

(A.5)

The partial derivatives of density with respect to �, C, and Sw are the same as in equation

4.7.

185



Appendix B

The KT model partial derivatives

The partial derivatives of P- and S-wave velocities with respect to any rock physics property

X can be written as

@VP

@X
=

1
2�2VP

��
K 0sat +

4
3
�0sat

�
��

�
Ksat +

4
3
�sat

�
�0
�
; (B.1)

@VS

@X
=

1
2�2VS

(�0sat�� �sat�0); (B.2)

where as in Appendix A the prime 0 denotes the relevant partial derivative operation. From

equation 4.13,

Ksat =
P
Q
; �sat =

S
T
; (B.3)

so

K 0sat =
P 0Q� PQ0

Q2 ; �0sat =
S 0T � ST 0

T 2 ; (B.4)
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where

P = 4Km�m + 3KmKf + 4�mKf�� 4Km�m�;

Q = 4�m + 3Kf � 3Kf�+ 3Km�;

S = �m(9Km + 8�m)(1� �);

T = 9Km + 8�m + 6(Km + 2�m)�:

(B.5)

When X is porosity,

P 0 = 4�mKf � 4Km�m;

Q0 = �3Kf + 3Km;

S 0 = ��m(9Km + 8�m);

T 0 = 6(Km + 2�m);

�0 = �f � �m:

(B.6)

When X is clay content,

P 0 = 4(1� �)(K 0m�m +Km�0m) + 3KfK 0m + 4Kf��0m;

Q0 = 4�0m + 3�K 0m;

S 0 = (1� �)[�0m(9Km + 8�m) + �m(9K 0m + 8�0m)];

T 0 = 9K 0m + 8�0m + 6�(K 0m + 2�0m);

�0 = (1� �)(�c � �q);

(B.7)

where

K 0m =
1
2

"

Kc �Kq �
�

1
Kc
�

1
Kq

���
C
Kc

+
1� C
Kq

�2
#

;

�0m =
1
2

"

�c � �q �
�

1
�c
�

1
�q

���
C
�c

+
1� C
�q

�2
#

:

(B.8)
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When X is water saturation,

P 0 = (3Km + 4�m�)(Kw �Kh);

Q0 = 3(1� �)(Kw �Kh);

S 0 = 0;

T 0 = 0;

�0 = �(�w � �h):

(B.9)

The partial derivatives of density with respect to �, C, and Sw are the same as in equation

4.7.
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Appendix C

Rock physics parameterized FWI

with regularization

Because the rock physics FWI approach shares the same numerical structure as the con-

ventional EFWI, it allows various existing inversion strategies, such as regularization, to be

integrated conveniently. Here I consider the regularization scheme, discussed in Chapter 2,

that encourages explicit relationships between di�erent physical parameters. I assume that

porosity � and clay content C in the target area are highly correlated, and their relation-

ship, C = f(�), can be obtained by regression of well-log data. I then include this prior

information via a model term Em in the objective function E:

E(m) = Ed(m) + Em(m);

= Ed(m) + 
X

x

(C � f(�))2:
(C.1)

I test this approach on a selected part of the elastic Marmousi2 model, in which rock

physics properties are assigned to each cell. In Figure C.1a and C.1e, the "true" porosity

and clay content models are plotted. A gas sand trap, at a depth of 0.25 km and positioned

at 0.8 km laterally, is distinguished by a higher porosity of 0.26 and a lower clay content of
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0.1. The initial models in Figure C.1b and C.1f are smoothed versions of the true models.

Without model constraint, we observe an insu�cient update for both � and C (Figure C.1c

and C.1g), especially in the deeper part of the C model. By constraining the relationship

between updated � and C, the two properties are better resolved, with a similar resolution,

capturing the relevant reservoir structures (Figure C.1d and C.1h). In Figure C.2, projections

of these models in the �� C domain are demonstrated.

