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Abstract 

Semantic segmentation has shown a significant success for achieving comprehensive scene 

understanding in real-time perception and urban modeling. Over the recent years, there have been 

significant advancements in semantic segmentation for LiDAR point clouds, largely the adopting 

of deep learning techniques. There are the related works of 3D semantic segmentation, including 

neural network models to process converted voxels, points, and graphs. However, point-based 

methods are not taken into account local structure feature, resulting in a lack of fine-grained 

features and limited generalization. Additionally, these models do not take full advantage of the 

high-level geometric correlations among local neighbors, resulting in low semantic segmentation 

accuracy. The use of voxel-based methods for balancing precision and computational efficiency is 

a useful technique. Still, voxel-based representation of point clouds is inefficient and tends to 

ignore fine details.  Little research has investigated using graph-based methods for LiDAR point 

cloud semantic segmentation. Our work demonstrates the feasibility of using graph representation 

for highly accurate semantic segmentation in a point cloud. Other problems in the existing methods 

are high computational and memory requirements. Self-supervised learning on large unlabeled 

datasets is one way to reduce the number of manual annotations needed. In this thesis, we explore 

that leverage the combination self-supervised contrastive learning and graph-based method to 

overcome the semantic segmentation challenges of large-scale point clouds. An experimental 

qualitative and quantitative analysis of our method shows that the proposed approach can beat 

previous approaches on S3DIS and SemanticKITTI datasets for the task of LiDAR point cloud 

semantic segmentation. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Several deep learning methods have shown success in point cloud processing, such as object 

detection, instance segmentation, and semantic segmentation. The availability of large-scale point 

cloud datasets provides the development of deep learning models for countless applications in 

computer graphics and vision. With the rapid advancements of 3D LiDAR (Light Detection and 

Ranging) sensors and acquisition techniques, point clouds have become widely available, 

prompting research interests in 3D scene understanding. LiDAR sensors capture more precise 

depth measurements and are more robust against various lighting conditions compared to visual 

cameras.  

The semantic segmentation of 3D point clouds is crucial for enhancing scene understanding in 

intelligent systems, including robotics [1], [2], [3], [4] autonomous navigation in the context of 

automatic driving [5], [6], [7], [8], [9], [10], and interaction tasks within real-world environments. 

The semantic segmentation of a point cloud involves labeling each point with a semantic label, 

such as person, tree, road, vehicle, ocean, or building. During segmentation, similar points are 

grouped into homogeneous regions that represent specific structures or objects in a point cloud 

scene. However, achieving 3D semantic segmentation through the semantic annotation of points 

presents significant challenges because of that the data structure of the 3D point cloud is irregular, 

continuous, unstructured, and unordered. To deal with these problems, there are related works of 

3D semantic segmentation, including neural network models to process converted voxels, points, 

and graphs. Although many of these have been successfully tackled using deep learning 

frameworks, there still exist limitations.  
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On the other hand, supervised deep learning approaches have been demonstrated to learn semantic 

information from LiDAR point clouds by assigning a semantic label to each point to represent to 

what semantic class it belongs. Even though these approaches demonstrate excellent performance 

in scene understanding, they are often expensive. Therefore, it is of great interest to Self-

Supervised Learning (SSL) methods, which can reduce the number of annotated samples. 

As a result, the primary aim of this thesis is to design a deep learning framework tailored for 

extracting 3D information from large scale and irregular point clouds and achieve better results in 

terms of both accuracy and efficiency compared to the current state-of-the-art 3D deep models. 

Then, to reduce the dependence on data annotation, we include self-supervised contrastive learning 

channels for LiDAR point cloud semantic segmentation. 

 

1.2 Motivations 

During the last few decades, convolutional neural networks (CNNs) have rapidly developed due 

to their ability to discriminate features and to generalize [11]. It is commonly understood that these 

models work best with structured data, such as the 2D pixel arrays [12]. Point clouds present a 

significant challenge to traditional 2D models due to their irregular and unstructured data formats. 

The previous attempts at using deep learning for large 3D data attempted to replicate successful 

CNN architectures used in image segmentation. Specifically, point clouds have the following main 

properties that make it difficult to learn meaningful features, as visualized in Figure 1:  

1. Irregularity: Point cloud data exhibit irregularity, indicating that points are not uniformly 

sampled across different regions of an object or scene. This results in some regions having 

densely populated points while others have sparser points, as illustrated in Figure 1a. 
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Although irregularity can be mitigated to some extent through subsampling techniques, 

complete elimination is not achievable. 

2. Unstructured: Point clouds, unlike structured data, such as images, lack a specific 

structure. Each point in point clouds is scanned independently, and distance from 

neighboring points is not always fixed, as seen in Figure 1b. 

3. Unordered:  A point clouds is an unordered set of vectors, as seen from a data structure 

point of view, unlike pixel array in images, as displayed in Figure 1c. It means that there 

will be no change to the actual scene represented by the point cloud when the order of the 

points is changed. 

4. Sparsity: LiDAR point clouds are often sparse, meaning gaps or missing points in the 

data may exist. Handling sparse data while maintaining accurate segmentation is a 

challenge. 

 

 

Figure 1: The challenges related to 3D point cloud processing. 

 

To deal with these challenges, several studies based on different representations of point clouds 

have been applied by using deep learning methods. 
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View-based 3D models can leverage designed 2D deep architectures and datasets. However, when 

converting 3D point clouds to 2D space, some geometrically related spatial information can be 

lost. 

Point clouds are divided into regular grids and the 3D point cloud into cubes to describe the LiDAR 

point clouds in 3D space using voxel-based methods [13], [14]. However, these methods may 

cause gaps or missing points in the data.  Also, computation costs increase with increasing input 

data size or resolution, limiting the model's performance in dense or large point clouds. 

Voxel grids and images are Euclidean-structured data that are suitable for using traditional 2D 

models to extract distinctive spatial features, including edges and key points [15]. However, it is 

not possible to accurately maintain the original geospatial information in 3D space during point 

cloud projection or voxelization. For example, depth information along Z axes is lost when 

converting point clouds from 3D scenes into (x, y) 2D images. Despite point clouds preserving the 

original 3D geospatial information, conventional 2D models cannot apply to them due to their 

unstructured and irregular data. Therefore, Qi et al. proposed the first point cloud-based deep 

model (PointNet) [16], directly using the point clouds as input. Many deep learning models have 

been developed based on PointNet to extract the geospatial structure features of a point cloud, 

including PointNet++ [17] and PointCNN [18]. These approaches contribute to advancing the 

application of deep learning in tasks related to extracting 3D geospatial information with robust 

and efficient performances. However, the lack of high-level geometric correlations of local 

neighbors in these models limits their semantic segmentation accuracy and leads to the complexity 

of per-point labeling. 

In graph-based methods, each graph node represents a point, while the edges represent the 

relationship between neighbors [19], [20]. Graph-based models have an advantage in leveraging 
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geometric relationships among points and their neighbors. This advantage allows for extracting 

spatially local correlation features from the grouped edge relationships. 

Deep learning models have made significant progress by developing more robust and efficient 

deep learning models, data preprocessing techniques, and algorithms specifically tailored for 

semantic segmentation of large-scale LiDAR point clouds, as explained above. However, there are 

still various challenging problems, such as high computational and memory requirements to collect 

point annotations for semantic segmentation of large-scale LiDAR point cloud data, as follows. 

1. Labeling and Annotation: Annotating large-scale LiDAR point cloud data with precise 

labels for semantic segmentation is a time-consuming and labor-intensive task. Developing 

efficient labeling methods and tools is essential for creating high-quality training datasets. 

2. Data Size and Scalability: Large-scale LiDAR point cloud data can be massive, making it 

computationally expensive and memory-intensive to process and segment. Efficient 

techniques for handling such data while maintaining high accuracy are essential. 

These challenges emerge due to the prevalent use of supervised learning techniques. To deal with 

these problems, SSL with unlabeled point clouds has drawn much attention in various computer 

vision tasks. 

There are four main requirements for point-based semantic segmentation: 

1) Geometric variations should be considered when designing models. 

2) Due to the incomplete shape of most 3D objects, the deep models proposed should 

accurately predict semantic labels with missing information.  

