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Abstract

The successful implementation of global quantum networks would have many applications

such as secure communication, blind quantum computing, and private database queries,

ultimately leading to a “quantum internet” of networked quantum processors. This will

require photons for establishing long-distance connections. However, the inevitable losses in

transmission and the fact that they cannot be compensated by amplification significantly

limit the distance. Therefore, quantum repeaters have been proposed to solve this issue but

this typically requires stationary quantum memories for storing and processing the quantum

information. Currently, a vast majority of approaches to quantum networks need either

vacuum equipment and optical trapping or cryogenic cooling, which makes scaling up such

architectures very difficult. In this thesis, we explore two hardware platforms for realizing

quantum repeaters that can operate without cryogenics: nitrogen-vacancy (NV) centers and

optomechanics-based repeaters and hot hybrid alkali-noble gases-based repeaters. We show

how entanglement generation and entanglement swapping can be achieved in both schemes.

Moreover, we quantify the performance of these two proposed repeater architectures in terms

of repeater rates and overall entanglement fidelities and make a comparison between them.

We also discuss the experimental feasibility of these two schemes, demonstrating that both

can be within reach of current technologies.
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Chapter 1

Introduction

Quantum communication promises to perform some communication tasks that are beyond

the capability of classical communication, which requires optical photons to exchange quan-

tum information (quantum states) between remote quantum processors. The successful

implementation of quantum communication will bring many exciting applications such as

secure communication [1], blind quantum computing [2], private database queries [3], and a

quantum internet that connects quantum processors, including quantum computers, [4, 5, 6].

As the transmission of photons is adversely affected by loss in the channel, the distance of

connecting quantum devices is significantly limited. In addition, unlike its classical coun-

terparts, unknown quantum states cannot be cloned [7], thus eliminating the possibility of

performing amplification to overcome the loss.

Therefore, quantum repeaters have been proposed to solve this issue [8]. The basic idea is

that we divide a long distance into pieces of shorter distance (called elementary links), and we

generate entanglement in these elementary links and then perform entanglement swapping to

propagate the entanglement further. However, this typically requires quantum memories to

process and store entanglement. So far, most approaches to realizing quantum repeaters are

based on cryogenics (temperatures below 120 K) or optical trapping [9, 10, 11, 12], which

significantly undermines the scalability of these architectures. Hence, this thesis aims to

1



present the work done for proposing non-cryogenic quantum repeaters.

The thesis is organized as follows. In Chapter 1, I will introduce some underlying physics

in quantum communication and quantum networks. In Chapter 2, I will focus on the details

of quantum networks, including the potential applications. Then, I will move on to introduce

physical systems that are the building blocks of realizing non-cryogenic quantum repeaters in

Chapter 3. Chapters 4 and 5 present two papers that contain all the details of the proposals.

Chapter 6 provides conclusions and an outlook.

1.1 Quantum bits (Qubits)

In the classical world, information is typically presented by classical bits which can take on

either the state 0 or 1. For example, a classical bit can be physically implemented by one

of two levels of DC voltage. However, in the quantum world, the basic unit representing

information is called the quantum bit (qubit) which is the quantum analogue of the classical

bit. It can be implemented in a two-level quantum system, which makes a striking difference

from the classical implementation. In such a two-level quantum system, the state of a qubit

can be much more general than just being 0 or 1, which can be described as follows:

α |0〉+ β |1〉 , (1.1)

where |0〉 and |1〉 are the basis states of a qubit and the basis set {|0〉 , |1〉} is referred to

as the computational basis. According to Born’s rule, the coefficients α and β represent the

probability amplitudes so the probability of being in states |0〉 and |1〉 are |α|2 and |β|2.

Moreover, they must add up to be unity |α|2 + |β|2 = 1. As α and β can be complex, the

quantum state also contains the relative phase of α and β.

In fact, there are four parameters in α and β but as they are constrained to the unit

probability, and the global phase is irrelevant, there only exist two free parameters. Hence,

2



Figure 1.1: The representation of a qubit on the Bloch sphere with the probability ampli-
tude α = cos θ

2
and β = eiψsin θ

2
. The North and South poles represent states |0〉 and |1〉

respectively.

we have

α = cos
θ

2
, (1.2)

β = eiψsin
θ

2
, (1.3)

where θ and ψ are real numbers, defining a point on a unit three-dimensional sphere called

Bloch sphere as shown in Fig. (1.1) [13]. Now, a qubit can be written as:

cos
θ

2
|0〉+ eiψsin

θ

2
|1〉 . (1.4)

This is the Bloch representation of a qubit, which is often used to visualize the state of a

single qubit. In contrast to qubits which can appear anywhere on the surface of this sphere,

classical bits can only be in the North or South pole.
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1.1.1 Multiple qubits

For classical bits, if there are two of them, we have four possible states: 00, 01, 10, and 11.

Similarly, one can define the basis states for two qubits, which are |00〉, |01〉, |10〉, and |11〉.

Like a single qubit, two qubits can be in a coherent superposition of these four basis states

with probability amplitudes corresponding to each basis state. Thus, a general two-qubit

state can be written as

|ψ〉 = α1 |00〉+ α2 |01〉+ α3 |10〉+ α4 |11〉 , (1.5)

where α1, α2, α3, and α4 are complex probability amplitudes. Now, we can generalize it to

the case where there are n qubits. A n-qubit state has 2n computational basis states, which

are given by

|ψ〉 =
∑

x1x2···xn

αx1x2···xn |x1x2 · · ·xn〉, (1.6)

where xi can take the value of either 0 or 1. To store such a quantum state in a classical

computer can be very challenging as the number of amplitudes is gigantic even if n is just

several hundred, and its size increases exponentially. This is one of the main reasons to

develop quantum computers for processing quantum information.

1.1.2 Mixed states

So far, the quantum states of qubit(s) are represented as linear superpositions of normalized

state vectors as in Eq. (1.4) and Eq. (1.6). These quantum states are referred to as pure

states. However, sometimes some quantum states cannot be captured by this characterization

as they are statistical ensembles of different quantum states, which are referred to as mixed

states. Even when the whole quantum system is in a pure state, if we try to only look

at a part of the system by tracing out the others, it becomes a mixed state. We typically

use the symbol ρ to represent mixed states, which is referred to as density matrix. This

4



representation is also an alternative way of expressing pure states. For example, Eq. (1.1)

can also be written as:

ρ = (α |0〉+ β |1〉)(α∗ 〈0|+ β∗ 〈1|)

= |α|2 |0〉 〈0|+ αβ∗ |0〉 〈1|+ βα∗ |1〉 〈0|+ |β|2 |1〉 〈1| .
(1.7)

For mixed states, they can only be written using density matrix, e.g. the state ρ = 1
2
|0〉 〈0|+

1
2
|1〉 〈1|. In general, a mixed state takes the following form:

ρ =
∑
i

pi |ψi〉 〈ψi|, (1.8)

where
∑

i pi = 1 with pi being the probability of occurrence. One of the key features of

mixed states is that they satisfy Tr(ρ2) < 1 whereas for pure states, we have Tr(ρ2) = 1.

The mixed states of a single qubit can also be visualized on the Bloch sphere, where the

length of the corresponding state vector is less than 1, which means this vector is inside the

Bloch sphere.

1.1.3 Fidelity of quantum states

In quantum mechanics, fidelity refers to the degree to which two quantum states are similar

or identical. More specifically, it is a measure of the overlap between two quantum states.

In general, the fidelity of two states ρ and σ (both are density matrices) is defined as follows

[14]:

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

=

(
tr
√
ρσ

)2

. (1.9)

The quantum state fidelity satisfies several properties. First of all, it is bounded, 0 ≤

F (ρ, σ) ≤ 1. When ρ = σ, we have F (ρ, ρ) = (tr(ρ))2 = 1. Second, it is symmetric:

F (ρ, σ) = F (σ, ρ). This can be easily seen from the definition above as ρσ = σρ. If the

5



states are pure states, meaning that ρ = |ψ〉 〈ψ| and σ = |φ〉 〈φ|, the fidelity becomes:

F (ρ, σ) =

(
tr
√
|ψ〉 〈ψ|φ〉 〈φ|

)2

= 〈ψ|φ〉
(

tr
√
|ψ〉 〈φ|

)2

= | 〈ψ|φ〉 |2. (1.10)

Throughout the thesis, we stick to this fidelity definition for quantum states in Eq. (1.9).

1.2 Quantum gates

In classical information processing, classical gates are used to form circuits for computational

tasks. Among many types of classical gates, the NOR or NAND gates are universal, which

means any Boolean function can be implemented only by either of these two types of logic

gates. Likewise, there exist different types of quantum gates that can be used to execute

arbitrary algorithms. In this section, I will introduce some elementary one and two-qubit

gates.

1.2.1 Single-qubit gates

The only nontrivial classical one-bit gate is the NOT gate, which maps 0 to 1 and 1 to 0

(simply flipping the bit). Its quantum counterpart (the quantum NOT gate) must be able

to map a general single-qubit state α |0〉 + β |1〉 to α |1〉 + β |0〉, that is flipping the basis

states. In order to find this gate, let us first write this general quantum state as a vector:

α
β

 . (1.11)

The quantum NOT gate is expected to satisfy the following equation:

X

α
β

 =

β
α

 . (1.12)
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Now, after solving this equation, we obtain

X =

0 1

1 0

 . (1.13)

This is the quantum NOT gate. It satisfies XX† = X†X = I where X† is the conjugate

transpose of X. This implies that the X gate is unitary, which can be attributed to the fact

that the probability amplitudes of a general single-qubit state are constrained to the unity

condition. This unitary property actually can be generalized to any quantum gates. In fact,

the X gate is one of the Pauli matrices, which are the following:

I =

1 0

0 1

 , X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 . (1.14)

These Pauli matrices are of great importance and interest as they are not only unitary but

also Hermitian (its conjugate transpose is itself). The exponentiation of Pauli matrices forms

so-called rotation operators/matrices, which are themselves unitary. They play a significant

role in quantum gates. They are given by

RX(θ) = e−iX
θ
2 = cos(

θ

2
)I − isin(

θ

2
)X, (1.15)

RY (θ) = e−iY
θ
2 = cos(

θ

2
)I − isin(

θ

2
)Y, (1.16)

RZ(θ) = e−iZ
θ
2 = cos(

θ

2
)I − isin(

θ

2
)Z, (1.17)

where I is the identity matrix and θ is a real number. Now, it is possible to express any

2× 2 unitary matrix in terms of two of these three rotation matrices:

U = eiφRX(θ1)RZ(θ2)RX(θ3), (1.18)
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where φ is a global phase that has no effect in observation. θ1, θ2 and θ3 are real numbers,

which are rotation angles. This general unitary matrix U is able to map a single-qubit

state to any other single-qubit state, which is why it is also called an arbitrary single-qubit

rotation. On the Bloch sphere shown in Fig. (1.1), any point on the surface can be reached

by applying this unitary matrix. It simply rotates a unit vector from pointing to one spot

to another.