Figure C.1: (a,e) True models and (b,f) initial models of porosity and clay content. (c,g)
Inverted models without constraint. (d,h) Inverted models with constraint.

Figure C.2: �-C crossplots of the (a) initial model, (b) inverted model without constraint,
and (c) inverted model with constraint. The gray line denotes the �-C relationship used as
model constraint.
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Appendix D

Towards simultaneous prediction of

CO2 saturation and pore pressure

In the previous simulation, the pressure di�erence between the baseline survey and the

monitor survey is relatively small, therefore I assume that the pressure’s e�ect on seismic

changes is negligible. For some �elds or segments within a �eld, both uid and pressure

changes have approximately the same degree of impact on the seismic data (Landr� et al.,

2003). To deal with this situation, the rock physics model and time-lapse FWI strategy

I proposed must be adjusted to account for the pressure e�ect. With the uid e�ect at

seismic frequency being well described by Gassmann’s equation, the main challenge lies in

the description of pressure within the rock physics model.

I should �rst clarify the di�erent types of geopressure. Pore pressure (Pp) is the pressure

of uids in the pore space of the rock. When pore pressure is hydrostatic, we have

Pp = �wgz; (D.1)

where z is the depth, g is the acceleration of gravity, and �w is the density of water. When

pore pressure exceeds the hydrostatic pressure, an overpressure situation occurs. The con�n-

191



ing or overburden pressure Pc results from the weight of overlying sediments and is generally

obtained by integrating the density log:

Pc = g
Z z

0
�(z0)dz0; (D.2)

where � is the bulk density of the rock. Based on Terazaghi’s (1965) principle, the e�ective

pressure Pe is de�ned as the di�erence between overburden pressure and pore pressure:

Pe = Pc � Pp: (D.3)

Figure D.1: Example of di�erent pressures with depth.

In Figure D.1, I demonstrate the typical trends of these three pressures with depth, as well

as possible overpressure anomalies due to CO2 injection. Pore pressure and its development

over time is a critical parameter for storage safety and it is also the main limiting factor for

large-scale storage of CO2 (Ringrose, 2020). However, since the e�ective pressure is more
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relevant to a�ecting the elastic properties of the rock, seismic pore pressure prediction is

generally achieved by an accurate characterization of e�ective pressure on the assumption

that overburden pressure is known. Similarly, although my inversion target is pore pressure,

the key to this research is the modeling of e�ective pressure.

D.1 Considerations for the rock physics model

An important criterion for me to choose a pressure model is whether it can be integrated

into the entire modeling process based on Gassmann’s equation, because only in this way

can I also consider the inuence of other important parameters (such as porosity, lithology,

and uid) on rock elastic properties. Therefore, while there are many empirical formulas

describing the relationship between velocity and e�ective pressure in the literature (Han,

1987; Eberhart-Phillips et al., 1989; Landr�, 2001; Jones, 1995; Sayers, 2006), these are

outside the scope of my study.

In equations D.4-D.6, Gassmann’s equation and density equation are given with under-

lined dependencies to the pressures and CO2 saturation:

Ksat(Sco2 ; Pp; Pe) = Kdry(Pe) +
[1�Kdry(Pe)=Km]2

�=Kf (Sco2 ; Pp) + (1� �)=Km �Kdry(Pe)=K2
m
; (D.4)

�sat(Pe) = �dry(Pe); (D.5)

�sat(Sco2 ; Pp) = (1� �)�m + ��f (Sco2 ; Pp); (D.6)

where the subscripts m; f; dry; sat indicate solid matrix, uid phase, dry rock, and saturated

rock, respectively. Based on the principle that e�ective pressure and pore pressure are

interchangeable at a given overburden pressure, the e�ect of pressure on the elastic properties

of uid-saturated rock is due to its inuence on the bulk modulus and density of uid

(Kf and �f ) and the elastic moduli of dry rock (Kdry and �dry). The former can be well

described by the empirical formula proposed by Batzle and Wang (1992), while the latter
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requires more thought. An intuitive choice is a dry-rock theoretical model which includes

pressure in its expression, such as the granular media models that are based on the Hertz-

Mindlin contact theory (Chapter 3). However, in a Hertz-Mindlin model, the dry-rock elastic

modulus is proportional to the cube root of e�ective pressure, Kdry / 3
p
Pe, which violates

the exponential relationship illustrated by many laboratory studies. Given this, I focus on

the modi�ed MacBeth’s relation proposed by Grana (2016b).

