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Abstract 

This thesis proposes a method for tight integration of digital map and multi sensors including 

Dead Reckoning (DR) system and Precise Point Positioning (PPP). First, the digital map is 

tightly coupled with the DR system, including stereo Visual Odometer, Light Detection And 

Ranging (LiDAR) Odometer and reduced Inertial Measurement Unit (IMU), including two 

horizontal accelerometers and one vertical gyro. The algorithm starts with stereo Visual 

Odometry to estimate six Degree of Freedom (DoF) ego motion including rotation and 

translation parameters to register the point clouds from previous epoch to the current epoch. 

Afterwards, a Generalized Iterative Closest Point (GICP) algorithm is used to refine the stereo 

Visual Odometry motion estimation. Then, an Extended Kalman Filter (EKF) is used to integrate 

the forward velocity and azimuth obtained by Visual-LiDAR Odometer and reduced IMU 

outputs to provide the final navigation solution. This integrated navigation solution is the input to 

the fuzzy logic based Map Matching (MM) algorithm, which takes the imprecise and noisy 

inputs and gives the crisp outputs. The fuzzy logic MM goal is to identify the correct road link, 

and to determine the vehicle location on the selected road link. The proposed fuzzy logic MM 

consists of two distinct steps: 1) The Initial Map matching Process (IMP) and 2) The Subsequent 

Map matching Process (SMP). The proposed map matching algorithm improves integrated multi 

sensors (stereo Visual-LiDAR and reduced IMU) position accuracy by constraining the vehicle 

location on the road. The map matching provides close-loop controls for the Dead Reckoning 

(DR) drift errors by feeding back the map matched position and road link azimuth to the reduced 

IMU mechanization. This research proposes a new software system for tight integration of 

kinematic PPP and digital map as well. The PPP provides the navigation solution for MM and 

MM finds the correct road link and improves PPP performance by providing the map matched 
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position and link azimuth as feedbacks to the Kalman Filter (KF) of PPP.  In this research two 

datasets were used.  1) The datasets from KITTI (Karlsruhe Institute of Technology and Toyota 

technological Institute) to tightly couple digital map and integrated stereo Visual-LiDAR and 

reduced IMU, 2) The datasets collected by Positioning and Mobile Information System (PMIS) 

Group at University of Calgary to tightly couple digital map and integrated stereo Visual 

Odometry (VO) and reduced IMU and to tightly couple kinematic PPP and digital map. The 

results show that Visual Odometry (VO)-LiDAR is more accurate than Wheel Odometer, 

because it provides azimuth aiding to vertical gyro, resulting in a more reliable and accurate 

system. A low-cost system is developed by using two cameras plus reduced IMU. The cost of 

such a system will be reduced than using full tactical MEMS (Micro-Electro-Mechanical Sensor) 

based IMUs, because two cameras are cheaper than full tactical MEMS based IMUs. The results 

indicate that integrated stereo Visual-LiDAR Odometry and reduced IMU can achieve accuracy 

at the level of the state of the art. Moreover, tight integration of digital map and integrated stereo 

Visual-LiDAR Odometry and reduced IMU can achieve considerably better accuracy than 

existing methods. Moreover, tight integration of digital map/DR gives considerably higher 

correct link identification rate and lower Root Mean Square Error (RMSE) than a loose 

integration of digital map/DR. In addition, tight integration of digital map and kinematic PPP 

outperforms stand-alone PPP and reduces the horizontal RMSE and the convergence time of the 

float ambiguities. 
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Chapter One: INTRODUCTION  

The land vehicle localization and navigation systems have been a hot topic for research over the 

past decade not only for autonomous car but also for fleet management and Location-Based 

Services (LBS). Development of a robust and reliable localization system is a requirement of any 

Intelligent Transport System (ITS) as well as Autonomous Land Vehicles (ALV). An ALV is a 

vehicle, which does not need driver and can fulfill the human transportation capabilities of a 

traditional car. Recent progress in ALV shows drivers can be replaced by ALV in near future. 

While vehicle control and trajectory planning algorithms have already been demonstrated 

successfully, robust vehicle localization in urban canyons is still a challenging problem. This 

thesis presents a method to increase correct road link identification rate and lower vehicle 

position error during Global Positioning System (GPS) outages. Moreover, a method is proposed 

to reduce kinematic Precise Point Positioning (PPP) horizontal RMSE for the harsh 

environments in the urban areas.   

1.1 Autonomous Land Vehicle Components 

ALV has five different functional components (Durrant-whyte 2001): 

1. Mobility to provide the observable outcome of the whole system. 

2. Localization or position determination to provide vehicle position, velocity, acceleration 

and orientation.    

3. Navigation to provide the perception of the local environment and use of this in the 

motion control. 

4. Mission and task planning to provide the waypoints and trajectory for the system. 

5. Communication to provide a link between the vehicle and road infrastructures or other 

vehicles.  
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In this section, the five different functional components of Automatic Land Vehicle (ALV) are 

briefly explained. The ALV localization, which is the main focus of this PhD research, will be 

discussed in detail.  

1.1.1 Mobility 

Mobility is related to the vehicle design and motion control (Durrant-whyte 2001). In the design 

part, the focus is on determination of the dynamic arrangement of wheels, tracks and legs to 

achieve a particular motion. The mobility design is based on the environment requirements and 

the task specification (Durrant-whyte 2001).  The mobility motion control is related with the 

analysis of a particular kinematic arrangement and determining a control algorithm to obtain a 

required motion (Durrant-whyte 2001). Well-established techniques have been developed for 

designing vehicles with specific mobility characteristics for military purposes such as tanks and 

for civilian vehicle system in applications such as agriculture, mining, construction and robotic 

vehicles. 