3) Exploring local geometric correlations between the input and its neighbors can be 

challenging. The proposed models should learn such geometric information. 

https://www.sciencedirect.com/topics/engineering/computervision
https://www.sciencedirect.com/topics/engineering/computervision
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4) The model should leverage large amounts of unlabeled data. 

To meet these requirements, the best approach is to convert point clouds to graphs and use a self-

supervised contrastive learning method. Thus, this thesis mainly focuses on a graph representation 

of point cloud data and a self-supervised method for point cloud semantic segmentation when 

developing deep learning models in indoor and outdoor scenes. 

1.3 Contributions 

Our work focuses on converting point clouds to graph representations suitable for deep learning 

without destroying geometric information.  Specifically, we connect neighboring points in a point 

cloud to form an undirected graph. We use the underlying relationship between vertices and their 

neighborhood to learn meaningful features for segmentation. Graph-based methods have shown 

appreciable results [21], [22], [23] on point cloud learning algorithms. Graph neural networks 

process the constructed graphs. 

In this thesis, we investigate the possibility of employing Dynamic Graph CNN (DGCNN) [21] 

with self-attention for self-supervised semantic segmentation from LiDAR point clouds, taking 

into account global features and local features to enhance the feature learning process. 

In summary, we make the following key contributions to this work. 

1. We propose an improved approach using graph representation of LiDAR point cloud. 

2. To reduce the dependence on data annotation, we develop self-supervised contrastive 

learning channels for LiDAR point cloud semantic segmentation. Further improving 

the accuracy of our feature extraction network, we apply dual scales of point-level and 

graph-level contrastive learning strategies. 
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3. We utilize DGCNN to get the local shape of the point cloud as the feature extractor for 

the entire network. We add self-attention after EdgeConv to leverage global features 

to perform segmentation on LiDAR point clouds. 

1.4 Structure of the Thesis 

The purpose of this thesis is to examine the challenges and opportunities associated with deep 

learning and semantic segmentation of 3D point clouds in indoor and outdoor environments. This 

thesis is arranged as follows: 

 Chapter 2 provides an overview of both indoor and outdoor LiDAR datasets used for training 3D 

deep models for segmentation and detection tasks. In addition to, the knowledge of SSL and 

existing deep learning studies related to methods of point cloud segmentation are provided. 

Chapter 3 introduces methodology by briefly reviewing DGCNN, contrastive learning, and loss 

function to understand the proposed pipeline. 

Chapter 4 details a proposed graph architecture for per-point semantic segmentation in indoor and 

outdoor scenes to get the geometric attributes among local points to improve the segmentation 

results. In addition to evaluating the algorithm's accuracy and efficiency, several evaluation 

metrics for semantic segmentation are presented in order to compare it with existing state-of-the-

art methods. 

Chapter 5 introduces semantic segmentation results and discusses how to boost 3D semantic 

segmentation accuracy in indoor and outdoor scenes. 

Chapter 6 summarizes this research with a summary of contributions and details of future works. 
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CHAPTER 2:  BACKGROUND AND RELATED WORKS 

2.1 3D LiDAR Datasets 

Autonomous vehicles increasingly rely on LiDAR sensors. The LiDAR sensor uses lasers to scan 

its surroundings and then produces a point cloud.  Datasets of 3D LiDAR are divided into three 

groups based on the data acquisition method and the main application, as listed in Table 1. Figure 

3 also shows five datasets that are commonly used for point cloud semantic segmentation. 

Table 1: 3D LiDAR Datasets with Comparison [24]. 

Sensor 
Data 

Type 
Anno. Dataset Frames Points Classes Year Organization 

3
D

 L
iD

A
R

 

Static Point 

Oakland 17 1.6M 44 2009 CMU 

Paris-rue-Madame 2 20M 17 2014 MINES ParisTech 

TerraMobilita/Iqmulus 10 12M 15 2015 Univ. of Paris-Est 

S3DIS  5 215M 12 2016 Stanford Univ. 

TUM City Campus4 631 41M 8 2016 TUM 

Semantic3D 30 4009M 8 2017 ETH Zurich 

Paris-lille-3D  3 143M 50 2018 MINES ParisTech 

Sequential 

Point 

Sydney Urban  631 / 26 2013 ACFR 

SemanticKITTI 43552 4549M 28 2019 Univ. of Bonn 

SemanticPOSS 2988 216M 14 2020 Peking Univ. 

A2D2 41277 1238M 38 2020 Audi 

PandaSet  16000 1844M 37 2020 Hesai & Scale 

muScenes-lidarseg 40000 1400M 32 2020 nuTonomy 

KITTI-360 100K 18B 19 2020 Univ. of Tübingen 

3D-

Box 

KITT 14999 1799M 8 2012 KIT 

H3D  27K / 8 2019 HRI 

nuScenes 40K 2780M 23 2019 nuTonomy 

Lyft L5 46K 9936M 9 2019 Lyft Inc. 

Arcovers 22K 2354M 15 2019 Argo AI 

Waymo 230K 40710M 4 2020 Waymo LLC 

A*3D 39K 5093M 7 2020 I2R 

DENSE 13.5K / 4 2020 Mercedes-Benz 

Synthetic Point 
GTA-V  / / / 2018 UC, Berkeley 

SynthCity 75000 367.9M 9 2019 UCL 
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1) Static Datasets: Data collected from static viewpoints by using terrestrial laser scanners or 

mobile laser scanning (MLS) systems that mainly capture static scene objects for applications 

including street view, 3D modeling, and virtual realities. The primary application scenarios for 

these datasets involve urban planning, robotics, and augmented reality. Semantic3D [25] is the 

largest and most popular outdoor dataset in the static dataset, while the Stanford Large-Scale 3D 

Indoor Spaces Dataset (S3DIS) [26] is a large dataset of indoor scenes. 

2) Sequential Datasets: Data is collected as sequences of frames   by using vehicular platforms for 

autonomous driving tasks. Autonomous driving systems are leveraged to capture the sequences of 

LiDAR frames with a moving viewpoint on the street. These datasets usually contain more frames 

and sparse points compared to static datasets. Sequential datasets with both point-wise and instance 

labels have significantly contributed to advancing research in the field of 3D semantic 

segmentation [27] and panoptic segmentation [28]. SemanticKITTI [29] is the largest and most 

popular sequential dataset, while SemanticPOSS [30] is a new dataset describing a dynamic urban 

scene with rich cars, people, and riders. 

3) Synthetic Datasets: Synthetic datasets are collected in a virtual world by simulating any data 

acquisition systems. Generating real datasets is prohibitively expensive, leading to the creation of 

synthetic datasets through computer simulation. These synthetic datasets can be large-scale at a 

more affordable cost. However, the challenge with using synthetic datasets arises from the 

significant gap between synthetic and real scenes. Synthetic scenes are realistic, but they lack 

accuracy in detail. Data are collected in a virtual world by simulating any of the above data 

acquisition systems. The generation of real datasets is extremely expensive due to the labor 

intensiveness of data annotation. Synthetic datasets are built through computer simulation, which 

can be large scale and have fine but cheap annotations. The large gap between synthetic and real 
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scenes causes the problem of using such datasets. Although synthetic scenes can generally be very 

realistic, they lack the necessary details of real objects. Figure 2 shows five datasets commonly 

used for point cloud semantic segmentation. 

 

Figure 2: Examples of ShapeNet (a), S3DIS (b), ScanNet (c), Semantic3D (d), and SemanticKITTI (e). 

 

2.2 Self-Supervised Learning 

Self-supervised learning is a type of unsupervised learning in which no supervision is given at all, 

where the labels are generated from the data itself [31], [32], [33]. Not only does it solve the 

problem of the error-prone and expensive labeling process, but it also relieves the domain 

adaptation (DA) issues [34] with improved model generalization ability. The primary objective of 

SSL is to pre-train an encoder on an unlabeled, large-scale point cloud dataset and then transfer 

the well-trained network to other datasets for various downstream tasks. A comprehensive SSL 

framework typically consists of the following essential modules. 
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• Data augmentation: The raw input is augmented by adding noise, translation, rotation, flipping, 

and flipping horizontally [35]. The large gap between synthetic and real scenes causes the problem 

of using such datasets. 

• Encoder: The encoder for point clouds typically uses a neural network architecture that captures 

the hierarchical representation of the input point cloud data.  