It is worth talking about the rotation matrix RY (π
2
) as it is very important in single-qubit

gates. By plugging θ = π
2

in RY (θ), we obtain

RY

(π
2

)
=

1√
2

1 1

1 −1

 . (1.19)

This gate is known as the Hadamard gate H. It maps the state |0〉 to |0〉+|1〉√
2

and the state

|1〉 to |0〉−|1〉√
2

. This can be visualized on the Bloch sphere: the Hadamard gate H rotates |0〉

by π
2

to the positive x axis and |1〉 by by π
2

to the negative x axis.

1.2.2 Two-qubit gates

Analogous to two-bit gates in classical computation, there are two-qubit gates that play an

important role in quantum information processing as they are able to generate entanglement

in qubits. I will discuss quantum entanglement in Sec. 1.3. One of the most important

two-qubit gates is the CNOT gate (controlled-NOT), which is given by

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.20)

This gate flips the second qubit only when the state of the first qubit is |1〉. It can also be

called CX gate (controlled-X) as it performs the X operation on the second qubit conditioned
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on the state of the first qubit. Now, if we apply this gate to two separate qubits, we obtain

CNOT[(α1 |0〉1 + β1 |1〉1)⊗ (α2 |0〉2 + β2 |1〉2)]

= α1α2 |00〉+ α1β2 |01〉+ β1β2 |10〉+ β1α2 |11〉
. (1.21)

It is worth noticing that this outcome is a new two-qubit state that cannot be written as

the tensor product of two single-qubit states as before for any possible values that α1, α2, β1,

and β2 can take. We can use the following mathematical expression to describe this effect:

|ψ〉1 ⊗ |ψ〉2
CNOT
====⇒ |ψ′〉 6= |ψ′〉1 ⊗ |ψ

′〉2 . (1.22)

Quantum states like this are called entangled states as opposed to the states called product

states which can be decomposed into the product form of two single-qubit states. The

CNOT gate serves as an entangler to generate the entanglement between two single-qubit

states. Once entanglement is formed between two qubits, they no longer can be treated

separately but should be regarded as a whole. Entanglement is an amazing implication of

quantum mechanics, which cannot be explained by local-hidden variable theories according

to Bell’s theorem [15]. Thus, one has to accept non-locality in quantum entanglement (more

discussion in the next section), which gives rise to various important applications in quantum

information science such as quantum teleportation [16](more detail can be found in Sec. 1.6).

Another interesting two-qubit gate is called the CZ gate (controlled-Z gate), which is

CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (1.23)

Conditioned on the state of the first qubit, only the state |11〉 is mapped to -|11〉, and the

other states remain the same. The CZ gate is actually a member of a large family of gates

9



called controlled phase gates. When the phase is set to be π, we obtain the CZ gate. The CZ

gate entangles two single-qubit states by changing the sign of |11〉), and it is closely related

to the CNOT gate by the following transformation:

CZ = (I ⊗H)CNOT(I ⊗H), (1.24)

where and I is the identity gate, and H is the Hadamard gate. This transformation can be

seen as changing the computational basis from {|+〉 , |−〉} to {|0〉 , |1〉} for the second qubit.

Another powerful two-qubit gate worth introducing is the SWAP gate. It can be written

as:

SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (1.25)

It is called the SWAP gate simply because it swaps two qubits. This can be proved as follows:

SWAP[(α1 |0〉1 + β1 |1〉1)⊗ (α2 |0〉2 + β2 |1〉2)]

= α1α2 |00〉+ α1β2 |10〉+ β1α2 |01〉+ β1β2 |11〉

= (α2 |0〉2 + β2 |1〉2)⊗ (α1 |0〉1 + β1 |1〉1)

. (1.26)

The SWAP gate is equivalent to three consecutive CNOT gates but with the middle reversed:

SWAP = CNOT12CNOT21CNOT12, (1.27)

where for the second CNOT gate, the first qubit is controlled by the second qubit, which is

reversed.
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1.3 Quantum entanglement and nonlocality

I briefly mentioned entanglement in the previous section when introducing two-qubit gates.

In this section, I will touch more on it. Quantum entanglement can be described as a non-

classical correlation appearing in two or more particles that could be separated far from each

other. When a group of particles is entangled, the quantum state of each particle cannot

be treated independently of the others, i.e. they are a whole. Mathematically speaking, it

is impossible to express the quantum state of the whole system as a tensor product of the

quantum state of each subsystem or when the state of each subsystem is a mixed state, there

is no way to write the whole quantum state as a convex combination of product states.

If we have two unentangled quantum systems, they can be described as:

|ψ〉1,2 = |ψ〉1 ⊗ |ψ〉2 . (1.28)

This state sometimes is referred to as separable state. For two separable mixed states, they

can be written as

ρ1,2 =
∑
i

piρ
(i)
1 ⊗ ρ

(i)
2 , (1.29)

where
∑

i pi = 1 with pi being the corresponding state probability. More generally, if there

are n separable quantum systems, their state can be written as:

|ψ〉1,2,··· ,n = |ψ〉1 ⊗ · · · ⊗ |ψ〉n (pure state)

ρ1,2,··· ,n =
∑
i

piρ
i
1 ⊗ · · · ⊗ ρin (mixed state)

. (1.30)

However, if we have two entangled particles, there is no way to write their state as Eq.

(1.28) or Eq. (1.29), e.g. 1/
√

2(|00〉) + |11〉). For this state, it is obvious to see the corre-

lation/entanglement between two particles as two qubits are always in the same basis state.

No matter how far these two qubits are separated, once we measure one qubit to be in |0〉

or |1〉, the other must be in state |0〉 or |1〉 as well.
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The fact that the state collapse of two entangled particles is independent of the distance

implies that this correlation is nonlocal. At first look, this seems to be at odds with special

relativity but as the collapse of quantum states is totally random, there is no actual infor-

mation exchange between two particles. The problem of nonlocality in quantum mechanics

was first raised by Einstein, Podolsky, and Rosen in [17], which is now known as the EPR

paradox. This led to the development of local hidden variable (LHV) theories, which argue

that there are some local and hidden variables in reality (they are preassigned some values)

that are not captured by quantum mechanics. However, Bell’s inequality [15] and CHSH

(Clauser-Horne-Shimony-Holt) inequality [18] were later proposed to reject LHV theories,

which state that quantum correlations must violate these two inequalities. Subsequently,

there have been a series of experiments to verify the violation of these two inequalities

[19, 20, 21, 22]. Also, in Hardy’s thought experiments, LHV theories fail to explain the

outcomes [23].

Moreover, quantum entanglement is a powerful resource for performing numerous in-

teresting tasks in quantum information processing. Especially in quantum communica-

tion/quantum networks, a great deal of effort is put to generate entanglement between

remote quantum systems, which will be discussed in detail in Chapter 2.

1.4 Bell-state measurement

The Bell states are a set of maximally entangled two-qubit states [24], which are important

resources used in quantum teleportation as discussed in more detail in Sec. 1.6. They are
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given by: ∣∣Φ+
〉

=
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉),∣∣Φ−〉 =
1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉),∣∣Ψ+
〉

=
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉),∣∣Ψ−〉 =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉).

(1.31)

There are various ways to generate the Bell states, one of which is to use a H gate and a

CNOT gate. For example, if the initial two-qubit state |0〉1 ⊗ |0〉2, it is then transformed as

follows:

|0〉 ⊗ |0〉 (H⊗I)CNOT−−−−−−−→
∣∣Φ+

〉
,

|1〉 ⊗ |0〉 (H⊗I)CNOT−−−−−−−→
∣∣Φ−〉 ,

|0〉 ⊗ |1〉 (H⊗I)CNOT−−−−−−−→
∣∣Ψ+

〉
,

|1〉 ⊗ |1〉 (H⊗I)CNOT−−−−−−−→
∣∣Φ−〉 .

(1.32)

The standard Bell-state measurement (BSM) is composed of a CNOT gate and a H gate

acting on the first qubit, which projects a Bell state to its corresponding two-qubit basis state.

Then, we need to perform measurements in the computational basis to obtain classical bits.

This operation can be seen as the reverse of the operation for preparing the Bell states, i.e.

Eq. (1.32) though without the measurements in the last step. Thus, the BSM outcomes are

given above. Via the BSM, one can easily differentiate all four Bell states.