1.1.2 Localization 

Localization is the determination of vehicle position, velocity and orientation with respect to the 

fixed coordinate systems. GPS is the main positioning system in ALVs, but it is inappropriate in 

stand-alone use due to failures in the harsh environments such as urban canyons. Therefore, it is 

required to use other complementary positioning sensors and additional terrain-aided navigation 

methods for autonomous vehicle localization (Durrant-whyte 2001). Simultaneous Localization 

And Mapping (SLAM) can be used for ALV positioning in an unknown environment. SLAM 

enables the ALV to build a map of environment, while simultaneously use this map to estimate 

vehicle pose (Dissanayake et al. 2001; Durrant-Whyte et al. 1999; Guivant & Nebot 2001).  

SLAM uses laser scanner, radars and cameras, IMU (Inertial Measurement Unit), wheel encoder 
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to provide the position of the environment landmarks and the vehicle pose in a GPS-denied 

environment.   

In SLAM, as the vehicle goes through an unknown environment, the laser scanner and stereo 

cameras extract the landmarks and an environment map is built. Subsequent revisiting and 

observation of these landmarks are integrated with the measurements from an Inertial 

Measurement Unit (IMU) and used to estimate vehicle pose (Durrant-whyte 2001). 

1.1.3 Navigation 

Navigation is the guidance and control of vehicle, based on the information of the sensors that 

are sensing the environment around vehicle. This involves a local path planning to avoid 

collisions with the other objects; therefore, the practical approach for navigation is to build up a 

local neighborhood of vehicle and planning the path with this model (Ceccarelli et al. 2000; 

Matthies et al. n.d.; Borenstein & Koren 1991). The ALV navigation requires the sensors to 

determine environment geometry to distinguish obstacles, terrain obstruction and ditches. A wide 

range of sensors have been used for ALV navigation including passive imaging device, active 

point ranging sensors and range imaging systems (Clark & Durrant-Whyte 1998; Neira et al. 

1999; Krotkov 1989). The passive sensing, which measures the energy reflected from the objects 

in the environment, includes stereo vision and Infra-Red (IR) imaging. Low cost and high data 

rate are the advantages of visual sensors. On the other hand, processing of visual data is complex 

and visual image interpretation has high levels of uncertainty, ambiguity and error. 

Active sensors, which transmit energy and irradiate the environment with specific types of 

energy, include laser, radar and sonar. The active sensors allow accurate and unambiguous 

interpretation of the return signals. The disadvantages of active sensors are that they require 

energy and generally they are more expensive than passive sensors (Durrant-whyte 2001). 
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1.1.4 Mission and Task Planning 

Mission and task planning is the construction of the trajectories and waypoints and it resides 

above the process of navigation and mobility, therefore, the output of planning is a series of 

waypoints or trajectories through which the vehicle must pass (Durrant-whyte 2001). Most often, 

trajectories are computed using straight lines, splines or other smooth curves. In urban roads, the 

trajectory is designed based on the shortest path with less traffic between the current vehicle 

position and destination using Dijkstra's algorithm (Zhang et al. 2010; Ji-Xian Xiao & Fang-Ling 

Lu 2010; Chao 2010).  

1.1.5 Communications 

ALV operations require communication between the vehicle and other vehicles and road 

infrastructures. During last decade, the radio communication technologies have experienced huge 

advances and many options exist for communication (Durrant-whyte 2001). 

1.2 Problem Statement 

Several positioning systems have been developed for localization purposes including the Global 

Navigation Satellite Systems (GNSS) and Dead Reckoning (DR) systems. The GPS, which is a 

satellite based system for positioning, has become the backbone of the land vehicle localization 

systems. In 1994, GPS became fully operational, which consists of three segments: the space 

segment, which consists of a minimum 24 satellites in six orbit planes with the inclination angle 

of 55 degrees at the altitude of 20200 km. The satellite period is 11 hours and 58 minutes. A 

minimum of 6 satellites can be viewed by the users anywhere in the world. The Block IIF and 

Block III satellites transmit on three carrier frequencies (L1, L2, L5), while the satellites of the 

older blocks transmit on two frequencies (L1, L2), the control segment including a global 

tracking network of 16 monitoring stations and two master control stations and the user segment 
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including GNSS receivers (Hofmann-Wellenhof et al. 1997). The GPS observables are ranges, 

which are inferred from the measured time or phase difference by comparing the received signals 

with the receiver generated signals (Hofmann-Wellenhof et al. 1997). The code pseudorange is 

estimated by the travelling time of the GPS signal from the satellite to the receiver, multiplied by 

the speed of the light. The travelling time is measured by maximum correlation analysis of the 

GPS signal from the satellite with a replica of it, generated in the receiver. The phase observable 

is the difference between the phase of the received GPS signal and the receiver-generated carrier 

phase at the reception time. The carrier phase measurement is much more precise than the code 

observable, but they are ambiguous by an integer number. Doppler measurement is the 

instantaneous phase rate and it is not affected by cycle slips and there is no phase ambiguity. The 

GPS positions are affected by various error sources including the orbital error, satellite clock 

error, receiver clock error, ionosphere error, troposphere error, multipath, receiver noise, and 

Sagnac effect (Hofmann-Wellenhof et al. 1997).           