• Pretext task: In self-supervised learning for point clouds, pretext tasks are designed to extract the 

hidden self-supervision signal via the interactions between the encoder and data.  

• Knowledge transfer: The encoder is transferred with the knowledge gained during pretext task 

pretraining to downstream tasks.  

• Downstream task: Evaluation metrics and experimentation with different downstream tasks such 

as object classification, semantic segmentation, and object detection are often necessary to assess 

the effectiveness of the SSL framework.  

Existing self-supervised learning methods on point clouds can be classified as reconstruction-

based, contrast-based, alignment-based, and motion-based methods, as shown in Figure 3. 
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Figure 3: Taxonomy of SSL for point cloud data based on pretext tasks. 

 

2.2.1 Reconstruction-based Methods 

A reconstruction-based method learns point cloud representations by reconstructing corrupted 

point clouds and restoring them as much as possible. Global features, as well as the mappings 

between local and global areas, are learned during the reconstruction process. The fundamental 

concept behind reconstruction involves masking a portion or portions of the point cloud and 

subsequently recovering the missing parts through an encoder-decoder architecture. 

Reconstruction-based self-supervised learning methods can be classified into two major 

subgroups: mask-based methods and corruption-based methods.  A summary of the methods under 

these two sub-categories and other methods is shown in Table 2.  
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Table 2: Summary of reconstruction-based point cloud SSL methods 

 

Year Methods      Sub-categories Contributions 

2021 Point-BERT [38] Mask-based Methods Reconstructing missing point tokens with BERT-style 

transformer. 

2022 Point-MAE [39] Mask-based Methods Shifting masked tokens to decoder to avoid early leakage. 

2022 MaskSurf [38] Mask-based Methods Estimating surfel position and per-surfel orientation 

simultaneously. 

2022 Voxel-MAE [41] Mask-based Methods Performing additional binary voxel classification for 

complicated semantics awareness. 

2022 CP-Net [42] Corruption-based 

Methods 

Disentangling point clouds into contour and content ingredients. 

2021 Self-correction [41] Corruption-based 

Methods 

Recovering shape-disorganized point regions. 

2022 Point-DAE [35] Corruption-based 

Methods 

Exploring three corruption families such as density/masking, 

noise, and affine transformation. 

2022 SeRP [42] Corruption-based 

Methods 

Using perturbed point clouds as input. 

2019 3D jigsaw [43] Other Methods Rearranging randomly disorganized point clouds. 

2021 DefRec [44] Other Methods Performing deformation on 2D grids to fit arbitrary 3D object 

surface. 

2022 UAE [45] Other Methods Gaining both advanced semantic information and basic 

geometric structure. 

 

Similar to Mask Autoencoder (MAE)[36], the encoder plays a crucial role in capturing the local 

geometric structure and regional relations during the restoration process. Point-BERT [38] is 

derived from BERT (Bidirectional Encoder Representations from Transformers)[37]. Point-BERT 

focuses on point clouds and incorporates a point-specific tokenizer based on discrete Variational 

Autoencoder (dVAE), which enables the model to map patches in point clouds to discrete tokens, 

facilitating the capture of meaningful local geometric patterns. However, Point-BERT has 

limitations, including pretraining dependency, over-reliance on contrastive learning, dependency 
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on data augmentation, task specificity, and computational requirements. To deal with some of 

these issues, Point-MAE[39], as proposed by Pang et al. in 2022, tackles the challenge of 

processing point clouds with a high ratio (60%-80%) of randomly masked points. Point-MAE 

includes a standard transformer as its backbone with an asymmetric encoder-decoder architecture 

to process random masking points. By shifting the mask tokens from the encoder to a lightweight 

decoder, Point-MAE saves computational resources and prevents early leakage of location 

information. Zhang et al. propose Mask Surfel Prediction (MaskSurf) [40] to use surfels to 

represent the local geometry of point patches, allowing the model to acquire more information 

regarding the local structure of point clouds in the self-supervised learning process. Voxel-MAE 

[41] combines the advantages of voxelization and mask-based pretraining. In addition to 

reconstructing the occupancy value for masked voxels, a supplementary binary voxel classification 

task distinguishes whether a voxel contains points clouds enhances the model's abilities to learn 

complex semantics. 

To deal with leakage of location information and uneven information density, the SeRP [42] 

algorithm uses encoder-decoder architecture to reconstruct the original point cloud based on a 

perturbation technique. 3D jigsaw [43] was proposed as a 3D version of the jigsaw pretext to 

restore the original position of each patch from disorderly distribution. 

2.2.2 Contrast-based Methods 

Contrastive learning is a popular self-supervised learning method that includes view-based 

methods, transformer-based methods, and SimSiam-based methods. Instead of depending on the 

specifics of individual samples, contrastive learning focuses on overall semantic learning through 

discriminative pretext tasks that capture context similarity and difference of point clouds. In 

addition to making contrastive learning models easier to optimize, this characteristic expands the 
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views of input point clouds by various data augmentation techniques. This section discusses the 

contributions and limitations of contrast-based methods. A brief summary of these methods is 

shown in Table 3.          

Table 3: Summary of contrast-based point cloud SSL methods. 

Year Methods      Sub-categories Contributions 

2020 PointContrast [51] View-based Methods Obtaining dense features at point-level on complex scenes 

by point contrast 

2020 P4Contrast [52] View-based Methods Utilizing synergies between two modalities for better 

feature extraction 

2021 Contrastive Scene Contexts [53] View-based Methods Introducing ShapeContext local descriptor and achieving 

data-efficiency 

2021 SegContrast [54] View-based Methods Structural information and a more descriptive feature 

representation 

2021 DepthConstrast [52] View-based Methods Applying Instance Discrimination on depth maps 

2022 AFSRL [55] View-based Methods Imposing data-level augmentation and feature enhancement 

simultaneously 

2022 ContrastMPCT [56] Transformer-based 

Methods 

Unnecessary to pre-train a “tokenizer” and makes it easier 

to train. 

2022 POS-BERT [57] Transformer-based 

Methods 

Maximizing the class token consistency among point cloud 

pairs. 

2022 Distillation with Contrast [58] Transformer-based 

Methods 

Utilizing knowledge distillation and contrastive learning. 

2023 RECON [58] Transformer-based 

Methods 

Unifying masked generative modeling and contrastive 

modeling. 

2021 SimSiam [59] SimSiam-based 

Methods 

Using only positive sample pairs and shared weights. 

2022 ConClu [60] SimSiam-based 

Methods 

Reducing the reliance on negative samples in contrastive 

learning  

2022 4dcontrast [63] SimSiam-based 

Methods 

Incorporating 4D sequence information and constraints into 

3D representation learning 

 

PointContrast[52], a popular contrastive-learning method, allows performing point-level 

comparisons in two transformed point clouds with different views to capture dense information at 
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the point level. However, there are still several areas for improvement. A major limitation of this 

method is that it ignores spatial contextual information such as orientation, distance, and relative 

position, which play a significant role in many understanding tasks. As a second limitation, 

PointContrast can only be scaled up to 1,024 points for pretraining, so providing more points will 

not result in better performance. Moreover, PointContrast requires resource-intensive inputs, such 

as the absolute position of the camera, which is difficult to obtain. Zhang et al. introduced 

DepthContrast[52] as a solution to alleviate the resource-intensive challenges associated with 

PointContrast, by employing only a single-view depth map. To address the data-efficiency 

problem in 3D scene understanding, Hou et al. presented Contrastive Scene Contexts (CSC) [54] 

to fuse spatial information into pretraining objects by introducing ShapeContext local descriptor 

[51] partitioning and performing contrastive learning in each region. The method outperforms 

when compared to PointContrast in semantic segmentation. To leverage the invariances of 3D 

features, Li and Heizmann [53] proposed a contrastive learning framework with jointly pre-

training 3D encoders and depth graph encoders, unifying modality-invariance between RGB and 

depth images, and format-invariance between point clouds and voxels. With aiming to learn the 

intrinsic features of point clouds at various sampling patterns and densities, Chen et al. 

[54]proposed a multilevel self-supervised learning method for geometric sampling invariant 

representation.  