MacBeth (2004) proposed an analogous equation to link dry-rock bulk modulus to e�ec-

tive pressure using an exponential relation:

Kdry(Pe) =
K1

1 + AKe
� Pe
PK

; (D.7)

where K1, AK , and PK are empirical parameters: K1 represents the asymptotic value as

e�ective pressure increases, whereas AK and PK are related to the curvature. Grana (2016b)

illustrates that K1 and AK are not independent if the dry-rock modulus K0 at a given

e�ective pressure P0 is known, and modi�ed equation D.7 to include dependence on porosity

� and clay content Vclay:

Kdry(Pe) =
K1

1 + K1 �K0
K0

e�
Pe� � P0
PK

; (D.8)

K1 = �1(�+ aVclay) + �2; (D.9)

where a, �1, and �2 are empirical parameters that must be �tted using lab measurements.

Datasets from literature or nearby �elds could be used to integrate the available core samples,

as long as the observed pressure e�ect on elastic properties has the same behavior. Similar

results have been obtained for the shear modulus:

�dry(Pe) =
�1

1 + �1 ��0
�0

e�
Pe � P0
P�

; (D.10)

�1 = �3(�+ aVclay) + �4; (D.11)
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where �0 is the dry-rock shear modulus at e�ective pressure P0; �3 and �4 are empirical

parameters.

The modi�ed MacBeth’s equation focus on the e�ect of pressure on elastic properties

and lack mechanisms to account for the impact of rock properties, such as porosity and

lithology. By contrast, the Hertz-Mindlin based models, although have a pressure term in

their expressions, are classically used to predict static rock properties rather than pressure

changes. To combine the advantages of both, we can use the modi�ed MacBeth’s equation

as the dry-rock model for time-lapse study, but with the initial/baseline moduli, K0 and �0,

computed by a Hertz-Mindlin model.

I take three core samples from a published dataset of Han (1987) to illustrate how to

calibrate the rock physics model in practical applications. My goal is to calibrate the model

so that it can accurately predict velocity as a function of porosity, clay content, and e�ective

pressure.

I assume that the initial or baseline pressure is 10 MPa and that the data at other

pressures correspond to monitor surveys. I �rst examine the Hertz-Mindlin model. This

means that once we calibrate the model at an initial pressure, the model automatically

predicts the value at future pressures. Figure D.2 shows that the Hertz-Mindlin model does

not correctly approximate the nonlinear behavior of velocity due to pressure changes. On

the other hand, the modi�ed Macbeth’s relation predicts the data accurately (Figure D.3).

Indeed, the main advantages of this model are the exponential trend and the inclusion of

empirical parameters that can be calibrated to match the observations.

D.2 Time-lapse FWI strategy

Once the rock physics model is built and calibrated, I modify the previous time-lapse FWI

framework to include one degree of freedom for pressure variations. Still, I use baseline

data (dobs b) to estimate the static rock properties, such as porosity (�) and clay content

(C); I then use these baseline models as prior knowledge (�xed values) to estimate dynamic
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Figure D.2: Calibration of rock physics model using Han’s dataset (subset of 3 samples).
Hertz-Mindlin model is combined with Gassmann’s equations to predict saturated-rock ve-
locity as a function of e�ective pressure including porosity and mineralogy e�ects. The model
is calibrated at pressure 10 MPa, then automatically predicts the data at 5,20,30,40 MPa.