Although GPS is a main positioning system in the land vehicle localization systems, due to the 

signal blockage and severe multipath environments in the urban canyons, the stand-alone GPS 

cannot satisfy most of the land vehicle localization requirements. The Dead Reckoning (DR) 

systems, such as IMU, stereo Visual Odometer and LiDAR (Light Detection And Ranging) 

Odometer have been widely used to bridge the GPS gaps. IMU has been widely used as a sensor 

complementary to GPS. IMU is an autonomous system and provides position, velocity and 

attitude information based on the measurements by inertial sensors including three 

accelerometers and three gyroscopes (Noureldin et al. 2013; Yuksel & El-sheimy 2011; Li et al. 

2015; Zhuang & El-sheimy 2016; Zhuang et al. 2015).  The gyroscopes measure the rotation 

rate, and the accelerometers measure specific force. There are three main types of gyroscopes: 
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mechanical gyroscopes, optical gyroscopes and Micro-Electro-Mechanical-Sensor (MEMS) 

gyroscopes, which is used for low cost navigation applications. The main accelerometer 

technologies are vibrating beam accelerometers, mechanical pendulous force-rebalance 

accelerometers, and gravimeters (Noureldin et al. 2013). The INS mechanization is used to 

convert the IMU outputs into position, velocity and attitude. The INS mechanization is a 

recursive process and it starts with initial position, initial velocity and initial attitude and iterates 

on the output (Noureldin et al. 2013). The differential equations of INS mechanization include 

the position mechanization equations, velocity mechanization equations, and attitude 

mechanization equations. The position, velocity and attitude are obtained by solving these 

differential equations.  

With the advent of the high performance Central Processing Units (CPU) as well as powerful 

computer vision and point cloud processing libraries, Visual Odometer and LiDAR Odometer 

have been used as the DR systems as well. The VO uses images to estimate the transformation 

between the camera coordinate systems at the consecutive epochs and the LiDAR Odometry 

finds the transformation between the point clouds, captured at the consecutive epochs. However, 

using the stand-alone DR systems has several drawbacks. Some of the drawbacks using each 

sensor alone are as follows: 

1. The Micro-Electro-Mechanical-Sensor (MEMS) based IMUs accumulate errors very 

rapidly.  

2. Visual Odometry (VO) requires moderate lighting condition. 

3. VO is affected by various error sources in images, such as noise, distortion, motion blur 

and featureless, self-similar or dynamic environments (Milella & Siegwart 2006).  
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4. The visual measurements are ambiguous in the featureless, self-similar or dynamic 

environments or during rapid motion, which causes many mismatches in the 

corresponding image points (Balazadegan Sarvrood & Gao 2014; Balazadegan Sarvrood 

et al. 2016). 

5. The Iterative Closest Point (ICP), which is one of the most dominant algorithm in 

LiDAR Odometry (Seungpyo Hong et al. 2010), suffers from fast error accumulation  

(Zhang & Singh 2014).  

6. ICP is prone to be erroneous under fast motion. 

7. ICP will fail when the point clouds are very sparse, especially in the suburban areas, 

where two sides of the road are covered with vegetation (Hong et al. 2008). 

8. ICP algorithms always converge to the local minimum. It does not converge to the global 

minimum without a good initial guess of transformation between the two point clouds 

(Hong et al. 2008). 

9. Another problem of ego motion estimation by a moving LiDAR Odometer, involves 

motion distortion in the point clouds due to the different receiving time of the range 

measurements (Zhang & Singh 2015). 

This thesis is concerned with the following research questions: 

a) What can be done to overcome the drawbacks of each sensor alone? 

b) What type of sensors are suitable for the land vehicle localization? 

c) How can we reduce the cost of a multi sensor integration system?  

The problem of bridging the GPS gaps has been tackled intensely over the last decades. A lot of 

researches have been done to integrate IMU, cameras and LiDAR to overcome the drawbacks of 
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each sensor alone (Zhang & Singh 2015; Sirtkaya et al. 2013; Corke et al. 2007; Qian et al. 2001; 

Kleinert & Schleith 2010; Nützi et al. 2011; Schmid & Hirschmuller 2013; Konolige et al. 2010; 

Tardif et al. 2010; Strelow 2004; Scherer et al. 2012). In this thesis, a new integration software 

system for stereo Visual-LiDAR Odometry and 3D (Three-Dimensional) reduced IMU is 

proposed to overcome the drawbacks of each sensor alone. The proposed software system is 

suitable for a land vehicle and tries to reduce expenses by utilizing the reduced IMU rather than 

the full IMU. However, the proposed DR drift errors increase with time and frequent calibration 

is needed.  

Another research questions arise in this context: 

d) What can be done to increase the valid navigation solution provided by the DR system 

for the land vehicles during the GPS outages? 

e) GPS can calibrate the DR system in the open sky environment but the GPS signals are 

frequently blocked in the urban areas.  Can we reduce the DR drifts, considering the fact 

that the vehicles are moving on the roads? 

Some efforts have been done to calibrate DR by constraining the vehicle location on the road 

(Wu et al. 2003; Meng 2006; Parra et al. 2011). In this research, a new software system for tight 

integration of digital map and integrated stereo Visual-LiDAR Odometry and reduced IMU is 

proposed to calibrate DR while the GPS signals are blocked.  