SegContrast [54] is an approach developed by Nunes et al. that employs self-supervised segment 

discrimination to address the challenge of learning 3D point cloud feature representations. A two-

stage process is used in this method, with the first stage being self-supervised and free of labeled 

data. The model takes the feature representation obtained from the self-supervised learning in the 

first stage and refines it through fine-tuning in the second stage. An overview of SegContrast's 
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framework is shown in Figure 4. SegContrast contributes a contrastive representation learning 

method for 3D LiDAR point clouds that can learn structural information and a more descriptive 

feature representation. By using contrastive learning, it can discriminate between similar and 

dissimilar structures based on the LiDAR data segments.  The evaluations show better results in 

describing fine-grained structures. 

 

 

Figure 4: A popular example of contrastive learning methods, SegContrast [54]. 

 

Transformer-based models in 3D point cloud pre-training have attracted increasing attention in 

recent years because of applying on unordered points without the need for any explicit positional 

encoding. These models efficiently capture long-range dependencies between elements by 

utilizing self-attention mechanisms. In Mask point cloud transformer (MPCT), input points are 

randomly masked and then recovered using a Transformer.  ContrastMPCT [56] is proposed to 

optimize the reconstruction performance of MPCT, computing the contrast loss between the point 
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cloud reconstructed by MPCT and the original point cloud. In contrast to Point-BERT, the 

contrastive learning design of ContrastMPCT makes it unnecessary to pre-train a “tokenizer” and 

makes it easier to train. 

SimSiam-based contrastive learning approaches [59] only require positive sample pairs during 

training and utilize shared weights to separately encode different augmented versions of the same 

input.  With positive sample pairs and shared weights, SimSiam-based methods reduce training 

data requirements and improve overall performance. 

2.2.3. Alignment-based Methods 

Based on the property of point cloud representation generally being invariant to transformations, 

alignment-based methods, including spatiotemporal consistency, multi-view methods, and multi-

modality learning, have been proposed to learn the implicit embedding of point clouds. Table 4 

provides a brief summary of the methods in this category. 

Table 4: Summary of alignment-based point cloud SSL methods. 

 

Year Methods      Sub-categories Contributions 

2021 STRL [61] Spatiotemporal 

consistency 

Dual-branch network to predict representation of another 

temporally correlated input 

2022 Future prediction [62] Spatiotemporal 

consistency 

Forecasting future point cloud scenes with lightweight model 

2020 Info3D [63] Multi-view methods Maximizing mutual information between objects and their 

transformations. 

2021 Cross-view [64] Multi-view methods Jointly learning both 3D point cloud and 2D image embedding 

concurrently. 

2022 I2P-MAE [65] Multi-view methods Combining 2D guided masking strategy and the 2D-semantic 

reconstruction strategy for the 2D feature map and 2D visual 

features 

2022 Multi-view rendering [66] Multi-view methods Encouraging 2D-3D global feature distributions to be similar. 

2022 PointCLIP [67] Multi-modality learning Fusing few-shot 3D knowledge into 2D models. 



 19 

2022 PointCLIP V2 [68] Multi-modality learning A 4-step projection module and an optimized prompt selection 

strategy. 

2023 CLIP2 [69] Multi-modality learning Constructing well-aligned instance-based text-image-point 

proxies from complex scenarios 

2023 ULIP [70] Multi-modality learning Aligning a 3D embedding to pre-aligned image-text feature 

space to obtain unified representation 

 
 

A spatial-temporal approach emphasizes long-range spatial and temporal invariance for capturing 

dynamic sequence intrinsic characteristics. Huang et al. introduced the spatio-temporal 

representation learning (STRL) [61] framework, augmented by random spatial transformation to 

extract spatial and temporal representations from 3D shapes. By considering training and inference 

times, Mersch et al. [62] present an auto-encoder architecture that integrates spatial and temporal 

information using 3D convolutions. Firstly, past point clouds are projected into 2D range images 

and then concatenated as a spatial-temporal tensor. In this approach, skip connections and 

horizontal circular padding are employed during convolutions to capture spatial and temporal 

scene information simultaneously. 

Multi-view approaches enhance the robustness and generalization of learned representations by 

integrating information from multiple viewpoints. For example, the Info3D [63] method proposed 

by Sanghi in 2020 focuses on acquiring rotation-insensitive representations by maximizing mutual 

information between 3D objects and their local chunks for patch-level consistency. Jing et al. [64] 

introduced a multi-view SSL method leveraging cross-modality and cross-view correspondences 

to learn features from 2D images and 3D point clouds jointly. Zhang et al. proposed I2P-MAE [65] 

to learn 3D representations from a 2D pre-trained model with two image-to-point strategies: the 

2D guided masking strategy and the 2D-semantic reconstruction strategy for the 2D feature map 

and 2D visual features. Tran et al. [66] presented a dual-branch model that jointly employs local 

pixel-point-level correspondence loss and global image-point cloud-level loss. 
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The multi-modal approaches aim to take advantage of the correlations between different 

modalities, such as images, texts, and point clouds. They also leverage complementary information 

from multiple sources, robustness to missing or noisy data in any one modality, and improved 

generalization to new environments. PointCLIP [67], inspired by CLIP [71], which learns 

transferable visual features with natural language supervision, is a notable example of a multi-

modal approach. This method effectively combines few-shot 3D knowledge into 2D models, 

showcasing its ability to fuse information across different modalities for enhanced performance 

and understanding. PointCLIP faces challenges related to sparse visual projection and textual 

prompt complexity. To deal with these limitations, PointCLIP V2 [68], is proposed by Zhu et al., 

incorporates a 4-step projection module and an optimized prompt selection strategy. ULIP [70] is 

a method that learns unified representations of three modalities (2D images, text, and 3D point 

clouds).  ULIP employs a two-step approach due to the lack of accessible triplet data. In the initial 

step, the model undergoes pretraining using a large dataset consisting of image-text pairs. This 

pretraining phase is crucial for ULIP to capture meaningful and transferable visual as well as 

textual features, establishing a common vision-language feature space. To contribute to cross-

modal downstream tasks in the second step, the model aligns a small set of automatically 

synthesized point cloud triplets into the pre-aligned visual-language feature space. 

2.2.4. Flow-based Methods 

Flow-based methods aim to dynamically extract the intrinsic motion characteristics from spatial 

variations of the relative motion of each 3D point in a temporal sequence of point clouds. Scene 

flow estimation is an important topic in autonomous driving. A brief summary on the methods 

under this category is shown in Table 5.  
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Table 5: Summary of flow-based point cloud SSL methods. 

 

Year Methods      Sub-categories Contributions 

2019 FlowNet3d [72] Scene flow estimation Learning deep hierarchical features of point clouds and flow 

embeddings that represent point motions 

2020 Just go with the flow [73] Scene flow estimation Optimizing two SSL losses based on nearest neighbors and cycle 

consistency 

2020 Pointpwc-net [74] Scene flow estimation Discretizing cost volume onto 3D point clouds in a coarse-to-fine 

fashion 

2021 Self-Point- Flow [75] Scene flow estimation Converting pseudo label matching problem as optimal transport task 

2021 Slim [76] Scene flow estimation Classifying points as ‘moving’ and ‘stationary’ based on self-

supervised training. 

2021 Flowstep3d [77] Scene flow estimation The first recurrent architecture for non-rigid scene flow. 

2021 3D-OGFlow[78] Scene flow estimation Merging two networks across all layers to conduct flow estimation and 

learn the occlusions simultaneously. 

2022 RigidFlow [79] Scene flow estimation Decomposing the point cloud into supervoxels and predicting the rigid 

flow for each supervoxel. 

 

The FlowNet3D [72] network is one of the earliest deep neural networks that estimate motion or 

flow between different 3D point clouds. Mittal et al. developed a self-supervised training approach 

for scene flow estimation by optimizing two loss components based on the nearest neighbors and 

cycle consistency. Nearest neighbor loss measures the mean Euclidean distance between each 

estimated point and its nearest neighbor, while cycle consistency loss is required to prevent 

network degeneration and enhance the robustness of the model. However, FlowNet3D has 

limitations, including a degeneration solution and overlooking other discriminative measures such 

as colors and surface normal. To address these issues, Self-Point- Flow [75] employs more than 

3D point coordinates, surface normal, and color in one-to-one matching. The GC network is trained 

to segment multiple objects simultaneously in a single forward pass using learned dynamic motion 

patterns as supervision signals, incorporating object shape invariance and rigid consistency into 

the loss function to ensure high-quality segmentation. 