In quantum communication, as the information carriers are typically photons, the entan-

gling gates are performed using linear optics. Photons have plenty of degrees of freedom such

as frequency, polarization, spatial location, and arrival time (early or late). They all can be

used to encode quantum information. Here we use Fock states to represent the number of

photons in a mode so they are also called number states. |0〉 stands for the vacuum state,

and |1〉 represents a mode containing one photon. They can be viewed as two basis states of

a qubit. This type of encoding is often used in many quantum information processing tasks,

particularly in quantum communication. The Bell states shown in Eq. (1.31) can now be
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seen as the Bell states of photons in two modes. In this case, we can use a beam splitter

(BS) and two detectors to perform the BSM on these Fock states, the detection outcomes of

which can be used to distinguish the input Bell states. A beam splitter either transmits the

incoming photon or reflects it. For a generic BS, its transformation matrix can be written

as:

UBS =

cosθ isinθ

isinθ cosθ

 . (1.33)

It satisfies the unitary condition that UBSU
†
BS = U †BSUBS = I. In the case of 50/50 BS

(θ = π/2), it becomes

UBS =
1√
2

1 i

i 1

 . (1.34)

Now, let us apply this 50/50 BS transformation to the photon Bell states, which results in

the following: ∣∣Φ±〉
1,2
−→ 1√

2
|00〉3,4 ∓

i

2
|20〉3,4 ±

i

2
|02〉3,4 ,∣∣Ψ+

〉
1,2
−→ |10〉3,4 ,∣∣Ψ−〉

1,2
−→ −i |01〉3,4 ,

(1.35)

where subscripts 1 and 2 stand for the input ports, and 3 and 4 stand for the output ports

of the beam splitter. Thus, measuring the photon states at the output ports allows us to

distinguish these states. However, we cannot differentiate the states |Φ±〉 by measuring the

outputs as they only differ by a phase but they can be distinguished from |Ψ±〉. Hence,

the efficiency of performing the BSM using a BS and detectors is only 50%. This setup is

commonly used in entanglement generation and entanglement swapping in quantum networks

which will be discussed in detail in Chapter 2.

14



1.5 No-cloning theorem

The no-cloning theorem states that it is impossible to create perfect copies of an arbitrary

unknown quantum state [7], which is in huge contrast to its classical counterparts where

classical bits are often copied/cloned to counteract the loss in transmission and errors in

computation. In order to see how the no-cloning theorem works, let us first consider two

quantum systems A and B where the quantum state of A is given by |ψ〉A and the quantum

state of B is given by |0〉B. The state |ψ〉A can be completely arbitrary. Now, the initial

state of these two systems is given by:

|ψ〉A ⊗ |0〉B , (1.36)

which is a product state. Our goal is to apply a quantum cloning machine (characterized by

a unitary U) to this initial state to make a copy of |ψ〉 of A to B:

U(|ψ〉A ⊗ |0〉B) = |ψ〉A ⊗ |ψ〉B . (1.37)

Now, since this cloning machine is able to make a copy of any quantum state of system A,

we can randomly select another quantum state |φ〉A such that we have:

U(|φ〉A ⊗ |0〉B) = |φ〉A ⊗ |φ〉B . (1.38)

Then, we obtain the following equation:

(〈φ|A ⊗ 〈0|B)U †U(|ψ〉A ⊗ |0〉B) = (〈φ|A ⊗ 〈φ|B)(|ψ〉A ⊗ |ψ〉B). (1.39)

As U is unitary and |0〉 is normalized, the above equation can be simplified as:

〈φ|ψ〉 = (〈φ|ψ〉)2. (1.40)
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Figure 1.2: An example of how to teleport an unknown qubit (denoted as C) from Alice to
Bob using the shared Bell state |Φ+〉A,B. By performing Bell-state measurement and sharing
the outcomes with Bob, Alice is able to teleport the qubit. Here, we assume that there is no
decoherence in shared entanglement.

The solutions to this equation are trivial: 〈φ|ψ〉=0 or 1. This means either they are orthog-

onal or they are the same up to a phase. However, this cannot be the case for two arbitrary

states. Therefore, a general quantum cloning machine does not exist. It is worth noticing

that even though one cannot clone unknown quantum states perfectly, it is still possible to

make imperfect copies with a high fidelity of 5/6 [25].

The immediate implication of the no-cloning theorem is that unknown quantum signals

cannot be eavesdropped on in transmission without being noticed. This enables quantum-safe

communication and development of quantum key distribution protocols [26, 1]. However, this

also has drawbacks as the no-cloning theorem prevents us from amplifying quantum signals

during transmission. This makes long-distance key distribution tasks and other connecting

remote quantum devices very difficult to achieve. Hence, quantum repeaters have been

proposed to solve this issue [8], which is also motivated by the application of quantum

teleportation as discussed in the next section.
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1.6 Quantum teleportation

Suppose Alice wants to send a qubit to Bob who is spatially separated from her, Alice can do

so via direct transmission. Surprisingly, there is an alternative way to achieve this without

directly sending the qubit. This is known as quantum teleportation, which uses entanglement

as resources to transfer qubits [16]. As shown in Fig. 1.2, Alice and Bob share the Bell state

|Φ+〉A,B, and she also holds an unknown qubit |ψ〉C . At this point, the quantum state of

these three particles is given by:

|ψ〉C ⊗
∣∣Φ+

〉
A,B

= (α |0〉C + β |1〉C)⊗ 1√
2

(|0〉A |0〉B + |1〉A |1〉B). (1.41)

Now, we notice that two-qubit basis states can be written in terms of the Bell states:

|0〉 ⊗ |0〉 =
1√
2

(
∣∣Φ+

〉
+
∣∣Φ−〉),

|0〉 ⊗ |1〉 =
1√
2

(
∣∣Ψ+

〉
+
∣∣Ψ−〉),

|1〉 ⊗ |0〉 =
1√
2

(
∣∣Ψ+

〉
−
∣∣Ψ−〉),

|1〉 ⊗ |1〉 =
1√
2

(
∣∣Φ+

〉
−
∣∣Φ−〉).

(1.42)

We then can rewrite Eq. (1.41) using the above equations as

|ψ〉C ⊗
∣∣Φ+

〉
A,B

=
1

2

( ∣∣Φ+
〉
C,A

(α |0〉B + β |1〉B) +
∣∣Φ−〉

C,A
(α |0〉B − β |1〉B)

+
∣∣Ψ+

〉
C,A

(α |1〉B + β |0〉B) +
∣∣Ψ−〉

C,A
(α |1〉B − β |0〉B)

)
.

(1.43)

Up to this point, Alice and Bob have not done anything. We just rearranged their joint

quantum state to Eq. (1.43) where it shows that Bob now holds a qubit but its state is

yet to be determined by measurements on Alice’s side. Now, Alice needs to perform BSM

from her side, and depending on the measurement outcomes, Eq. (1.43) will collapse into

the corresponding state, and Alice needs to inform Bob of her outcomes to correct the qubit
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state. For example, if Alice gets the bit-string 10, then Bob needs to perform the Z operation

on the qubit. Moreover, if Alice obtains the bit-string 01, she must inform Bob to perform the

X operation. This also ensures no superluminal communications in quantum teleportation

as classical communication is imperative. In this way, Alice can send a qubit to Bob by just

performing BSM and communicating classically to Bob. This is the basic idea of quantum

teleportation.
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Chapter 2

Introduction to quantum networks

In this chapter, I will introduce the basic elements of quantum repeaters and the potential

applications of quantum networks.

2.1 Quantum repeaters

Similar to classical networks where distant classical devices are connected to exchange infor-

mation, we wish to connect distant quantum devices enabled by quantum networks. One can

imagine that this may be achieved by directly sending quantum information over the chan-

nel, but the attenuation in the channel is significant, which extremely limits the transmission

distance. For telecom band signals (wavelengths: 1530-1565 nm), the loss in the optical fiber

is characterized by exp(−L/Latt), where Latt = 22 km is the attenuation distance, which de-

fines the distance when the amplitude drops to 1/e, and L is the total transmission distance.

This is mainly due to the absorption in the fiber, and in addition, there are other types of

loss in the channel including scattering loss, dispersion loss, bending loss, and connector loss.

However, the absorption loss is the most significant, and the exponential decay is a direct

consequence of the Beer-Lambert law, which makes the chance of successful transmission over

a long distance very slim. As a result, the average time for successfully receiving a photon

(referred to as the average waiting time) becomes very long even with a high-repetition-rate
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Figure 2.1: The illustration of a quantum repeater. The total distance is L, and it is
divided into four elementary links with the length of L0. The entanglement distribution is
achieved in three steps. First, we generate entanglement in elementary links, and upon the
success heralded by single-photon detection, we then perform BSM to swap the entanglement
between adjacent elementary links (indicated in blue dashed circles), and we again perform
entanglement swapping to further propagate the entanglement. The red nodes indicate
quantum memories which are typically required in repeaters.

single-photon source. For example, with the best available source with a repetition rate of

10 GHz, the average waiting time is expected to be 1010 s for a distance of over 1000 km.

The same challenge also exists in classical communication, but this issue can be solved using

amplification which directly amplifies the signal to compensate for the loss.

However, the same technique cannot apply to quantum signals due to the no-cloning

theorem discussed in Sec. 1.5. Thus, quantum repeaters have been proposed to solve this

problem [8], which is centered on the idea of quantum teleportation that allows us to use

entanglement to transfer quantum information. In such quantum repeaters as shown in Fig.

2.1, a long distance L is divided into small pieces of equal length L0 = L/N with N being the

total number of subdivisions. We first need to generate entanglement in these elementary

links, the success of which is announced by the single-photon heralding in detectors, and

then we perform entanglement swapping (blue dashed circle) between two adjacent links to

propagate the entanglement to a longer distance. The entanglement swapping is based on

BSM, which projects two Bell pairs to a single Bell pair with a 50% efficiency. As these steps

are probabilistic, quantum memories are required to store the entanglement (labeled as red

dots) which is discussed in detail in the next section. Moreover, entanglement purification
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[27] can be used to improve the fidelity of distributed entanglement, which is actually a part

of the repeater protocol in [8] but this boosts the fidelities at the cost of lower distribution

rates.

2.2 Quantum memory

In most repeater protocols [28, 12, 11], quantum memory is an essential part of a quantum

repeater, which allows us to store and process quantum information. Still, there are some

memory-less repeater protocols that use quantum error correction codes to encode signals

and correct errors that happen during the direct transmission [29, 30, 31, 32]. In spite of the

much higher rates that these memory-less protocols could potentially yield, they require a

lot more resources such as the near-deterministic preparation of a many-photon cluster state

and many high-fidelity two-qubit gates, which is currently very challenging to achieve. In

this thesis, I will only talk about quantum repeaters that need quantum memory, and the

memory-less repeaters are beyond the scope of this thesis.