Figure D.3: Macbeth’s relation combined with Gassmann’s equations to predict saturated-
rock velocity as a function of e�ective pressure including porosity and mineralogy e�ects.
Hertz-Mindlin predictions at pressure 10 MPa are used as input in Macbeth’s model.
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reservoir properties, such as CO2 saturation (Sc) and pore pressure (Pp), from monitor data

(dobs m). The objective functions for this problem are expressed as

Eb =
dobs b(�t; Ct)� dsyn b(�;C)

2 ; (D.12)

and

Em =
dobs m(�t; Ct; Sct; Ppt)� dsyn m(�b; Cb; Sc; Pp)

2 : (D.13)

Figure D.4: True baseline, monitor, and time-lapse models of CO2 saturation and pore
pressure. The black line indicates the location of the injection well.

D.3 Numerical example

I apply the method to a synthetic model as shown in Figure D.4. The initial CO2 saturation

is 0 everywhere and the initial pore pressure is hydrostatic. The two models then change

locally due to the injection of CO2 at 500 m depth and 500 m position. In this simulation, I

neglect the uncertainty associated with the baseline model reconstruction, namely, I assume
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the porosity and clay models are accurately predicted. The details of the pressure model are

illustrated in Figure D.1, where I consider a clear pressure build-up due to CO2 injection.

Figure D.5: Theoretical curves of the proposed rock physics model: P-wave velocity, S-wave
velocity, and density versus (a) CO2 saturation and (b) pore pressure.

In Figure D.5, I compute the theoretical curves of velocities and density as a function of

CO2 saturation and pore pressure based on the rock physics model. The results are consistent

with existing studies: if CO2 saturation increases, the P-wave velocity and density decrease,

whereas the S-wave velocity slightly increases; both P- and S-wave velocities decrease as

pore pressure increases, whereas the pressure e�ect on density is negligible. I point out

that there are two reasons leading to the signi�cant velocity changes in this test: 1) The

rock physics model I choose corresponds to weakly consolidated rocks; 2) the depth range I

set corresponds to low-pressure values, as compared to many studies where the reservoir is

located at a deeper location.
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Figure D.6: Baseline, monitor, and time-lapse models of P- and S-wave velocity plus density.

Figure D.7: Baseline, monitor, and di�erential seismograms (horizontal and vertical dis-
placements) computed for the true model.
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Figure D.8: Recovered monitor model of CO2 saturation and pore pressure.

In Figure D.6, I plot the velocity and density models corresponding to the rock property

model. The time-lapse elastic changes are consistent with the analysis in Figure D.5. Con-

sequently, we observe clear time-lapse events in the noise-free synthetic data (Figure D.7).

The recovered monitor model of CO2 saturation and pore pressure are plotted in Figure D.8,

which shows a good agreement with the true models. The parameter crosstalk is weak. I

attribute this to the fact that the two properties have very di�erent sensitivities with respect

to the P- and S-wave velocities (Figure D.5). In Figure D.9, the convergence properties

of the inversion are summarized. We observe the convergence characteristics of a reliable

inversion.
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Figure D.9: Convergence properties. (a-c) Frequencies, objective functions, and model errors
(after updating) within a frequency band, respectively.

D.4 Conclusions

The estimation of CO2 saturation and pore pressure from time-lapse seismic data requires

a physical model relating the variations in reservoir properties to the changes in seismic

attributes. I proposed a rock physics workow combing the modi�ed Macbeth’s relation
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and Gassmann’s equation to predict elastic properties as a function of porosity, mineralogy,

saturation, and pressure. I validated this workow using a published dataset. In particu-

lar, I demonstrated the advantages of the modi�ed Macbeth’s model in predicting pressure

changes. Furthermore, I proposed a full waveform inversion (FWI) algorithm for quantitative

prediction of CO2 saturation and pore pressure from time-lapse seismic data. I illustrated

the potential of the approach using a synthetic time-lapse dataset. Examination of complex

geological models and uncertainties associated with the rock physics model, the observed

data, and the baseline inversion result are important steps in moving this research forward.
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