 22 

2.3 Methods of 3D Point Clouds Semantic Segmentation 

Many deep learning methods for 3D point clouds semantic segmentation have been proposed in 

the literature, offering diverse approaches to address the challenges of 3D semantic segmentation. 

These methods can be categorized into three main groups based on the representation of the data: 

point-based methods, voxel-based methods, and graph-based methods, as shown in Figure 5. 

 

Figure 5: Point cloud representations. 

2.3.1 Point-Based Methods 

Point-based methods, in the context of 3D deep learning, capture representations at the point-wise 

level. Point- based semantic segmentation methods are summarized in Table 6.  
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Table 6: Summary of point-based semantic segmentation methods with deep learning. 

Year Methods      Sub-categories Contributions 

2017a PointNet [16] Point-based Method Pioneering processing points directly. 

2017b PointNet++ [17] Point-based Method Proposing hierarchical learning framework. 

2019 KPConv [80] Point-based Method Novel point convolution. 

2018 Point CNN [18] Point-based Method Coarsens the input points with farthest point sampling and an 𝜒-

transformation from local points by MLP 

2019 PointConv [81] Point-based Method Novel point convolution considering point density. 

2020 RandLA-Net [27] Point-based Method LFAM with large receptive field and keeping geometric details. 

2021 Point Transformer [82] Point-based Method Combining MLP-based relative position encoding and vector attention. 

2022 Point Transformer v2 

[83] 

Point-based Method Combining novel position encoding and grid Pooling. 

2022 Repsurf [84] Point-based Method Local triangular orientation + local umbrella orientation. 

2022 PointNeXt [85] Point-based Method An inverted residual bottleneck design and employs separable MLPs. 

 

PointNet [16] is a pioneering work that exploits points-wise features. By leveraging the point 

permutation invariance, it adopts a symmetric function such as max-pooling to collect these 

features into a global feature representation.  

However, adapting only symmetric functions like max-pooling in PointNet fails to capture local 

features, thereby limiting its ability to recognize fine-grained patterns and generalize to complex 

scenes. Therefore, Qi et al. developed PointNet++ [17] that adopts a multi-stage hierarchical 

learning approach that involves sampling points using farthest point sampling (FPS), grouping 

local regions using k nearest neighbor (KNN), and utilizing a simplified PointNet to capture 

features at various scales. Researchers such as Pang et al.[39], Yu et al.[38], and Zhang et al.[40] 

explored the effectiveness of combining FPS and KNN in their respective research contexts.  

PointNeXt [85] is introduced by Qian et al. in 2022, takes a different approach by revisiting the 

classical PointNet++ architecture. The focus of this is on conducting a systematic study of model 

training and scaling strategies to improve the overall performance of PointNet++.  
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2.3.2 Voxel-Based Methods 

Voxel-based methods convert 3D LiDAR data into voxels for structured data representation to 

predict each voxel with one semantic label. These methods are summarized in Table 7. 

 
Table 7: Summary of voxel-based semantic segmentation methods with deep learning 

Year Methods      Sub-categories Contributions 

2016 3D FCN [87] Voxel-based Method Efficiently handling large data. 

2017 SEGCloud [88] Voxel-based Method Combining 3D FCNN with fine-grained predictions. 

2017 3D CNN-DQN-RNN [89] Voxel-based Method Integrating three vision tasks into one frame. 

2018 FCPN [87] Voxel-based Method First fully convolutional network on raw point sets. 

2018 Scancomplete [90] Voxel-based Method Combing scene completion and semantic labeling. 

2019 Vv-net [91] Voxel-based Method Using a variational auto-encoder (VAE) taking radial basis 

function (RBF). 

2019 VoxelNet [92] Voxel-based Method Voxel partitioning and VFE layers. 

2022 Voxel-MAE [41] Voxel-based Method Adopted a range-aware random masking strategy and designed 

a binary voxel classification task. 

2022 Voxel- MAE [41] Voxel-based Method A Transformer-based 3D object detection backbone. 

2022 Maeli [93] Voxel-based Method Distinguishing between empty and non-empty voxels with a 

novel masking strategy. 

2022 Gd- MAE [94] Voxel-based Method Using a generative decoder. 

 

3D Convolutional Neural Network (3D CNN) is a common architecture used to process uniform 

voxels for point cloud semantic segmentation [95], [96]. However, voxel-based methods based on 

3D CNN have these limitations, including finding a proper voxel size that balances precision and 

computational efficiency. Therefore, several proposed methods such as 3D FCN [87], SEG-Cloud 

[93], 3DCNN-DQN-RNN [94], FCPN [95], Scancomplete [96], and Vv-net [97] have a focus on 

addressing these limitations by maintaining acceptable accuracy.  

For example, VoxelNet [98] is a generic point-specific network that utilizes voxel partitioning and 

Voxel Feature Encoding (VFE) layers to capture meaningful features within point clouds. 

Innovation with VFE Layers plays a crucial role in encoding interactions between points within a 
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voxel and capturing descriptive appearance information. Despite its innovative features, VoxelNet 

faces challenges such as the expensive computation of voxel construction and constraining the 

model from capturing high-resolution or fine-grained representations. 

Also, to address the problems associated with processing large-scale point clouds directly, voxel-

based SSL methods have emerged as effective solutions. There have been two VoxelMAE 

methods proposed to improve 3D point cloud perception [41], [46]. The first method is adopted 

by Min et al. [41] using a range-aware random masking strategy and a binary voxel classification 

task. Another study [46] trains a Transformer-based 3D backbone to recover obscured voxels and 

distinguish between free and occluded voxels. Masked Autoencoder for LiDAR point clouds 

(MAELi), introduced by Krispel et al. [100], detects empty voxels and employs a new masking 

strategy targeting LiDAR's inherent spherical projection. However, MAE [36] approach still has 

challenges associated with handling irregular shapes in the context of large-scale 3D point cloud 

exploration. 

2.3.3 Graph-Based Methods  

Graph-based methods construct a graph from 3D LiDAR data. A graph is a data structure 

comprising nodes and edges, where nodes represent objects, and edges represent relationships 

between these objects. Two essential operations in graph-based methods for processing 3D LiDAR 

data are graph construction and graph convolution.  Using graph networks to model local point 

clouds leverages the connectivity between points, emphasizing the importance of neighbors in 

capturing the geometry properties of individual points within the local context. This approach 

contributes to a more comprehensive representation and understanding of the spatial characteristics 

of the point cloud.  
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Super-point graph (SPG) [97] builds super graphs on global super-points before applying neural 

networks to learn per semantics.  Furthermore, this network adopts PointNet to encode vertex 

features and graph convolutions to extract contextual information. 

DGCNN [21], proposed by Wang et al., is built upon the PointNet architecture. Instead of directly 

learning representations for points, DGCNN focuses on capturing interactions between points and 

their edges in both Euclidean and semantic space. The utilization of DGCNN as a foundational 

architecture in SSL models highlights its effectiveness in understanding and processing point cloud 

data [98], [43], [99]. 

An end-to-end graph attention convolution network (GACNet) [100] captures the structured 

features of point clouds for fine-grained segmentation. GraphCNNs [21], [100], [101], [102], have 

been used in several studies to handle unordered point sets with varying neighborhood sizes. 

Standard graph convolution employs shared weight functions for each pair of points to extract 

corresponding edge features. 

SPH3D-GCN [103] proposes a separable spherical convolutional kernel for graph neural networks, 

which consists of the spherical convolution learning depth-wise features and point-wise 

convolution learning point-wise features. 

Geometric Graph Convolution (TGCov) [104] extends the capabilities of PointNet++ by 

introducing a novel graph convolutional operation that integrates local point-wise features with 

local geometric connection features expressed by Gaussian weighted Taylor kernels. 

In the work by Feng et al., the authors focused on constructing a local graph on neighborhood 

points searched along multidirections and exploring local features using a local attention edge 

convolution (LAE-Conv) [105]. 
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In their paper, Geng et al. proposed a structural representation algorithm for local embedding 

superpoint graphs (LE-SPG) [106]. They developed a gated integration graph convolutional 

network (GIGCN) [107] for feature learning and semantic segmentation graphs. Graph-based point 

cloud semantic segmentation methods are summarized in Table 8.  

Table 8: Summary of graph-based semantic segmentation methods with deep learning. 