Quantum memories typically operate at cryogenic temperatures but some can operate at

room temperature, which can either be atomic ensembles or single emitters. Some of the well-

studied and leading quantum memory platforms include rare-earth (RE) ions [12, 11], alkali

atoms [33, 34] and nitrogen-vacancy (NV) centers in diamond [35, 36, 37, 38], the last two

platforms of which operate at room temperature with incredibly long coherence times. More

detailed information about these two types of systems can be found in Chapter 3. The two

most important figures of merit to quantify the performance of quantum memory are storage

time and efficiency [28]. The storage time measures how long quantum entanglement can

remain coherent in the memory, which limits the entanglement distribution distance. The

efficiency measures how much incoming signal can be successfully stored in the memory,

which is particularly important in ensemble-based memories as the entanglement swapping

is always probabilistic in the atomic ensemble-based repeater protocols. Thus, the efficiency
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directly affects the repeater rates. For atomic ensemble memories, the bandwidth is also

a metric to consider as it directly tells us how short the signal pulse can be and thus the

maximum repetition rate of the protocol.

2.3 Figures of merit of quantum repeaters

There are two main figures of merit for quantum repeaters: rates and fidelities. The rates

characterize the average time of distributing the final entangled state, and the fidelities

characterize the quality of the final entangled state. As mentioned before, direct trans-

mission suffers from an exponential loss in the channel. The rates of quantum repeaters

must beat those of direct transmission, particularly at longer distances. However, realizing

such repeaters involves a few challenges, which include having efficient detectors, efficient

and long-lived quantum memories, and efficient single-photon sources or entangled photon-

pair sources. For different repeater protocols, the rates vary but in general, the repeaters

equipped with single-emitter quantum memories have higher rates than the repeaters with

atomic ensemble memories, which is presented in more detail in the next two sections.

The repeater fidelities are limited by various factors including imperfect photon sources,

imperfect entanglement swapping, noise photons in the signal retrieval, dark counts in de-

tectors, and memory decoherence. Moreover, the fidelities can be boosted by entanglement

purification [27] but at the cost of lower rates. These limiting factors play slightly different

roles in the repeaters with single-emitter memories and atomic ensemble memories (more

details can be found in the next two sections).

2.4 Single-emitter-based quantum repeaters

The single-emitter-based quantum repeaters use single-emitter systems as quantum memo-

ries. Similar to atoms and ions, these quantum emitters have addressable electron spin and

optical levels to serve as spin-photon interfaces. They are often embedded in different host
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materials and the spin and optical properties of the emitters depend not only on the host

material but also on their compositions and structures. So far, there are numerous quantum

emitters that have been actively investigated including carbon-based emitters (nitrogen-

vacancy (NV) centers and silicon-vacancy (SiV) centers), silicon-based emitters (T centers

and G centers), rare-earth-ion-doped crystals, and semiconductor quantum dots. Among

them, silicon color centers are of particular interest due to their scalability. The host mate-

rials and single emitters also possess rich isotopes (e.g. 13 C, 14 N and 15 N in NV centers),

which provide nuclear spins nearby to utilize. These nuclear spins have ultra-long coherence

times, thus offering the possibility of storing quantum states via hyperfine interaction with

the electron spins. Moreover, the high-fidelity quantum transfer between the electron spins

and the nuclear spins enables near-deterministic entanglement swapping, which could boost

repeater rates [39].

Despite the above-mentioned attractive properties of single emitters, they are subject

to various decoherence sources such as a nuclear spin bath and lattice phonons [40]. Also,

lattice phonons can broaden the photon emission line, which makes the use of the emitters

at non-cryogenic temperatures challenging. But at the same time, these nuclear spins can

also be used to correct errors [41].

2.4.1 The Barrett-Kok scheme

One of the most widely used entanglement generation schemes in solid-state platforms is

the Barrett-Kok scheme [42]. It was utilized to demonstrate the first loophole-free Bell

inequality violation [22]. In order to generate entanglement between two solid-state qubits

(single emitters), the most straightforward way is to create spin-photon entangled states. As

illustrated in Fig. 2.2a, a spin has two states |↑〉 and |↓〉, and |↑〉 can be optically excited to

the excited state |e〉. The excited state only decays back to |↑〉 with a single photon emitted.

Thus, if we first put the spin in a superposition state as 1/
√

2(|↑〉+ |↓〉) and excite |↑〉 to the

excited state |e〉 using an optical π pulse, then after the decay, we generate a spin-photon
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Quantum system 1 Quantum system 2

BS

a.

b.

Figure 2.2: This figure is directly taken from [43]. (a) An illustration of an L-type quantum
system. There is a ground state doublet system |↑〉 and |↓〉 with one optically excited state
|e〉 that decays back to its initial ground state |↑〉. (b) An entanglement generation diagram.
Two fields from each quantum system interfere at a central beam splitter (BS) with two
single-photon detectors D1 and D2.

entangled state:

1√
2

(|↑〉 |1〉+ |↓〉 |0〉), (2.1)

where |1〉 and |0〉 represent a single photon state and vacuum state. Now, if we create two

such entangled states and interfere the emitted photons from the systems as shown in figure

2.2b, the which-path information is erased and a single detection event will herald one of the

Bell states |ψ±〉 = (|↑↓〉 ± |↓↑〉)/
√

2 as discussed in Sec. 1.4. However, not all single clicks

in detectors lead to the desired entangled states as the event where two photons with each

emitted from a single emitter can also contribute to spurious clicks when one photon gets

lost in transmission. This results in infidelities in the final state.

Barrett and Kok proposed to solve this problem by performing the second round of single-

photon detection after flipping the spin state for both systems by applying X operation and

re-exciting the state |↑〉 to |e〉 using an optical π pulse [42]. In this way, the single-photon

detection event can eliminate the components due to spurious clicks in detectors. This scheme

is known as the Barrett-Kok scheme. Using two rounds of single-photon detection, one can

generate entanglement between two distant spin qubits with a fidelity that is robust against
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photon loss and detector loss. However, there are two main experimental imperfections that

still reduce the fidelity: decoherence of spin qubits and dark counts in detectors. At cryogenic

temperatures, superconducting nanowire detectors can offer ultralow dark count rates, thus

significantly reducing this effect. The effect of decoherence of spin qubits depends on the

specific physical platforms we use. The detailed study on this can be found in [43].

2.5 Atomic ensemble-based quantum repeaters

The very first realistic quantum repeater scheme was proposed by Duan, Lukin, Cirac, and

Zoller [9] which is widely known as the DLCZ scheme. Ever since then, atomic ensemble-

based quantum repeaters have been under active investigation. The atomic ensembles are

utilized as quantum memories and offer the collective enhancement of interaction with single

photons. In the DCLZ protocol, the signal is stored as a collective excitation in the spin

state, and the retrieval of the signal can be achieved by reversing the process, which emits

the photon in a well-defined direction [9]. However, this protocol has a few limitations in-

cluding a strong trade-off between rate and high fidelity due to multiphoton emission, phase

fluctuations in the channel, inefficient entanglement generation, and non-telecom photon

emission [12]. Thus, numerous improvements have been proposed to overcome the issues

in the DLCZ scheme, which include the single-photon protocol [44], the two-photon detec-

tion protocol [45], and the atomic-frequency comb (AFC)-based protocol [46]. All of these

protocols greatly improve the rates and robustness but their physical implementations could

require different platforms such as rare-earth-ion doped crystals for the AFC memory. More-

over, the decoherence of ensemble-based repeaters only affects the distribution rate, not the

fidelity as the vacuum components are filtered out by post-selection.
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2.5.1 The DLCZ protocol

The basic idea of the DLCZ protocol uses spontaneous Raman emission to create two

ensemble-photon entangled states that are far away from each other, as well as a central

BS to interfere the two fields to create entanglement between two ensemble memories. The

entanglement swapping is then achieved by reading out the collective excitation in the mem-

ories and interfering the retrieved photons using a BS. As illustrated in Fig. 2.3, the system

has a huge number of atoms that have three levels: the excited state |e〉 and two ground

states |g〉 and |s〉. In the write process, all the atoms are first prepared in |g〉, and then

a laser pulse (write) excites the |g〉 − |e〉 transition with a detuning ∆. The excited state

decays to the spin state |s〉 by emitting a single photon. This occurs with a small probability

due to the small excitation amplitude that depends on the laser intensity [12]. The emitted

photon is called the Stokes photon. As the probability of emitting one photon is small, the

probability of emitting two photons or more is even smaller. The created excitation in the

state |s〉 is called the collective atomic excitation as the process moves one atom from |g〉

to |s〉 from all the atoms, thus generating a multi-atom superposition state. This process

creates a two-mode entangled state, which is given by [12]:

(1− 1

2
(χt)2) |0〉p |0〉s − iχt |1〉p |1〉s − (χt)2 |2〉p |2〉s +O((χt)3), (2.2)

where t stands for time, and χ characterizes the laser intensity and the subscripts s and p

stand for the photon and the collective spin with |0〉s = |gg · · · g〉 and |1〉s = 1/
√
N(|sg · · · g〉+

|gs · · · g〉 + · · · |gg · · · s〉 for single excitation in the ensemble. |2〉s then represents two exci-

tations. This equation shows that the probability of creating multiple pairs of excitations is

non-zero although it can be made quite small by choosing χt to be small. This is the main

limiting factor of the DLCZ protocol as multiple photon errors degrade the repeater fidelity

and there is a strong trade-off between the repeater rates and the fidelities.