Another research question can arise in this context: 

f)  What can be done to increase the precise position accuracy, when GPS signals are 

available in the urban areas? 
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laser scanner (or camera) coordinate systems at the consecutive epochs. Therefore, we can 

calculate the VO-LiDAR azimuth (or VO azimuth) at each epoch, which will be integrated with 

the reduced IMU azimuth. The azimuth aiding to vertical gyro results will lead to a more reliable 

and accurate system. This system outperforms RISS in slippery ground and in turnings as well. 

A multi sensor fuzzy logic based Map Matching (MM) algorithm was developed in this research 

as well. The fuzzy logic MM aims to identify the correct road link and to determine the vehicle 

location on the selected road link. The proposed fuzzy logic MM consists of two distinct steps: 

The Initial Map matching Process (IMP) and the Subsequent Map matching Process (SMP). 

SMP has two steps: 1) SMP along a link and 2) SMP at a junction. Seven Visual-LiDAR (or 

visual) fuzzy rules were added to SMP along a link. 

Moreover, a new software system to tightly couple digital map and integrated stereo Visual-

LiDAR Odometry and reduced IMU (or integrated stereo Visual Odometry and reduced IMU) is 

proposed in this thesis. In the proposed system, MM improves the accuracy of the position of the 

DR system by constraining the vehicle location on the road. In other words, MM provides close-

loop controls for the DR drift errors by feeding back the map matched position and road link 

azimuth to the reduced IMU mechanization. 

Furthermore, a new software system to tightly couple digital map and kinematic PPP is proposed 

in this research. PPP provides the navigation solution as the input to the fuzzy logic MM and 

MM finds the correct road link and provides the map matched point and link azimuth as 

feedbacks to the KF of PPP to improve the performance of PPP.  

1.5 Thesis Outline 

This thesis is organized as follows: Previous works on Visual Odometry, LiDAR Odometry and 

map matching algorithms are addressed in Chapter 2. Chapter 3 introduces monocular and stereo 
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Visual Odometry, formulation of Visual Odometry, camera modeling and calibration and stereo 

Visual Odometry steps. Different methods of LiDAR Odometry are given in Chapter 4. Chapter 

5 focuses on multi sensor integration. First, integration of stereo VO and reduced IMU (VO-RI) 

is explained. Afterwards, integration of GPS and VO-RI is discussed and finally the software 

system for integrated stereo Visual-LiDAR Odometry and reduced IMU (VO-L-RI) is explained. 

Chapter 6 gives details about the fuzzy logic theory, different fuzzy inference systems and fuzzy 

logic map matching process. Tightly coupled integration of digital map and DR (VO-RI and VO-

L-RI) is explained as well. Tightly coupled integration of PPP and digital map is the last 

subsection of this chapter. The experimental results are given in Chapter 7. The data description 

is the first part of this chapter. Two datasets were used in this thesis: 1) the datasets from KITTI 

(Karlsruhe Institute of Technology and Toyota technological Institute), which includes LiDAR, 

stereo cameras, and IMU and GPS data. 2) The Calgary datasets collected by Mobile Information 

System (PMIS) Group at University of Calgary, which includes stereo cameras, IMU and GPS 

data. VO-RI, VO-L-RI, map matching results and integration of digital map and PPP results are 

shown in this Chapter. Finally, the conclusions and future works are given in Chapter 8. 
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flow, the pixels are tracked in the consecutive images for the robot navigation and the 

obstacle detection (Chao et al. 2014; Ross et al. 2012; Malisia et al. 1992). These 

approaches usually have the assumptions of flat image surfaces, static environment or 

2D motion field. Feature based methods extract the corresponding 2D points in the two 

consecutive images. The Essential matrix is estimated from eight-point algorithm 

(Longuet-Higgins 1981) or  five-point algorithm (Nister et al. 2004). The relative 

camera pose can be estimated from the essential matrix up to a scale ambiguity.  

A lot of VO algorithms have been developed for monocular (Davison 2003; Nister 2003; Nister 

et al. 2004), binocular (Diebel et al. 2004; Milella & Siegwart 2006; Mallet et al. 2000)  and 

multi-ocular cameras (Milano & Piazza 1996; Pedersini et al. 1997). Stereo cameras and multi 

cameras yield better results than a single camera, which suffers from scale ambiguities.  Further 

VO subdivision are methods using feature tracking over a whole sequence of images and the 

methods that are matching features between the consecutive images (Kitt et al. 2010). There are 

also other methods, for which the recovery of the three-dimensional scene structure is not needed 

(Kitt et al. 2010). A lot of methods have been developed for finding mismatches and detecting 

the outliers. Kitt et al. (Kitt et al. 2010) proposed a bucketing technique combined with the 

RANSAC (RANdom Sample Consensus) based outlier rejection.   

Vision only approach, however, is not sufficient for many applications.  More robust and reliable 

navigation solution can be obtained by the vision integration with the other sensors like IMU, 

GPS, Wheel Odometer, and laser scanner. IMU and camera are two complementary sensors and 

several loosely coupled and tightly coupled camera/IMU integration methods have been 

designed and implemented in the last decade (Sirtkaya et al. 2013; Corke et al. 2007; Qian et al. 

2001). Kleinert et al. (Kleinert & Schleith 2010) and Sirtkaya et al. (Sirtkaya et al. 2013) worked 
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on the integration of IMU and monocular camera, where the IMU was used to provide the 

position and attitude information of the system to remove monocular camera depth ambiguity. 

Nützi et al. (Nützi et al. 2011) suggested the inertial aided monocular SLAM (Simultaneous 

Localization And Mapping) to estimate the absolute scale of a single camera. To loosely couple 

the stereo cameras and IMU, each sensor has to provide the separate navigation solutions. 