Year Methods      Sub-categories Contributions 

2017 GraphSAGE [107] Graph-based Method Inductive framework that leverages node feature information. 

2018 SPG [97] Graph-based Method Superpoint graph + parsing large-scale scene. 

2018 LS-GCN [108] Graph-based Method Local spectral graph + Novel graph convolution. 

2019 DeepGCN [109] Graph-based Method Adapting residual connections between layers. 

2019 DGCNN [21] Graph-based Method Novel graph convolution + updating graph. 

2019 HDGCN [110] Graph-based Method Depthwise graph Convolution + Pointwise Convolution. 

2019 TGNet [111] Graph-based Method Novel graph Convolution + multi-scale features exploration. 

2019 GACNet [106] Graph-based Method Combining novel position encoding and grid Pooling. 

2019 LAE-Conv [112] Graph-based Method A local graph based on the neighborhood points searched in 

multi-directions. 

2020 Orientation Estimation [98] Graph-based Method Considering the auxiliary task of predicting rotations. 

2020 SPH3D-GCN [110] Graph-based Method Novel graph convolution + pooling + uppooling. 

2022 Crosspoint [105] Graph-based Method A cross-modal contrastive learning approach. 

2023 AF-GCN [112] Graph-based Method Combining graph convolution and self-attention mechanisms. 

2023 3DGraphSeg [113] Graph-based Method Proposing a local embedding super-point graph to alleviate 

gradient vanishing or exploding. 
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CHAPTER 3: METHODOLOGY 

It is possible to reflect the geometry of a local point cloud rather than working on individual points 

like PointNet [16]. A graph could express such a local relationship. For example, Wang et al. 

proposed DGCNN [21] for encoding edge features between vertices, which has demonstrated 

effectiveness in 3D semantic segmentation. Therefore, using DGCNN as a backbone is a 

reasonable and appropriate choice for our specific study. 

Self-supervised representation learning method could reduce the amount of required labeled data 

by learning descriptive representations from unlabeled data. Therefore, in this thesis, we leverage 

unlabeled data with self-supervised learning in 3D semantic segmentation. Our method is based 

on contrastive learning that is one of the self-supervised learning methods.  

This chapter briefly reviews DGCNN and contrastive learning to understand the proposed pipeline. 

3.1 DGCNN  

DGCNN is an extension of the PointNet architecture, and it focuses on extracting semantic features 

from a point cloud by iteratively performing convolution on a dynamically updated neighborhood. 

Differently from graph CNNs, DGCNN utilizes EdgeConv (Edge Convolution) layers, which are 

dynamically updated after each layer of the network. EdgeConv focuses on addressing the same 

problems as Pointnet++ [17], which is unsuccessful on modelling the geometric relationships 

among points and capturing local features. However, this approach enhances PointNet's 

capabilities by constructing a local neighborhood graph and applying a convolution-like operation 

on the edge to connect the neighborhood pair of points. EdgeConv uses k Nearest neighbor 

algorithm to incorporate local neighborhood information instead of the farthest point sampling 

used in Pointnet++.  This process facilitates the extraction of local features from the point cloud, 

making it suitable for semantic segmentation tasks. 
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Consider a 𝐹-dimensional point cloud with 𝑛 points, denoted by X = {x1, . . ., x𝑛} ⊆ ℝ𝐹. In the 

simplest setting of 𝐹 = 3, each point contains 3D coordinates x𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). An architecture for 

deep neural networks operates on the output of the previous layer at every layer, so the dimension 

F represents the feature dimensionality at a given layer. 𝒢 = (𝒱, ℰ) represents the local structure 

of the point cloud, where 𝒱 = {1, . . ., 𝑛} and ℰ ⊆ 𝒱×𝒱 are the vertices and edges, respectively. 

Constructed 𝒢 as the 𝑘- NN graph in ℝ𝐹, containing directed edges of the form (𝑖, 𝑗𝑖1), . . ., (𝑖, 𝑗𝑖𝑘) 

such that points x𝑗𝑖1, . . . , x𝑗𝑖𝑘 are the closest to x𝑖. Edge features are defined as e𝑖𝑗 = ℎΘ (x𝑖, x𝑗), 

where ℎΘ: ℝ𝐹 ×ℝ𝐹 → ℝ𝐹′ is some parametric nonlinear function parameterized by the set of 

learnable parameters Θ, as visualized in Figure 6. 

 

 

Figure 6: Left: An example of computing an edge feature, e𝑖𝑗, from a point pair,x𝑖 and x𝑗.  Right: Visualization of 

the EdgeConv operation. 

 

The DGCNN architecture is specifically designed for semantic segmentation tasks on point clouds. 

The segmentation model of DGCNN, as depicted in Figure 7, involves a series of three EdgeConv 

layers and three fully connected layers, producing a k-class score for each point. A max pooling 

operation is performed as a symmetric edge function, which makes the model permutation 

invariant while capturing global features. A spatial transformation module is used to align the input 

point cloud by applying a 3x3 matrix expected to be orthogonal and estimated during the training 

process.  Each point is learned local geometric features using EdgeConv, which acts as MLP. The 
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goal of this study is to produce a semantic label for each point in a point cloud using DGCNN for 

semantic segmentation. 

 

Figure 7: The DGCNN components for semantic segmentation architecture. 

 

3.2 Self-Supervised Contrastive Learning 

In this thesis, we utilize a self-supervised technique referred to as contrastive learning that aims to 

produce features that are distinguishable between unique inputs. The objective function 

encourages the outputs of a model, given similar input data points such as positive samples, to be 

close together, while it encourages the outputs produced from negative samples to be too far apart. 

Data points are defined as similar or dissimilar depending on the objective task to be trained. The 

points are subsequently fed through a model that learns to discriminate using a contrastive loss. A 

visualization of a typical contrastive learning framework is shown in Figure 8. 

    

Figure 8: Visualization of a typical contrastive learning framework. 
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3.3 Loss Function 

The goal is to maximize the similarity of 𝐙𝑢 and 𝐙𝑣 while minimizing the similarity with all the 

other projected vectors in the minibatch of graphs. We used the normalized temperature-scaled 

cross-entropy loss (NT-Xent loss) function in contrastive learning SimCLR [114]. The NT-Xent 

loss function for a positive pair of examples 𝐙𝑢 and 𝐙𝑣 is calculated as follows:  

                                                                                                                              

                                                    (1)                                                        
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CHAPTER 4: THE PROPOSED METHOD AND EXPERIMENTS 

4.1 The Proposed Method 

In this paper, we propose a new self-supervised representation learning method for LiDAR data to 

reduce the dependence of deep learning networks on data annotation. Our goal is to build a dual-

scale contrastive learning network based on a mixture of graphs and points to enhance the accuracy 

of the feature extraction network.  

In order to adapt to the contrastive learning network, we designed two types of data augmentation 

modules, including data augmentation network and segment augmentation network. Data 

augmentation network relies on graph-based methods. We extract class-agnostic segments from 

the point cloud and propose a contrastive loss to be applied over the extracted segments in the 

segment augmentation network. Simultaneously, we project the graph-level features to the point 

level and make the contrastive learning with the features obtained through the original point cloud 

at the point level.  

We use the same backbone encoder, DGCNN, to extract representation vectors for the entire 

network. EdgeConv extracts features of the local shape of the point cloud while maintaining 

alignment invariance. The features are also rearranged using self-attention after EdgeConv to 

extract global features.  

The NT-Xent loss function is used to compute overall objective. We then cover downstream 

models that leverage this feature extractor for 3D semantic segmentation. The overview of the 

proposed method is shown in Figure 9. 
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Figure 9: The overview of the proposed method. 

 

4.1.1 Graph Construction  

In a self-supervised setting, the data augmentation provides positive pairs of point clouds as input 

to the following networks. The augmentation module generates graphs via sampling and 𝐾-nearest 

neighbor as the data augmentation, illustrated in Figure 10. In the first step, given a point cloud 𝑃, 

we downsample the input point set to a subset of the input. Secondly, we perform random point 

sampling to generate two subsets 𝑃𝑢, 𝑃𝑣 with a uniform scale.  Then, the 𝐾-nearest neighbor 

adjacency graphs 𝒢 𝑢, 𝒢 𝑣 of the sampled point clouds as the augmented pairs of the input point 

cloud 𝑃 are generated. Specifically, we search the spatial neighbors for each point in a point set 𝑃 

and then link them as a graph 𝒢 = (𝑉, 𝐸), where 𝑉 = 1, 2,…,𝑁 symbolizes  the set of vertices and 

𝐸 ⊆𝑉 × 𝑉 represents the set of edges. Each vertex 𝑖 in graph 𝒢 is associated with point 𝑝𝑖 in a point 

set 𝑃, which searches the 𝐾 nearest spatial neighbors and connects with them to generate the edges. 
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Figure 10: An illustration of graph construction. 