With a small χt, one creates two ensemble-photon entangled states in two distant loca-
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Figure 2.3: The illustration of the level scheme in the DLCZ protocol. The system consists
of three levels: the collective ground state |g〉, the collective spin state |s〉, and the excited
state |e〉. In the write process, atoms are prepared in |g〉, and a laser pulse off-resonantly
excites the |g〉− |e〉 transition with a detuning ∆, which emits a Stokes photon with a small
probability. In the read process, a read pulse excites the |s〉 − |e〉 transition, converting
the single atomic excitation back to |e〉. This collectively emits an anti-Stokes photon in a
well-defined direction.

tions A and B. The Stokes photons interfere at a central BS and the single-photon detection

event projects the systems into an entangled state between two distant quantum memories

as shown in Fig.2.4(a). The created entangled state is given by [12]:

|ψab〉 =
1√
2

(|0〉a |1〉b + |1〉a |0〉b e
iθab), (2.3)

where θab is the relative phase between the modes a and b due to transmission in the fiber

and pump lasers. After we establish two links A-B and C-D, we can perform entanglement

swapping to create entanglement in A and D. This is accomplished using the ”read process”

shown in Fig. 2.3. A read pulse converts the atomic excitation to the excited state |e〉

followed by the emission of an anti-Stokes photon in a well-defined direction. The anti-

Stokes photons then are sent to a central BS, and the single photon detection heralds the

successful swapping, thus creating entanglement between A and D as illustrated in Fig.

2.4(b).

As mentioned earlier, the DLCZ protocol has several limitations [12]. The strong trade-
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Figure 2.4: (a) Entanglement generation of two remote ensembles at A and B in the DLCZ
protocol. The ensembles (QM) emit Stokes photons with a small probability and the photons
travel through optical fibers (dashed line) to a central BS where a single photon detection
either in detector d or d̃ projects the systems to an entangled state. (b) Entanglement
swapping of two links A-B and C-D. The anti-Stokes photons are read out and interfere at
a central BS for B and C. Again, the single photon detection heralds the storage of a single
excitation in either A or D, thus creating an entangled state between the memories at A and
D.
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off between its efficiency and fidelity significantly restricts its performance. As the emission

probability of Stokes photon must be kept low in order to reduce multi-photon errors, the

entanglement generation efficiency is thus very low. This drawback can be eliminated using

the single-photon protocol which is presented in the next section and is adopted in the

paper presented in Chapter 5. Moreover, as can be seen in Eq. (2.3), the relative phase

must be stable in the channel during transmission. This could be realized using Sagnac-

type configurations or using a two-photon detection scheme [45]. Besides, telecom photons

are ideal for long-distance communications but so far, none of the atomic ensembles offer

photon emission in telecom bandwidths. Thus, we either need frequency conversion or use

photon-pair sources [46] to overcome this issue.

2.5.2 The single-photon protocol

The single-photon protocol was proposed by Sangouard et al. in 2007 to overcome the limi-

tation imposed by multiphoton emission in the DLCZ protocol [44]. It utilizes single-photon

sources and atomic ensembles to create ensemble-photon entangled states for entanglement

generation and entanglement swapping is achieved by heralding retried signals, similar to

the DLCZ protocol. However, the memory protocol can be pretty flexible depending on the

properties of ensembles species. The entanglement generation process is illustrated in Fig.

2.5(a). For the node at A, a single photon emitted from the source after a beam splitter

can be described as (αa†1 + βa†2) |0〉 where α, β are reflection and transmission amplitudes

of a beam splitter, and they satisfy the relation |α|2 + |β|2 = 1. a†1 and a†2 are the creation

operators for the reflected photon and transmitted photon respectively. The same is true

for the node at B where the state of a single photon after a beam splitter is (αb†1 + βb†2) |0〉.

Thus, the joint state is given by:

[α2a†1b
†
1 + αβ(a†1b

†
2 + a†2b

†
1) + β2a†2b

†
2] |0〉 . (2.4)
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Figure 2.5: (a) Entanglement generation of two remote ensembles at A and B in the single-
photon protocol. The single-photon source emits a photon that either transmits through the
beam splitter or gets reflected to enter the quantum memory (QM). The transmitted photon
travels through optical fibers (dashed line) to a central BS where a single photon detection
either in detector d or d̃ projects the systems to an entangled state. (b) Entanglement
swapping of two links A-B and C-D. The stored photons are read out and interfere at a
central BS for B and C. The single photon detection heralds the storage of a single photon
in either A or D, thus creating an entangled state between the memories at A and D.
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The first term in this state is the case where both single photons are reflected to be stored in

quantum memories, ideally yielding no heralding in detectors. The second and third terms

are the main contributions to single photon heralding where a†1 and b†1 are to be stored in

quantum memories. The last term could also lead to the single-photon detection event when

one of the two photons gets lost in the transmission, thus creating vacuum components.

After the detection of a single photon in one of the detectors, we obtain [44]:

α2 |ψab〉 〈φab|+ β2 |0〉 〈0| , (2.5)

where |ψab〉 = (1/
√

2)(a†1 + b†1) |0〉 that is the entangled state shared between the two remote

memories at A and B and the vacuum state |0〉 represents an empty memory.

Once we successfully establish two links A-B and C-D, we can perform entanglement

swapping to propagate the entanglement between A and D. As illustrated in Fig. 2.5(b),

stored photons in memories can be retrieved and sent to a central BS through optical fibers.

Again, the single-photon detection heralds the entanglement between A and D, thus com-

pleting the swapping process. In practice, there are no ideal single-photon sources but one

can use atomic ensembles to well approximate single-photon sources. Although this protocol

could still suffer from multiphoton errors due to imperfect single-photon sources, the trade-

off between the repeater fidelity and rate is not as significant as that in the DLCZ protocol.

In addition, the entanglement generation efficiency is considerably enhanced compared to

the DLCZ protocol [12].

2.6 Applications

2.6.1 Secure communications

One of the most important applications of a quantum network is quantum-enabled secure

communication. In classical communication, suppose we wish to share a random secret key
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between two parties that can be far away from each other, in reality, this secret key can be

eavesdropped by a third party which could intercept the communication channel and make

copies of the shared key. However, this is not the case in quantum communication where

photons are used to encode the information, and thanks to the no-cloning theorem, it is

impossible for the eavesdropper to perfectly clone the shared quantum key. This method was

first proposed by Charles Bennett and Gilles Brassard in 1984, which is now known as BB84

protocol [26]. In their protocol, photons are prepared in two non-orthogonal polarization

bases (e.g. rectilinear and diagonal), and they are transmitted from Alice to Bob. Then,

Bob needs to measure these photons in the basis of his choosing, and they need to classically

communicate to compare the outcomes. At last, they only keep the same measurement

outcomes to establish the key.

As the eavesdropper cannot perfectly clone the quantum states, he/she has to make a

guess about what basis each photon is in, but the success probability of doing so scales

as (1/2)n with n being the length of the bit string of the transmitted key, which becomes

very small when n is large. Moreover, any wrong guess would lead to disagreements on the

measurement outcomes shared between Alice and Bob, which would enable them to detect

the eavesdropper. Notably, there is also the entanglement-based quantum key distribution

protocol [47]. The quantum key distribution (QKD) protocols are secure against eavesdrop-

ping based on the principles of quantum mechanics, which offers security beyond classical

communication. For long distances, quantum repeaters are needed to overcome the loss in

direct transmission to distribute keys, and for longer distances over 1000 km, quantum satel-

lites are required to perform QKD between continents. To date, there has been plenty of

experimental demonstrations of QKD [48, 49, 50, 51, 52], which has achieved over 300 km

distance on the ground and about 7600 km on satellite.

32



2.6.2 Blind quantum computing

In classical computation, despite that personal computer has become readily accessible, the

need for the client to delegate a computational task to the server to perform calculations

is never abated, which is often in the form of cloud computing. This need can also be

found in quantum computation where ideally the classical client delegates a certain quantum

computational task to the server who has a universal quantum computer to perform this task

while keeping the structure of the task hidden. This is known as blind quantum computation

(BQC) [53]. However, so far the security of BQC is restricted to two settings: a semi-classical

client with restricted quantum capabilities and a single quantum server [54, 55] or a classical

client without any quantum resources and multiple non-communicating quantum servers

[56]. In the first setting, quantum communications are needed to send information between

the client and the server using photons. In the second setting, the client only classical

communicate with the multiple servers who share entanglement with each other. Thus,

quantum networks are imperative to achieve BQC. Moreover, the client also should be able

to verify the returned results from the server(s) to confirm that the calculations have been

done correctly. So far, a few experimental demonstrations of BQC have been successfully

shown [2, 57, 58] although they are only performed in a short distance. For long-distance

BQC, we need quantum networks integrated with quantum repeaters, which are currently

under intensive development.

2.6.3 Distributed quantum computing

Scaling up a quantum computer has been a major roadblock to overcome in order to use

it for solving complex problems both in science and industry. So far, we have entered

the era of having noisy intermediate-scale quantum (NISQ) devices [59], which have been

demonstrated to offer computational advantages over classical computers in solving specific

problems [60, 61, 62, 63] with less than 100 qubits. However, we need many more qubits to

take it further to run many quantum algorithms to solve classically-intractable computational
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problems such as Shor’s algorithm [64], Grover’s algorithm [65] and quantum algorithm

for linear systems of equations [66]. One promising approach to this problem is to have

smaller quantum processors and connect them by quantum and classical networks. This

method has been used in classical computing to distribute a heavy computational task to

many processors. The same idea can apply to quantum computing as well but it is more

complicated. The main striking difference is that besides classical communication, we also

need quantum networks for networking distant quantum processors in order to perform non-

local CNOT gates [67]. This serves as another important motivation for developing quantum

networks.

2.6.4 Quantum clock synchronization

The optical atomic clocks are so far the most precise tools for measuring frequency and time

[68]. Having access to a set of synchronized clocks distributed in geographically separated

locations could have a significant impact on various current technologies such as the global

positioning system (GPS), traffic control, and long baseline interferometry [69], and could

also lead to new applications such as probing the properties of dark matter [70] and space-

time variation of fundamental constants [71]. For independent quantum clocks, there are

two main methods for achieving synchronization: the Einstein protocol combined with time

transfer links [72] and quantum versions of Eddington’s protocol [73], both of which are

inspired by their classical counterparts. However, the accuracy and precision of measuring

independent quantum systems are limited by the standard quantum limit (SQL) where the

error goes inversely proportional to
√
N with N being the number of clocks. But if these

clocks are entangled, then measurements can beat the SQL to achieve the Heisenberg limit

where the error goes inversely proportional to N . Thus, this leads to a third way of clock

synchronization: entanglement-based quantum clock synchronization, originally proposed by

Jozsa and others [74]. As this method utilizes non-local resources to achieve synchronization

instead of exchanging light or matter between parties, it is more robust. This two-party
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protocol has been generalized to multi-party protocol [75] with experimental demonstrations

for both [76, 77].