Afterwards, the outputs of the sensors are fused in an Extended Kalman Filter (Schmid & 

Hirschmuller 2013). Conversely, the IMU and vision data are processed together to obtain the 

navigation solution in tightly coupled integration. Tardif et al. (Tardif et al. 2010)  suggested a 

new approach of vision aided inertial navigation in which the pseudo gravity measurements, 

obtained by IMU is utilized, when there is only small system acceleration.  

2.2 Previous Works on LiDAR Odometry 

LiDAR, which is an expensive sensor, is mostly used in mobile mapping systems to make the 3D 

maps. LiDAR has also become a useful range sensor in Automatic Vehicle Localization (AVL) 

and robot navigation for the obstacle avoidance and local path planning. LiDAR can be used for 

odometry as well. Several LiDAR Odometry methods such as feature based registration method, 

Normal Distribution Transform (NDT) and Iterative Closest Point (ICP) have been developed 

during the last decades to find the transformation between the two overlapped point clouds, 

captured from different point of views (Seungpyo Hong et al. 2010; Biber & Strasser 2003; Low 

2004). A feature based registration method can be used to find initial transformation between 

two point clouds. The first step in this method is finding several keypoints in each point cloud. 

Then, the descriptors for the keypoints have to be computed to find the matched keypoints. The 

RANSAC based methods can be used to filter out the mismatches. Finally, the rotation and 

translation between the corresponding keypoints are calculated (Holz et al. 2015). Another 
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method for point cloud registration is NDT. This method uses the standard optimization 

techniques, which are applied to statistical models of three dimensional points to determine the 

most probable registration between the two point clouds (Biber & Strasser 2003). The most 

dominant algorithm for aligning the point clouds is ICP (Seungpyo Hong et al. 2010). ICP 

converges to the local minima and it is based on minimizing the squared error. There are several 

ICP methods, point-to-point, point-to-plane and plane-to-plane ICP. In point-to-point ICP, each 

point in the first point cloud is paired with the closest point in the second point cloud to form 

correspondence pairs. Afterwards, the transformation between the two point clouds is estimated 

by minimizing the sum of the squared distance between the points in each correspondence pair 

iteratively (Holz et al. 2015). In the point-to-plane ICP method, the sum of squared distance 

between each point in the first point cloud and the tangent plane at the corresponding point in the 

second point cloud is minimized (Low 2004). The plan-to-plane ICP, known as generalized ICP 

(GICP), generalizes the point-to-point and point-to-plane ICP methods. This method performs 

better than both point-to-point and point-to-plane ICP methods (Segal et al. 2009). GICP uses the 

covariance of the local point neighborhoods to align the underlying surfaces rather than the 

points. In addition, it is more robust to the incorrect correspondences (Segal et al. 2009). As 

mentioned above, ICP needs an initial guess for the rotation and translation between the two 

consecutive point clouds. NDT and feature based registration method need the dense point 

clouds to precisely compute the transformation parameters. Therefore, the LiDAR Odometry 

alone is not efficient for outdoors, where the point clouds are sparse and it has to be coupled with 

the other sensors, especially cameras.  Stereo VO not only provides initial guess for ICP but also 

helps correct the motion distortion in the point clouds due to the different receiving time of the 

range measurements (Zhang & Singh 2015). Scherer et al. (Scherer et al. 2012) registered 
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LiDAR point clouds by state estimation from integrated Visual Odometry and IMU. They 

combined Visual Odometry and LiDAR Odometry. In this method, the ego motion is first 

estimated by integrated Visual Odometry and IMU to register the point clouds and then the 

LiDAR Odometry refines the motion estimation. Visual Odometry also helps remove the motion 

distortion in the point clouds.  Droeschel et al. (Droeschel & Behnke 2014) presented a 3D multi 

resolution map, which was used for the obstacle avoidance and robot motion estimation. They 

aggregated the measurements from a LiDAR and 3D map. The scan registration estimated the 

robot pose by aligning the 3D scans to the map. Tong et al. (C. H. Tong, S. Anderson, H. Dong 

2007) proposed a pose interpolation method for a laser-based Visual Odometry method. They 

constructed the intensity images, tracked sparse visual features and corrected the motion 

distortion by estimating a subset of the robot poses and employing interpolation to gain estimates 

at the intermediate measurement times. Zhang et al. (Zhang et al. 2014) augmented a LiDAR 

with a monocular camera to make a RGB-D camera. They proposed a method to utilize depth, 

even if, it is sparsely available, to recover the camera pose. In their method, depth is estimated by 

the triangulation from the previous epoch, while salient visual features with depth are not 

available. In other words, Zhang et al. (Zhang & Singh 2015) tightly coupled monocular camera 

and LiDAR. The LiDAR data was used to remove the camera scale ambiguity; in their proposed 

method, single camera and LiDAR estimates the initial translation and rotation, which is getting 

refined by the ICP algorithm. 