 

4.1.2 Data Augmentation Network 

Positive and negative samples are at the main of what makes comparison learning work. The data 

augmentation network enables a correspondence of representations by maximizing consistency 

between augmented graph pairs of the same point cloud via a contrastive loss in the latent space. 

We first obtained the graph level features by the feature extraction backbone, DGCNN encoder 𝑓 

(⋅; 𝜃). A neural network projection head 𝑔 (⋅) is provided to map representations to the space where 

contrastive loss is applied. By leveraging the nonlinear transformation 𝑔 (⋅), more information can 

be formed and maintained in the representation to prevent information loss induced by the 

contrastive loss. Besides, a nonlinear projection is better than a linear projection. Therefore, in this 

framework, we adopt MLP to obtain the projected vectors 𝐙𝑢 and 𝐙𝑣. We compute the cosine 

similarity between 𝐙𝑢 and 𝐙𝑣 as follows: 

                                                                                                              (2) 

We compute the loss function 𝑙 for the 𝑛th augmented pair of examples as: 

 

                                                          (1) 
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where 𝜏 is the temperature parameter, 𝑁 is the minibatch size. Our graph level discrimination loss 

function ℒ𝐷𝐴 for a minibatch can be described as:  

                                                                                                (3) 

4.1.3 Segment Augmentation Network 

This is the approach taken by SegContrast [54], which demonstrated that a class-agnostic point 

cloud segmentation has been effective to segment the structures in the scene. Each step of self-

supervised segment extraction is explained in Figure 11.  

 

Figure 11: The overall architecture of the segment augmentation network. 

 

Firstly, the point cloud P is used to extract class-agnostic segments S from it. We compute the 

point-wise features 𝑓u by using DGCNN and determine the segment S with its point-wise feature 

using the point index of Su from Pu. After dropout, global max pooling is applied over each 

segment, then Su is projected to a latent space by a non-linear transformation 𝑔 (⋅), 

H= 𝑔 (Su).                                                                                                                                                                                                                                 (4)                                                                                                                                

The same NT-Xent loss function is used to train the segment feature extraction network at the 

point level. We constructed a consistent contrastive strategy learning for both graph-level and 

point-level scales. We assume that for two different views of the same object, the features obtained 

by a robust feature extraction network should be the same.  
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The proposed method is then trained by minimizing NT-Xent loss to maximize the consistency of 

𝐙𝑢 and 𝐇. Then, same the loss function is calculated as, 

                                                           (5) 

where 𝜏 is the temperature parameter. The final loss function ℒS𝐴 is computed across all positive 

pairs in the minibatch, 

                                                                                                     (6) 

4.1.4 Overall Objective 

Finally, we calculate the resultant loss function during training as the combination of ℒ𝐷𝐴 and ℒS𝐴, 

where ℒ𝐷𝐴 represents the graph level feature consistency and ℒS𝐴 represents segment contrastive 

loss at the point level. 

   ℒ= ℒ𝐷𝐴+ ℒS𝐴        

                                                                                                                                                                                                                (7) 

4.2 Experiments 

For verification of our method's effectiveness, we use an indoor dataset that is commonly used to 

benchmark 3D contrastive learning [21], [24], [59], [ 63] together with an extra outdoor lidar 

dataset, including the S3DIS [26] and the SemanticKITTI [29], respectively.  

4.2.1 Datasets 

The S3DIS dataset has become a common data benchmark and evaluation metric for point cloud 

semantic segmentation. This dataset consists of three different buildings, which contain five large-

scale indoor areas, including offices, conference rooms, and open spaces, covering a total of 6020 

m2. Each point in the point cloud is indicated by a nine-dimension vector of XYZ, RGB, and 
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normalized location. Each point is also labeled with one of 13 semantic elements according to their 

attributes, such as indoor items and furniture. 

SemanticKITTI contains roughly 25,000 laser scans of outdoor driving environments. It has 20 

different classes with 3D semantic and instance labels. The scans are of a full rotation around the 

vehicle, going out to a range of about 20 meters, with the spatial resolution decreasing with 

distance. We use sequences 1-7 and 9-10 as our training set and sequence 8 as our validation set. 

4.2.2 Evaluation Metrics 

On S3DIS and SemanticKITTI data sets, three metrics, including per-class intersection over union 

(IoU) [115] and mean IoU (mIoU) of each class [115]. These metrics quantitatively evaluate the 

performance of our method. IoU evaluates per-class segmentation result, while mIoU is the 

intersection of the predicted and ground truth labels over their union, averaged segmentation result 

considering all semantic classes.                                                           

                                                                                                              (8) 

 

                                                                                                                                     (9) 

where 𝐶 is an 𝑁×𝑁 confusion matrix of the segmentation result represents.  

 

4.2.3 Pre-training Dataset  

We pretrained our method by using 10% of the ScannetV2 dataset. In the ScannetV2 dataset, there 

are a total of 1513 acquisition scenes and 21 categories, with 1201 scenes for training and 312 

scenes for testing. We select 100 scenes for the pretraining channel. 
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4.2.4 Implementation Details 

Our model is built using the PyTorch [40] package. We use PyTorch using the Python language 

on a 64-bit Ubuntu system equipped with three NVIDIA TITAN X GPUs for all deep learning 

tasks, including data loading, model building, and backpropagation during training. We use the 

S3DIS and SemanticKITTI for learning the self-supervised representation. By augmenting each 

point cloud into two relevant graphs defined in Section 4.1, we generate positive pairs of point 

clouds as the input. 

For the entire network, we used DGCNN as the feature extractor to reduce the parameter size and 

facilitate comparison with existing methods. In addition, the self-attention layer is added after the 

DGCNN to enhance the network's ability to get global information about the input scene. DGCNN 

and self-attention are combined to extract dual-scale features for the entire network. We employ a 

2-layer MLP as the projection heads. The Adam optimizer is also used with an initial learning rate 

of 0.001 and a weight decay of 1×10−4.  

To verify the effectiveness of our method, we compare against it three state-of-the-art baseline 

algorithms: PointContrast[58], SegContrast [54], and DepthContrast[52], using their official 

implementations for pretraining and data preprocessing. 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Semantic Segmentation on S3DIS 

S3DIS consists of six large-scale indoor areas from three different buildings for a total of 273 

million points annotated with 13 classes. For indoor scene segmentation, we train our model on 

the full S3DIS dataset to test the effectiveness of the network. This experiment shows how our 

segmentation architecture generalizes to real indoor scenes.  

 

Figure 12: Visual comparison of semantic segmentation on the S3DIS dataset. 

 

Figure 12 demonstrates the results of the semantic segmentation for three representative scenes, 

offering a visual representation of the impact of our proposed method. We colorize scenes from 

S3DIS with their semantic labels. Compared to other methods, our proposed method shows more 



 40 

accurate segmentation result for most areas. Our method generally shows the closest result to 

ground truth, especially for the boundaries of walls, windows, and objects. It is likely that these 

differences are of little practical significance in the real world, which further supports our method's 

superiority. 

Table 9: S3DIS semantic segmentation results (mIOU). 

 

Table 9 shows the segmentation results of four different methods per class and the average of all 

semantic classes to quantitatively assess the accuracy and quality of our segmentation model. Our 

method achieves the best mIoU with 70.22 % more than other competitive methods, e.g., 

PointContrast, SegContrast, and DepthContrast. 

Table 10: Performance of representative methods on semantic segmentation using S3DIS (Area 5). 