Both the entanglement-based protocols and quantum Eddington’s protocols have an out-

standing challenge that a common phase reference is required for all parties to control and

stabilize the phase that each local clock qubit picks up during precession. For quantum Ed-

dington schemes, this issue can be solved by introducing a two-way exchange of clock qubits

between parties [78] but it is challenging to do so for a long distance (even intercontinen-

tal distance) as space-based quantum communication for distributing entanglement is likely

needed. This potential solution in principles takes advantage of entanglement as well. More-

over, it has been shown that by using quantum purification, the quantum entanglement-based

scheme, i.e. in [74] can overcome the common phase reference issue [79]. Also, by introducing

a center clock that connects all other local clocks in a quantum network of clocks, one can

interrogate the collective phase contributed by all parties, stabilize it and use it to correct

each clock [80].

2.6.5 The quantum internet

The ultimate application of quantum networks is a global quantum internet that is able

to connect remote quantum computers and quantum information processors [4, 5, 6], which

could even allow computations that outperform the most powerful monolithic quantum com-

puters in the future. This likely requires quantum satellites to reach intercontinental con-

nections. There have been a few successful demonstrations of quantum experiments based

on low-Earth-orbit (LEO) satellites [51, 81, 82, 52, 83]. In order to have longer service and

wider coverage, geostationary satellites can be used, or we can combine LEO satellite links

with the terrestrial quantum repeaters [84] which also offers a solution to avoid significant

photon loss in the channel between the ground stations and the cities [5], or we can equip

LEO satellites with quantum memories [85]. Moreover, as the first-generation quantum com-

puters will likely be based on superconducting qubits, a global quantum network should be
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able to interface optical photons with microwave photons. This requires the development of

quantum transducers, which can interconvert microwave photons and optical photons (ide-

ally telecom photons for long-distance connections) into each other [86]. There has been a

great deal of effort in using different quantum systems to design transducers, which include

atomic ensembles [87, 88, 89, 90, 91], electro-optomechanical systems [92, 93], and electro-

optical systems [94, 95]. Among them, rare-earth (RE) ions and T centers [96] are promising

as they offer level structures with addressable microwave transitions and optical transitions

in telecom bands. In particular, 167 Er ions have a hyperfine splitting of 5 GHz even at zero

magnetic fields, which can be used to design transducers for superconducting qubits while

avoiding disturbing them [91]. Also, solid-state systems are attractive in scalability and could

be potentially integrated with superconducting systems. The details of 167 Er ions-based and

T center-based transducers can be found in [91, 90] which are not included in the thesis.
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Chapter 3

Room-temperature quantum systems

In this chapter, I will introduce the main features of quantum systems that can operate at

ambient conditions, which serve as important ingredients in our proposed room-temperature

quantum repeaters [97, 98]. The details of these two proposals can be found in Chapter 4

and Chapter 5.

3.1 Nitrogen-vacancy centers

The nitrogen-vacancy (NV) center is a naturally occurring point defect in diamond, which

is composed of a nitrogen atom and a vacancy as shown in Fig. 3.1(A). The vacancy can be

neutral (NV0) or has an electron (NV−). The energy structure of the negatively charged NV

center (NV−) is shown in Fig. 3.1(B) where the ground state is a triplet state containing two

degenerate states |ms = ±1〉 and the state |ms = 0〉 along the z axis. The states |ms = ±1〉

can be separated by applying an external magnetic field, one of which can be used with

|ms = 0〉 as an electron qubit. The excited states have a large phonon sideband (PSB) at

room temperature but at cryogenic temperatures, the states |ms = ±1〉 in the excited state

3 E can be resolved. The ground states |ms = ±1〉 can be excited to their excited states

with a green laser at 532 nm but the luminescence spectrum ranges from 638 nm to 800

nm due to the PSB. In addition, there are singlet states 1 A1 and 1 E, which allows for non-

37



Figure 3.1: (A) Schematic of the NV center in diamond, which is directly taken from [99].
The NV center is a point defect composed of a nitrogen atom (green) and a vacancy (V).
When the vacancy has an electron, it is negatively charged, which is often labeled as NV−.
The grey dots represent 12 C with a natural abundance of around 98%, and the yellow dot is
13 C isotope with an abundance of around 1.1%. (B) The energy structure of NV− at room
temperature. The ground state is a triplet state with two degenerate states |ms = ±1〉 which
can be resolved by applying an external magnetic field. At ambient conditions, the excited
states and the zero-phonon-line (ZPL) emission (638 nm) are significantly broadened. Also,
the ZPL only takes up 2% of the emission spectrum. There also exist meta-stable single
states 1 A1 and 1 E, which allows for non-radiative decay from the excited states to the
ground states and the emission of near-infrared photons.
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radiative decay from the excited states to the ground states and the emission of near-infrared

photons. The non-radiative transitions are spin-dependent, which enables the excited states

|ms = ±1〉 to decay to the ground state |ms = 0〉 without preserving the spin. Thus, this

property is used to achieve spin polarization for initializing the system. Moreover, there are

two types of carbon atoms 12 C and 13 C, and the isotopes 13 C and 15 N have a nuclear spin

of I = 1/2, and 14 N has a nuclear spin of I = 1. They can interact with the electron spin

in the NV center via hyperfine coupling [100, 101, 35]. The strength of the coupling can

vary from a few MHz to more than 100 MHz, depending on the position [102, 103, 35]. The

electron-nuclear spin Hamiltonian is given by

He,n = ∆0S
2
z + µeBSz + µnBIz + ASzIz, (3.1)

with the zero-field splitting ∆0=2.87 GHz, the electronic spin gyromagnetic ratio µe = −2.8

MHz/Gauss, the nuclear spin gyromagnetic ratio µn =1.07 kHz/Gauss. Sz and Iz are spin

operators in the z direction for the electron spin and nuclear spin respectively. The external

magnetic field B is applied along the symmetry axis of the NV. The CnNOTe, where n is the

nuclear spin which is the control qubit and e is the electron spin which is the target qubit

gate can be implemented by a Ramsey sequence on the electron spin at room temperature.

The spin properties of NV centers are excellent even at room temperature, which has

millisecond-long electron spin coherence times [35, 104, 105, 106]. Moreover, nuclear spins

in diamond have even longer coherence times at room temperature than the electron spins

(exceeding a second [35]), which can be used as quantum memories. The mapping between

the nuclear spin and the electron spin can be achieved via hyperfine coupling, which consists

of the CNOT gates and readout of the electron spin states. The gate operations have

been demonstrated to achieve a high fidelity of 99.92% at room temperature [107]. The

readout of the nuclear spin can only be done through the electron spin as the nuclear spin

is optically inaccessible. There are various methods for the electron spin state readout at
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room temperature such as spin-to-charge conversion [108] and photoelectrical imaging [109]

to achieve a high-fidelity readout.

Despite the outstanding spin properties of NV center at room temperature, the zero-

phonon line (ZPL) where the emission and absorption wavelengths are not phonon-assisted

only takes up 2% at room temperature, and the ZPL itself is considerably broadened, which

makes it challenging to use NV centers for the spin-photon interface at ambient conditions

[110]. Thus, if we can bypass the phonon-induced broadening in the ZPL, we will be able

to fully utilize them to build quantum networks that operate at room temperature. We

will see that this can be achieved by using optomechanics, and the details can be found in

Chapter 4. Furthermore, due to the coupling with a nuclear spin bath (numerous nuclear

spins surrounding the electron spin), the coherence time of NV electron spin is adversely

affected. The dynamical decoupling technique is typically used to mitigate this effect where

the electron spin can be decoupled from the nuclear spin bath via a sequence of pulses

that flip the spin, enabling the millisecond-long coherence time at room temperature [105,

111]. Furthermore, one can use a microwave source to dress the triplet spin states, which

produces the dressed states that are robust against the nuclear spin bath while providing

high sensitivity to the external magnetic field [112]. Both the dynamical decoupling and

microwave dressing are used in Chapter 4.

3.2 Optomechanics

A generic optomechanical system comprises a laser-driven optical cavity and a mechanical

oscillator as shown in Fig. 3.2. Due to radiation pressure, the end mirror vibrates, which

shifts the cavity resonance frequency by the amount determined by the mechanical amplitude.

The total Hamiltonian of the optomechanical system is given by [113, 114]:

Ĥ0 = ~ωcav(x)â†â+ ~Ωmb̂
†b̂+ ~αin(âeωLt + â†e−iωLt), (3.2)
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Figure 3.2: Schematic of a generic optomechanical system. The optical cavity is driven by
a laser, and the end mirror is attached to an oscillator. The cavity mode â couples to the
mechanical mode x̂ by the radiation pressure from the laser.

where ωcav(x) is the cavity resonance frequency that is modulated by the mechanical am-

plitude x and Ωm is the mechanical frequency, and ωL is the driving laser frequency. αin is

the drive strength, and â and b̂ are the cavity photon and mechanical phonon annihilation

operators respectively. ωcav(x) can be well approximated as ωcav −Gx with G = −∂ωcav/∂x

being the optical frequency shift displacement. We also have x̂ = xZPF(b̂ + b̂†) with xZPF

being the zero-point fluctuation of the oscillator. Thus, the total Hamiltonian can be written

as

~ωcavâ
†â+ ~Ωmb̂

†b̂− ~g0â
†â(b̂+ b̂†) + ~αin(âeiωLt + â†e−iωLt), (3.3)

where g0 = GxZPF is the vacuum optomechanical coupling strength. It is convenient to

work with a time-independent Hamiltonian so we need to rotate the above Hamiltonian at

the laser frequency ωL by applying the unitary Û = exp
(
iωLâ

†ât
)

[113], which gives the

transformed Hamiltonian:

− ~∆â†â+ ~Ωmb̂
†b̂− ~g0â

†â(b̂+ b̂†) + ~αin(â+ â†), (3.4)

where ∆ = ωL − ωcav.
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Now, we introduce the ”linearized” approximation of this Hamiltonian. Driven by a

strong laser, the dynamics of the cavity field reach a steady state, and the cavity mode

can be written as â = α + δâ where α is the mean-field amplitude and δâ is the quantum

fluctuations. This is also true for the mechanical mode b̂, which reaches a steady state and

can be written as b̂ = β + δb̂ where β is the average mechanical amplitude and δb̂ is the

corresponding quantum fluctuations. By substituting these into Eq. (3.4), choosing α and

β properly, and omitting the terms that are independent of δâ and δb̂, we end up obtaining

[114]:

− ~(∆ +
2g2

0α
2

Ωm

)δâ†δâ+ ~Ωmδb̂
†δb̂− ~g0α(δâ+ δâ†)(δb̂+ δb̂†)− ~g0δâ

†δâ(δb̂+ δb̂†). (3.5)

Furthermore, the last term can also be omitted as it is not enhanced by α compared to the

third term. Now, if we choose a new ∆ = ∆ + 2g2
0α

2/Ωm, we obtain

− ~∆δâ†δâ+ ~Ωmδb̂
†δb̂− ~g(δâ+ δâ†)(δb̂+ δb̂†), (3.6)

where g = g0α is often referred to as “the optomechanical coupling strength”, which depends

on the laser strength. Depending on the detuning ∆, there are three different regimes that

the optomechanical system can be in. When ∆ ≈ −Ωm, the system is in the so-called

red-detuned regime. In this situation, the interaction term in Eq. (3.6) can be written

as −~g(δâ†δb̂ + δâδb̂†) using rotating-wave approximation (RWA) [113]. This allows for

quantum state exchange between the two modes, thus making the cooling of the oscillator to

the ground state possible, even from temperature [115]. When ∆ ≈ Ωm, the system is in the

blue-detuned regime. The interaction now can be written as −~g(δâ†δb̂†+ δâδb̂) using RWA,

which allows for efficiently entangling the two modes [113]. The last regime is when ∆ = 0,

the interaction term remains. In this regime, we are able to perform quantum nondemolition

(QND) measurement on the optical amplitude δâ + δâ† or on the mechanical displacement
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δb̂+ δb̂† as either of them commutes with the Hamilton in Eq. (3.6).

So far, we have not considered any dissipations in the system but in most cases, we are

dealing with open quantum systems which inevitably suffer from decoherence. It is common

to use quantum Langevin equations to describe the dynamics of open quantum systems.

Based on Eq. (3.6), the linearized quantum Langevin equations are given by

δ ˙̂a = (i∆− κ

2
)δâ+ ig(δb̂+ δb̂†) +

√
κâin (3.7)

δ
˙̂
b = −(iΩm +

Γm
2

)δb̂+ ig(δâ+ δâ†) +
√

Γmb̂in, (3.8)

where κ is the cavity decay rate and Γm = Ωm/Qm is the mechanical damping rate with Qm

being the quality factor. âin and b̂in are the vacuum noise operator and the thermal noise

operator for the cavity mode and the mechanical mode respectively. Here, we ignore the

thermal noise in the cavity as for optical fields, the thermal occupation is very close to zero

even at room temperature [113]. However, this is not the case for the oscillator as it operates

at MHz or even lower frequencies, which makes the thermal occupation very large at room

temperature. This is why the setup is typically cooled to cryogenic temperatures. In order

to make the setup work even at room temperature, we need to have an oscillator with an

ultra-high quality factor. Amazingly, levitated particles feature quality factors up to 108 at

room temperature [116], and patterning a photonic crystal on the ultra-thin, high-stress SiN

membranes enables quality factors up to 108 at room temperature as well [115]. Moreover,

soft clamping with strain engineering on SiN membranes has allowed room-temperature

quality factors to approach 109 [117, 118].

3.3 Hot alkali gases

The alkali metals are group 1 chemical elements, which consist of Li, Na, K, Rb, Cs, and Fr.

The energy structure of alkali atoms has many addressable excited states and two ground
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Figure 3.3: Schematic of a general Λ-type memory interacting with a control field Ω and
a signal field S. The control field can also couple the |g〉 − |e〉 transition which generates
the anti-Stokes field A during the retrieval process. As there are four fields present in the
system, it is also called four-wave mixing (FWM).

states which are separated by hyperfine splitting. One can select a specific excited state and

together with two ground states, this three-level system can be used as quantum memories at

both laser-cooled [119, 120] and room temperatures [34, 33, 121]. Unfortunately, none of the

alkali gases has the telecom wavelength, so frequency conversion is needed for long-distance

communication in optical fibres. At room temperature and above, a buffer gas is typically

used to extend the storage time but still due to the atomic collisions between the hot alkali

gas and the buffer gas, and the collisions in the hot alkali gas itself, the storage time is

limited to tens of microseconds [122, 28]. This detrimental effect may be reduced by the

motional averaging method [123, 124], which enables millisecond-long coherence time but

is still insufficient for long-distance quantum networks [12]. Also, using a decoherence-free

subspace of spin states [33] can extend the storage time to a second but this has not been

achieved at the single-photon level. Interestingly, noble gases can be used to interface with

alkali gases to enable hours-long storage time, which will be introduced in the next section.

The most frequently used hot alkali gases in quantum memories are Rb and Cs as these

two types of gases have ground state splittings that are on the order of a few GHz, which

makes the effect of four-wave mixing (FWM) less severe than using other types of hot alkali
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atoms such as Potassium but FWM is still a significant roadblock towards using hot alkali

gases for quantum networks [125, 126]. As shown in Fig. 3.3, FWM arises in Λ-type quantum

memories where a strong control field not only couples the transition from the excited state

|e〉 to the spin state |s〉 but also couples the transition from the ground state |g〉 to the

excited state |e〉, thus generating the anti-Stokes field when we retrieve the signal [127]. In

some literature, the spin state |s〉 is chosen to be the higher of the two ground states so the

off-resonant Raman scattering produces Stokes field but here the state |s〉 is chosen to be the

lower one. The effect of FWM of electromagnetically induced transparency (EIT) memory in

free space can be computed using the so-called FWM strength parameter x = dγe/∆gs where

d is the optical depth of the ensemble and γe is the decoherence rate of the excited state and

∆gs is the splitting between |g〉 and |s〉. When x� 1, the fidelity is well approximated as

FFWM ≈ exp(−
√

3d
|Ω|2

∆2
gs

) (3.9)

for single-photon signals with a frequency width much narrower than the transmission width

[126]. In principle, this formula can apply to other types of adiabatic quantum memories

both in free space and in the cavity. However, in the cavity, one needs to replace the optical

depth d with the cooperativity C that measures the strength of the interaction between the

cavity field and the ensemble [128]. At low temperatures, it is readily easy to achieve x� 1

even with high optical depths (more than 100) but at room temperature, as γe is largely

increased due to the collision with buffer gas, the Doppler broadening, and self-broadening,

it is very difficult to achieve x� 1 so FWM becomes quite significant.

Therefore, there has been some effort in solving this problem, which includes blocking

FWM channels by polarization selection rules [129], Raman absorption-enabled suppres-

sion [130], cavity engineering [131], by means of coherent destructive interference of FWM

[132], and noise-free memory protocol based on two-photon off-resonant cascaded absorption

(ORCA) [121]. The idea of using a cavity to suppress FWM is based on tuning the cavity
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to be in anti-resonance with the anti-Stokes field and in resonance with the signal. The

advantage of using a ring cavity to suppress FWM noise compared to other solutions is that

it offers enhanced light storage and retrieval efficiency while only introducing a cavity. It has

been experimentally verified, reporting a noise floor of around 1.5× 10−2 photons per pulse

in a Raman-type hot vapor memory [133]. This method is adopted in our second proposal

paper presented in Chapter 5.

3.4 Noble-gas spins

The noble gases are group 18 chemical elements, which are He, Ne, Ar, Kr, and Xe. As

they have very low chemical reactions, they are often called inert gases. The odd isotopes

of noble gases (e.g. 3 He and 129 Xe) possess non-zero nuclear spins, which are isolated from

the environment by electronic shells. Thus, they maintain hours-long coherence time even at

room temperature [134]. However, these nuclear spins states are optically inaccessible, thus

making it difficult to utilize them in quantum information processing, especially quantum

communication. A quantum interface between noble-gas spins and alkali atoms has been

proposed based on weak spin-exchange collisions [135], which enables the coherent coupling

between these two ensembles of atoms. The effective coupling rate is given by:

J = ζ
√

(2I + 1)papbnanb/4, (3.10)

where ζ is the local average interaction strength of an alkali-noble atom pair in a single

collision. pa and pb are the polarization degrees of alkali and noble gases, and na and nb are

the densities of alkali and noble gases in the cell. I is the nuclear spin of an alkali atom.

Thus, this interaction strength J is the effective interaction strength in multiple collisions

with each collision averaging over all alkali-noble atom pairs in the ensembles. Given the

fixed polarization degrees and pressures, larger values of J can be obtained by choosing

alkali-noble gas mixtures that have larger values of ζ. Moreover, we have ζ = 〈σvφ〉 /q
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where σ is the spin-exchange cross section and v is the relative thermal velocity and φ is the

mutual precession angle and q is the so-called Larmor slowing down factor determined by

the degree of polarization [135]. It is clear that atom pairs that have larger spin-exchange

cross sections are preferred to have strong interactions. Thus, Rb-Xe and Cs-Xe are typically

preferred. However, the decoherence rates of alkali and noble gases also depend on various

parameters including cross sections, which are given by

γa = nb(kSE + σSRv) + naσSDva/2, (3.11)

γb = kSEna + T−1
b , (3.12)

where kSE = 1/4 〈σvφ2〉 is the binary spin-exchange rate coefficient and σSR and σSD are

the collisional spin-rotating cross section and spin-destruction cross section (alkali atoms)

respectively. va is the mean-field atomic velocity of alkali atoms. Tb is the coherence time

of noble-gas atoms when there are no alkali atoms, which is limited by the fluctuations and

inhomogeneity of the magnetic field [134]. Thus, the hybrid species K-He is preferred in this

case to minimize the decoherence. In general, we have γb � γa. Overall, one needs to take

both factors into consideration to determine what mixture is more favorable.