2.3 Previous Works on Map Matching 

The goal of a map matching algorithm is to identify the correct road link among the candidate 

links and to determine the vehicle location on that link (Quddus et al. 2007; Ren & Karimi 2009; 

Taylor et al. 2006; Ochieng et al. 2003; Quddus 2006). The inputs to the map matching 
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Srinivasan et al. (Srinivasan et al. 2003) proposed an enhanced point-to-curve map matching 

algorithm, which considers not only the closest distance but also the bearing check and turning 

check. A bearing check is the degree of consistency between the current vehicle heading 

obtained from GPS velocity (or digital compass) and the bearing of the road segment. The 

turning check is performed by using the heading difference between the two consecutive vehicle 

positions. This heading difference should agree reasonably well with the turning calculated from 

the topology of the road network. They concluded that this enhancement improves the correct 

link identification, but they used the heading of the vehicle from a stand-alone GPS by ignoring 

the speed of the vehicle. The vehicle heading obtained by the GPS velocity is inaccurate at the 

low speeds. Taylor et al. (Taylor et al. 2001) proposed road reduction filter (RRF) algorithm, 

which uses DGPS and height aiding from the digital road map. They reported that one less 

satellite is required for the computation of the vehicle position using GPS, because of the height 

aiding from the digital road map. In this method, the perpendicular projection is used to 

determine the vehicle position on the road network.  

2.3.2 Topological Map Matching 

Topology is defined as the relationship between the geometric features like points, lines and 

polygons. The relationship can be defined as connectivity, adjacency, or containment. A map 

matching algorithm, which uses the connectivity of the road links is known as a topological map 

matching algorithm (Greenfeld 2002; Wu et al. 2003; Meng et al. 2002). In other words, the 

topological map matching considers not only the geometric relationships but also the topology of 

the road network and the history of vehicle position. 

Greenfeld (Greenfeld 2002) proposed a weighted topological algorithm, which has two steps: 1) 

Initial mapping, and 2) Map. Initial mapping sub-algorithm aims to find an initial match by 
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proximity, orientation and distance travelled by the vehicle along the link.  If a turn is detected, 

then algorithm goes back to the first fix mode.  

The performance of several map matching algorithms for various positioning systems and digital 

data was evaluated by Quddus (Quddus 2006). His results indicated that the fuzzy logic map 

matching algorithm is going to give the best results in both urban and suburban areas. He 

developed a fuzzy-logic based map matching, which has two basic steps: Initial Map Matching 

Process (IMP) and Subsequent Map Matching Process (SMP). SMP has two steps: 1) SMP along 

a link and 2) SMP at a junction. Both IMP and SMP find the correct road link and project the 

vehicle position on the selected link. The developed FIS is based on: 1) proximity 2) the speed of 

the vehicle 3) the road link and vehicle heading consistency 4) the vehicle heading changes 5) 

the connectivity among the road link 6) the vehicle position precision e.g., HDOP (Horizontal 

Dilution of Precision) 7) the distance travelled on the links.  

GPS is the main positioning sensor in map matching. A lot of multi sensor map matching 

algorithms have been developed recently. The DR system, such as IMU, odometer and digital 

compass, has been integrated with GPS data to provide the navigation solution for map 

matching. Parra et al. (Parra et al. 2011) did a research on Visual Odometry and map fusion to 

assist GPS navigation. Stereo cameras were used to bridge the GPS gaps in the urban canyons. 

Loose integration is considered as the conventional integration of digital map and GPS/DR, in 

which GPS/DR as a positioning unit provide the navigation solution including position, velocity, 

and bearing to the map matching algorithm to re-locate the vehicle position on the road links. In 

other words, matching results are not directly used to calibrate the DR. Parra et al. (Parra et al. 

2011)  proposed a probabilistic map-matching algorithm (elliptical buffer region, based on the 

vehicle position error, is used instead of a circular buffer to reduce the number of the candidate 
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links) which uses map features to control the errors of the Visual Odometry by feeding back the 

corrections from the map-matching process. If the map-matching algorithm finds correct road 

link, the vehicle position and heading will be corrected. In other words, a tightly coupled 

integration of GPS/DR and map was done. Ren et al (Ren & Karimi 2012) developed a multi 

sensor map matching method for the Pedestrian/Wheelchair Navigation. They proposed an 

adaptive candidate segments selection algorithm, which uses a clustering technique and a multi 

sensor (GPS, compass, monocular camera and accelerometers) map matching approach for the 

pedestrian/wheelchair navigation system. If the HDOP is high or the GPS signals are blocked, 

the vision-aided accelerometer pose estimation is used to estimate the relative displacements 

between the consecutive image planes. The orientation data, which is measured by the compass, 

are integrated with estimated position increments to improve the performance of map matching. 
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Chapter Three: VISUAL ODOMETRY (VO) 

This chapter discusses the formulation of VO problem, camera modelling and camera calibration 

and stereo VO steps. 

3.1 Formulation of VO Problem 

The vehicle moves on the roads and takes the images with a rigidly attached camera system at 

discrete time instants k. In case of a stereo system, there are a left and a right image at each time 

instant.    

Visual Odometer is a relative positioning system, which estimates the position and alignment 

increments at each epoch. Figure 3.1 shows an illustration of VO problem. 

 

 
Figure 3.1: An illustration of VO problem (Scaramuzza & Fraundorfer 2011) 

 

The left camera coordinate system at the first epoch is usually selected as the World coordinate 

system in which all the camera positions at different epochs are expressed. The camera position 
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3.3 Camera Calibration 

The goal of camera calibration is to accurately estimate the camera intrinsic and extrinsic 

parameters (Szeliski 2010) (Hassanein et al. 2016). The camera intrinsic parameters are the 

camera calibration matrix as well as the image distortion coefficients. In a stereo camera system, 

the extrinsic camera parameters are the rotation and translation from the left camera coordinate 

system to the right camera coordinate system. The most popular calibration method is using a 

planar chessboard pattern. There are two camera calibration methods using a planar chessboard: 

1) capturing a single shot from multiple chessboards (Geiger et al. 2012). 2) capturing multiple 

images of a single chessboard (Laganière & Lagani 2011). The second approach is simpler but 

requires computing the position of each camera view. For the stereo camera calibration, we used 

second method and several images with different viewpoints were captured from a chessboard. 