Method Type mloU 

Supervised (PointNet) Point-based 47.7 

Supervised (DGCNN) Graph-based 56.1 

Supervised (SPG) Graph-based 62.1 

OcCo  Alignment 49.5 

Point-MAE  Reconstruction 61.0 

3D jigsaw  Reconstruction 48.2 

MaskSurf  Reconstruction 61.6 

PointContrast  Contrast 70.9 

CSC Contrast 73.8 

DepthConstrast  Contrast 64.8 

SegContrast Contrast 63.7 

Multi-view rendering  Alignment 49.9 

Ours Contrast 71.4 

Method ceiling   floor  wall   beam column window door table chair sofa bookcase board clutter mIOU 

PointContrast 91.68 96.59 83.21 0 40.38 58.12 70.42 76.77 87.13 69.33 68.77 82 .34 58.45 67.94 

SegContrast 90.8 96.57 82.52 0 30.94 56.94 68.71 75.12 88.48 71.7 72.17 73.78 56.35 66.80 

DepthContrast 90.99 95.45 80.99 0 32.52 51.94 61.57 74.55 87.28 71.62 71.34 67.71 57.85 64.91 

Ours 91.81 96.44 84.11 0 40.14 58.64 81.53 77.63 89.82 83.74 76.03 84.5 59.45 70.22 
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Also, according to common research convention, Area-5 in the S3DIS data set is a test scene to 

better measure the generalization ability of our method. There are some differences observed in 

the objects present within Area 5 in contrast to those in other areas. Table 10 shows the quantitative 

evaluations of the experimental results. The proposed method achieves the best mIoU compared 

to other competitive self-supervised methods and supervised methods such as PointNet [16], SPG 

[51], and DGCNN [21], excluding CSC. 

5.2 Semantic Segmentation on SemanticKITTI 

We observe that our method is on the SemanticKITTI datasets.  Using the model pre-trained on 

ScanNet shows performance improvements on SemanticKITTI as well, even though the datasets 

are quite different. Our method, when applied to SemanticKITTI, however, falls short of all other 

algorithms. 
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Figure 13: Visual comparison of semantic segmentation on the SemanticKITTI dataset. 

 

Figure 13 shows a comparison of the semantic segmentation results of our method on the 

SemanticKITTI data set. Compared with ground truth, our self-supervised pretraining method 

produced more accurate segmentation results compared to other contrastive learning approaches. 

The segmentation results from our method contain more precise boundaries and finer details. 

Specifically, it achieved better performance at distinguishing the division between different 

structures, such as sidewalk and road, as shown by solid red circles. 
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Table 11: Per-class performance on SemanticKITTI using 0.1% of the annotated scans for fine-tuning. 

 

The quantitative evaluations of the experimental results are provided in Table 11. It is possible to 

see that our method performs better in the per-class IoU, outperforming previous approaches in 

most of the classes. This evaluation shows that our approach performs better compared to the other 

contrastive learning methods, being able to better describe the different structures in the point 

cloud. Specifically, as displayed in Table 11, our method achieves a superiority of +2.2 mIoU over 

the best result in other methods.  

Table 12: Performance on SemanticKITTI using different the annotated scans for fine-tuning. 

Method 0.1% 1% 10% 100% 

PointContrast 32.40 38.57 37.21 55.14 

SegContrast 33.70 42.67 42.59 46.88 

DepthContrast 35.71 47.06 53.48 56.34 

Ours 37.90 51.54 54.25 58.18 

 

Table 12 shows the results obtained by fine-tuning with different percentages of training data. Our 

method outperforms the other self-supervised approach. 

For both indoor and outdoor datasets, our proposed model consistently outperforms others for all 

ratios, showing that our SSL model can effectively leverage the unlabeled data to improve the 

embedding features and the segmentation performance. Due to its powerful structured feature 

Method  car road sidewalk building fence vegetation terrain parking pole traffic sign mloU 

PointContrast 82.61 74.32 52.08 60.12 21.29 83.13 68.20 9 30.09 35.6 32.40 

SegContrast  88.60 69.31 48.57 81.67 22.60 83.16 67.21 14.02 48.69 32.9 33.70 

DepthContrast  89.11 83.34 64.09 83.43 23.63 83.43 70.57 20.61 46.66 37.3 35.71 

Ours 92.20 85.34 66.09 87.70 25.43 85.00 72.57 22.61 48.67 40.4 37.90 
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learning capability, our method can learn to capture their discriminative features for semantic 

segmentation. 

5.3 Ablations and Analysis 

Table 13 presents the results of our ablation study, which investigates the contributions of our 

contrastive learning in the semantic segmentation model. By analyzing the results, we can verify 

the usefulness of each module in our proposed model. 

5.3.1 Pretraining Dataset 

The pre-training components were removed from the framework to verify its effectiveness, leaving 

only the dual-scale contrastive learning network structure.  Table 12 shows segmentation accuracy 

of 60%, indicating that the network is generally effective, however the overall network accuracy 

is low, which demonstrates the effectiveness of the pre-training.  

5.3.2 Impact of the Graph Representation   

To evaluate the effect of the graph representation method, we design our model as point-based 

data augmentation and use PointNet as a backbone.  We conduct experiment with this model on 

the S3DIS dataset and obtained 64.7% mIoU. When we compare it with the result of our proposed 

method, we see that graph representation and DGCNN increase the mIoU percentage.  

5.3.3 Self-attention Layer 

The widespread use of Transformers in computer vision has caused the attention mechanism to 

become more visible. Natural language processing and 2D image processing work often utilize 

attentional mechanisms for their powerful sequence modeling capabilities. However, to deal with 

the complexity and disorder of point cloud data, more Transformer-based point cloud processing 

networks have also been popular recently. The self-attention mechanism encodes the features of 

each point based on the position relationships between them. In our network, we employ the self-
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attention to complement the lack of global modeling of the scene by the DGCNN feature extractor.  

We remove self-attention layer for the corresponding ablation studies to confirm the efficacy of 

this module.  As illustrated in Table 13, the network lacking a self-attention layer shows a 

segmentation mIoU of 67.8%.  

5.3.4 Self-supervised Segment Extraction 

Our approach exploits the characteristics of outdoor LiDAR data to extract class-agnostic 

segments and applies the contrastive loss over these segments. Without self-supervised segment 

extraction, our method reaches an mIoU of 68.3%. The experiment suggests that our approach 

with class-agnostic segments can learn a more robust feature representation on downstream tasks. 

Table 13: Ablation Study on S3DIS. 

Method mIoU (%) 

Ours (No pre-training) 60.0 

Ours (No DGCNN + graph representation) 64.7 

Ours (No self-attention) 67.8 

Ours (self-supervised segment extraction) 68.3 

Ours (Completed) 70.22 

 

 

 

 

 

 

 

 

 



 46 

CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis, we present an innovative approach for learning deep representations of 3D point 

clouds via contrastive learning that leverages a self-supervised strategy for learning LiDAR point 

cloud semantic segmentation. Two contrastive loss functions are specially designed to improve 

capturing more discriminate embeddings. Our strategy is then evaluated on different datasets and 

compared with other state-of-the-art feature representation learning methods. 

Our methodology effectively brings together valuable geometric information from graph-based 

representations converted point clouds. Local geometric correlations between the input and its 

neighbors supports the importance of leveraging geometric cues in scene understanding tasks, 

resulting in more accurate segmentations. In addition, adding a self-attention layer after EdgeConv 

allows to leverage global geometric information, thereby enhancing the results of LiDAR point 

cloud segmentation.   

One of the contributions of this research is the development of a comprehensive framework that 

integrates a dual-scale contrastive learning process based on point-level and graph-level strategies. 

As a result, the overall performance of our contrastive framework enhances the accuracy of feature 

extraction. 

Another significant achievement of this work is to include segment augmentation network. 

Segment augmentation network includes to extract the segment-wise points and features. This 

approach allowed us to boost segmentation performance by discriminating the segmented 

structures on the point cloud.   
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Based on our results, our approach enhances 3D semantic segmentation tasks to a notable 

superiority over existing methods. Although the research has made significant contributions, there 

are also areas that need to be explored further. 

6.2 Future Directions and Research Limitations 

Effective and efficient deep learning architectures are significant in 3D semantic segmentation 

tasks. Although the proposed model has achieved several significant accuracy and efficiency 

improvements, the real-time segmentation and detection tasks have not been achieved. 

Computation is problem related to contrastive learning methods.  Our method can also be applied 

to other problems with appropriate transformations on the datasets to generalize better models with 

less computation. In future works, we intend to investigate these issues, such as 4D semantic 

segmentation. 
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