Figure 3.3 shows the images captured for stereo camera calibration. 

 

 
Figure 3.3: Images captured for stereo camera calibration 
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Several images are captured from different viewpoints. We can make several observation 

equations based on equation 3.4 using the object points and the image points of the captured 

images. The least square method can be used to estimate the camera calibration matrix, vector of 

distortion coefficients and translation and rotation from the World coordinate system to the 

camera coordinate system (which is useless for the monocular camera calibration). Three radial 

and two tangential distortion coefficients are usually estimated to undistort the images.   

2 4 6 2 2
1 2 3 1 2

2 4 6 2 2
1 2 3 2 1

(1 ) 2 ( 2 )

(1 ) 2 ( 2 )
p p p p p

p p p p p

x x k r k r k r p x y p r x

y y k r k r k r p x y p r y
 

(3.5) 

where , 1 2 3, ,k k k are the radial distortion coefficients and 1 2,p p  are the 

tangential, distortion coefficients, ,p px y  is the distorted image point, ,p px y is the undistorted 

image point. 

The stereo calibration is similar to the single camera calibration but it involves more steps and 

gives the intrinsic and extrinsic parameters. Figure 3.5 shows the defined World coordinate 

system for the stereo camera calibration.  

 

 
Figure 3.5: Stereo camera calibration 

 

The World coordinate system is placed on the chessboard in the left image and the 3D 

coordinates of the detected corners on the chessboard pattern in the left image are determined as 
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the object points. The corresponding 2D coordinates of the corners in the left and right image are 

the other inputs to the stereo calibration. Several stereo images are captured from different 

viewpoints. Several observation equations can be made based on equation 3.3 using the object 

points and the left and right image points. The least square method estimates the following 

parameters: the camera calibration matrix for the left camera, the camera calibration matrix of 

the right camera, the distortion coefficients of the left camera, the distortion coefficients of the 

right camera, the translation and rotation between the left camera and right camera coordinate 

system (as the transformation from the World coordinate system to the left and right camera 

coordinate systems is conducted according to equation 3.3, we can estimate the transformation 

between the left and right camera coordinate system), the essential matrix and fundamental 

matrix. 

The next step is stereo rectification, which reprojects the image planes onto a common plane 

parallel to the line between the optical centers (Szeliski 2010). Figure 3.6 shows an illustration of 

the stereo rectification.  

 

 
Figure 3.6: An illustration of stereo rectification (Szeliski 2010) 
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3.4 Stereo VO Steps 

Figure 3.7 summarizes the major steps in Visual Odometry (Scaramuzza & Fraundorfer 2011), 

which will be described in the following section. 

3.4.1 Image Sequence 

The first step in VO is capturing the image sequences. In this thesis, stereo gray scale images 

were used for the camera pose estimation. 

3.4.2 Feature Detection 

The second VO step is feature extraction. Features are special points, which can stably be re-

detected from later images, taken from another point of view (Richard Steffen 2009). Several 

feature extracting methods have been developed during  the last decades (Laganière & Lagani 

2011): 

 

 
Figure 3.7: VO steps 
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Figure 3.8: Harris corners 

 

Several feature detectors have been implemented in OpenCV (http://opencv.org), which is an 

open source library for computer vision, such as Harris corner detectors, SIFT, SURF, FAST, 

BRIEF (Binary Robust Independent Elementary Features), ORB (Oriented FAST and Rotated 

BRIEF), BRISK (Binary Robust Invariant Scalable Keypoints), MSER (Maximally Stable 

Extremal Regions). 

3.4.3 Feature Tracking (Matching) 

Two methods exist to find the corresponding features in the first and second image.  1) Feature 

tracking 2) Feature matching (Mattmann 2009; Hwangbo et al. 2009). The feature tracking 

method uses optical flow to track the features in the next image. Optical flow computes the 

displacement of the pixels based on the intensity gradients. In this thesis, KLT (Kanade-Lucas-

Tomasi) tracker was used to find the corresponding features. Two methods have developed for 

the feature matching (Mattmann 2009): 1) Nearest Neighbor (NN) with descriptor, 2) NN 

without descriptor. 

NN with descriptor method assigns a descriptor such as SIFT or SURF descriptor to each 

detected corner to match the features with similar description. In this method, the matching does 

not depend on the feature location and the matching process is not affected by fast motion. 

http://opencv.org/
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Figure 3.9: Matching using SIFT descriptor 

Matching without descriptor is difficult. In this method, the camera data rate has to be high or 

there must exist only small motions in the scene. A patch (a square or a circle) has to be made 

around the detected corners. If the Sum of the Squared Difference (SSD) or the Sum of the 

Absolute Difference (SAD) between the two patches is smaller, there are more similarities 

between those patches. Features with smallest SSD or SAD are matched together. The 

correlation between the patches can be calculated instead of SSD and SAD as well. Features with 

a correlation nearest to 1 are matched together. We can implement the ratio test, symmetrical 

matching scheme and fundamental matrix to filter out the mismatches (Laganière & Lagani 

2011). The ratio test finds two nearest neighbors for each feature point in the matching process. 

If the ratio of Euclidean distance between the best and second best match exceeds a threshold, 

matching is accepted. The symmetrical matching scheme finds two relatively good match sets, 

one from the first image to second image and the other one from second image to the first one. 

Finally, the matches that are in agreement with both sets are extracted. In the fundamental matrix 

test, the two corresponding features in the left and the right images must satisfy the fundamental 

matrix equation. Figure 3.9 shows matching using SIFT descriptor. 
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In order to compare, the tracking and matching methods (SIFT descriptor was used), one of the 

KITTI (Karlsruhe Institute of Technology and Toyota technological Institute) datasets was 

processed. 2000 frames (data rate is 10 Hz) were processed, the last point position error for VO 

using tracking is 93m and for VO using matching is 286 m as shown in Figure 3.10.  

 

In tracking, the number of the frames in the windowed camera-pose estimation (this method will 

be explained in following sections) is higher than matching, resulting in better position accuracy 

and less error propagation. 

3.4.4 Motion Estimation 

The core computation step in VO is the motion estimation. This step computes the camera 

motion including the translation and rotation between the previous and the current image 

 
Figure 3.10: comparison of tracking and matching 

RTK GPS/IMU Trajectory 
VO using tracking 
VO using matching 

Start point 
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          where x  and x are corresponding 2D feature points in the left and right image coordinate 

system respectively and F is fundamental matrix. l and l are epipolar line in the left and 

right image respectively.  

         The essential matrix is the specialization of the fundamental matrix for a calibrated camera. 

In other words, the essential matrix relates a scene point expressed in the left and right 

camera coordinate system as follows:    

 

 

(3.8) 

        where rp  and lp are the corresponding 3D feature points expressed in the right and left 

camera coordinate system respectively and E is the essential matrix. R and t are the rotation 

and translation from the left to right camera coordinate system and is the skew 

symmetric matrix corresponding to the cross product. K  and K  are the camera calibration 

matrix for the left and right camera. Eight non-coplanar corresponding points or five 

corresponding points (Nister et al. 2004) are used to estimate Essential matrix.  The 

Singular Value Decomposition (SVD) of the essential matrix (E) estimates the translation 

(t) up to a scale ambiguity and the rotation matrix. To sum up, a calibrated single camera is 

an orientation device. However, the absolute scale of translation cannot be computed. The 

following equation shows the SVD of E (Hartley & Zisserman 2004): 
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where 1 2,x x are the corresponding 2D feature in the left and right image and 1 2,P P  are 

the camera projection matrices for the left and right image and wX  is an unknown 3D 

scene point.   

In 3D to 3D method, triangulation can be used to make two sets of corresponding 3D 

scene point at epoch tk and tk+1. The rotation and translation can be calculated using these 

two point clouds as follows: 

where 1 2,W WX X  are the reconstructed 3D point for epoch tk and tk+1 respectively. ,R t  

are the rotation and translation between the left camera coordinate system at epoch tk and 

tk+1. 

This method drifts much more quickly than 3D-2D method. The short baseline between 

the two consecutive image pairs causes poor motion estimation.  

 

 
Figure 3.12: Triangulation by finding midpoint of two viewing rays 

  

2 1 1,2,3,....,W W
i iX RX t i n  (3.12) 
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this method. Figure 3.14 shows an illustration of 3D to 2D method. In fact, this method 

estimates the camera pose with repeated triangulation and resectioning.    

 

 
Figure 3.14: 3D-to-2D method (Scaramuzza & Fraundorfer 2011)  

 

Figure 3.15 shows the comparison of 3D-to-3D and 3D-to-2D (270 frames). As shown, the 

camera position drifts very quickly in 3D-to-3D method. 

 

 
Figure 3.15: Comparison of 3D-to-3D and 3D-to-2D VO 
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improves the camera pose estimation if the features would be tracked across more than 

two frames (Szeliski 2010). Bundle adjustment technique is usually used in 

photogrammetry to estimate the scene structure (3D Scene points) and extrinsic camera 

parameters (camera position and orientation, which are known as Exterior Orientation 

Parameters (EOP) as well) given a sequence of images.  BA estimates structure (3D 

ground points) and motion (EOP) by minimizing a function of the re-projection error,  

which is the distance between the observed features in the image and the corresponding 

projected features from the estimated structure  (Szeliski 2010). BA, which is an iterative 

method, fits a nonlinear model to the measured data, which are the point correspondences 

(Richard Steffen 2009). The objective function is a function of all points and the camera 

locations. The unknowns, including came poses and scene points, are estimated by 

minimizing the objective function. BA in SFM uses large numbers of overlapping frames 

and large numbers of features, which is very time consuming, therefore for online 

applications such as VO, a windowed bundle adjustment can be applied to a few 

consecutive frames.  A good initial guess is necessary to avoid false convergence. 
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Figure 3.16: VO using consecutive triangulation and resection 

 

The unknowns in WBA can be separated into two groups, Xc (Exterior Orientation 

Parameters) and Xw (3D ground points) as shown below (Konolige 2010): 

 

where n is the number of the frames in the window, m is the number of 3D scene points, 

Xc includes three rotation angles and three translations from the left camera coordinate 

system of the reference frame (the first frame of the window) to the left camera 

coordinate system of the other frames in the window. Xw includes the 3D scene points, 

which are reconstructed by triangulation at the reference frame. 

The observation equations are made based on equation 3.2. The rotation matrix is 

replaced by the following equation:  

1 1 1 1 1 1
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(3.13) 












































































































































































































































































