Due to the effect of spatial diffusion, there could be many spatial modes for the alkali

and noble gases. For simplicity, here we assume that they are single uniform modes, which is

a good approximation in the so-called light-dominated regime [136] and this approximation

is adopted in our work as well as presented in Chapter 5. Now, the dynamics of the alkali

and noble-gas spins can be well described by the following Heisenberg equations of motion

[135]:

∂tâ = −(iωa + γa)− iJb̂+ F̂a, (3.13)

∂tb̂ = −(iωb + γb)− iJâ+ F̂b, (3.14)

where ωa and ωb are the Larmor frequencies of the alkali and noble-gas atoms respectively,
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and F̂a and F̂b are the corresponding Langevin noise operators for the two types of atoms.

The coherent exchange interaction between alkali and noble gases enables us to store signals

(photons) as a collective spin excitation in noble gas through alkali atoms, and the storage

time can be significantly enhanced, which has been experimentally demonstrated with the

coherence time of a minute [137] and an hour [138]. However, due to the fact that the

exchange interactions are generally pretty weak, the coupling strength so far has only been

demonstrated to be 78±8 Hz [138] but this can be increased to 1000 Hz with higher densities

(by increasing pressures) and higher polarization degrees for both alkali and noble gases [135].

Moreover, in high-pressure configuration, radiation trapping becomes severe, which makes

the polarization of alkali atoms difficult. Therefore, we need to use extra buffer gas such

as N2 to mitigate this effect, but this further broadens the linewidth of the excited state of

alkali atoms. When selecting the species of the alkali and noble gases, 39 K-3 He mixture has

been preferred as in high-pressure configuration, the decoherence rate of the collective spin

state in Potassium is much smaller than that in Caesium and Rubidium (More details are

discussed in Chapter 5). Therefore, this opens the door for using hybrid alkali-noble gases

to build quantum networks that can operate without cryogenics.
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Chapter 4

Proposal for room-temperature

quantum repeaters with NV centers

and optomechanics

4.1 Preface

The successful implementation of global quantum networks would have many applications

from secure communication, blind quantum computing, and private database queries to a

“quantum internet” of networked quantum computers and other quantum devices. Here we

propose a quantum repeater architecture that operates at ambient conditions, which is based

on spin-optomechanical interfaces and nuclear spins in diamond with the latter serving as

long-lived quantum memories.

This work was done in collaboration with a few co-authors. My main contributions to

this work include proposing the architecture scheme, quantifying the entanglement gener-

ation fidelity and efficiency, and computing the repeater fidelities. I also drafted the first

manuscript.
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Quantum 6, 669 (2022)

J.-W. Ji, Y.-F. Wu, S. C. Wein, F. Kimiaee Asadi, R. Ghobadi,

and C. Simon

Institute for Quantum Science and Technology, and Department of Physics &
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Abstract

We propose a quantum repeater architecture that can operate under ambient conditions.

Our proposal builds on recent progress towards non-cryogenic spin-photon interfaces based

on nitrogen-vacancy centers, which have excellent spin coherence times even at room temper-

ature, and optomechanics, which allows to avoid phonon-related decoherence and also allows

the emitted photons to be in the telecom band. We apply the photon number decomposition

method to quantify the fidelity and the efficiency of entanglement established between two

remote electron spins. We describe how the entanglement can be stored in nuclear spins and

extended to long distances via quasi-deterministic entanglement swapping operations involv-

ing the electron and nuclear spins. We furthermore propose schemes to achieve high-fidelity

readout of the spin states at room temperature using the spin-optomechanics interface. Our

work shows that long-distance quantum networks made of solid-state components that op-

erate at room temperature are within reach of current technological capabilities.
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4.2 Introduction

The successful implementation of global quantum networks would have many applications

such as secure communication [1], blind quantum computing [2], private database queries [3],

ultimately leading to a “quantum internet” [4, 5, 6] of networked quantum computers and

other quantum devices. This will require photons for establishing long-distance connections,

as well as stationary qubits for storing and processing the quantum information. In partic-

ular, since quantum information cannot be amplified, quantum repeaters are likely to be re-

quired [12, 139, 5]. Most current approaches to such quantum networks require either vacuum

equipment and optical trapping or cryogenic cooling [9, 10, 11, 140, 36, 12, 141, 142, 143],

which adds significantly to the difficulty of scaling up such architectures. There is no-

table recent work towards quantum networks with room-temperature atomic ensembles

[123, 33, 144, 145, 124], but it is also of interest to investigate solid-state approaches, which

might ultimately be the most advantageous in terms of scalability.

Nitrogen-vacancy (NV) centers have millisecond-long electron spin coherence times even

at room temperature [35, 104, 105, 106], making them excellent candidates for being station-

ary qubits in quantum networks [140, 36, 22]. So far, NV-based room-temperature quantum

information processors were proposed based on the spin-chain model where the interactions

between electron spin qubits are mediated by the nuclear spin chain [101] or based on the

strongly interacting fluorine nuclear spins [146]. It is intriguing to ask whether photonic

links can be implemented for NV centers at room temperature. Unfortunately, the phonon-

induced broadening of optical transition poses a serious challenge to using NV centers in

generating spin-photon entanglement at room temperature [110]. An alternative approach

to overcome this problem could be using quantum optomechanics [147], where the effective

spin-photon coupling is mediated by an ultra-low loss mechanical resonator [117, 148] to

bypass the direct spin-photon interface. It was shown theoretically that this approach allows

the emission of highly indistinguishable photons [149] at room temperature, which suggests

that high-fidelity entanglement creation should be possible as well. Further, this interface
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allows the freedom of choosing the wavelength of emitted photons. Thus, one could have the

emission at telecom band, which is ideal for connecting distant NV centers through optical

fibers.

Nuclear spins in diamond have even longer coherence time at room temperature than

the electron spins, exceeding a second [35]. Therefore, these nuclear spins can be used as

quantum memory to store the entanglement both at ambient conditions [150], similar to

what is being done at cryogenic temperatures [37]. Electron and nuclear spin qubits can be

coupled via hyperfine interactions [100, 101, 35].

Based on the above line of thought, we here propose a room-temperature quantum re-

peater architecture based on NV centers and optomechanics. In our proposal the entan-

glement between two distant NV electron spins is established via photons following the

Barrett-Kok scheme [42, 38, 22]. We apply the photon number decomposition method [43]

to quantify and analyze the entanglement generation efficiency and fidelity. Mapping of

the electron spin entanglement onto nuclear spins is achieved via performing CNOT gates

and electron spin readout through the spin-optomechanics interface. Finally, entanglement

swapping is done using the same gate operations assisted by the readout of electron spin

and nuclear spin states. The quasi-deterministic gate operations allow us to distribute the

entanglement in the nesting-level free manner which outperforms other conventional nested

repeater protocols.

This paper is organized as follows. In Sec. 2, we introduce the quantum repeater ar-

chitecture, including the spin-optomechanics interface, as well as entanglement generation,

entanglement storage in nuclear spins, and entanglement swapping. The NV electron spin

readout at room temperature is discussed in Sec. 3. Sec. 4 discusses the repeater rate and

fidelity. Sec. 5 gives more details in implementation. We conclude and provide an outlook

in Sec. 6.
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Figure 4.1: (a) Room-temperature quantum repeater architecture. Here, we just show four
nodes and three links to demonstrate the basic logic of the quantum repeater protocol, which
proceeds in four steps. Step 1 is to generate the entanglement between two remote NV elec-
tron spins using the spin-optomechanics interface. Step 2 is memory mapping, which stores
the entanglement between two electron spins into the entanglement between two nuclear
spins. Step 3 is the same as step 1 for generating the entanglement between two remote
NV electron spins. Step 4 is to perform the entanglement swapping that establishes the
entanglement only between the first and the last nuclear spins. (b) Schematic of the spin-
optomechanics interface with membrane-in-the-middle design. The optomechanical system
consists of a SiN membrane oscillator placed inside the high-finesse cavity. A magnetic tip
is attached to this membrane. An NV center in bulk diamond is placed near the tip, such
that the oscillator is coupled to the dressed ground states of the NV center. A single telecom
photon is produced via the mechanically mediated interaction between the control laser and
the dressed NV center, while the cooling laser is on to keep the membrane oscillator near its
ground state.
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4.3 Quantum repeater architecture

The diagram in Fig. 4.1(a) illustrates the basic steps and components for building a room-

temperature quantum repeater architecture based on spin-optomechanics systems. A typical

quantum repeater features two basic ingredients: the entanglement generation between two

remote memories, and the entanglement swapping between two local memories to propagate

it further [4, 5]. Here, our physical systems also have these two components, and they

can operate at room temperature. One crucial component of our proposal is the spin-

optomechanics interface which was first proposed by R. Ghobadi et.al. [149]. Moreover, our

proposal features two kinds of qubits: the NV electron spins serve as communication qubits,

and the nuclear spins serve as memory qubits for storing the entanglement because they

have long coherence time even at room temperature [35, 150]. At cryogenic temperature,

experimental realizations of such diamond-based nuclear-spin memories have already been

demonstrated [37, 150].

This section is dedicated to the basic structure and components of our proposed archi-

tecture. We start with the introduction to the spin-optomechanics interface [149], and then

quantify the efficiency and fidelity of entanglement generation between two remote nodes

based on the recently developed photon number decomposition method [43]. Then we dis-

cuss entanglement storage and swapping under ambient conditions. The application of the

spin-optomechanics interface for the electron spin state readout at room temperature, which

serves as a crucial ingredient in the proposed architecture, is discussed in the next section.

4.3.1 Spin-optomechanics interface

The schematic of the spin-optomechanics interface is shown in Fig. 4.1(b). There are three

main components in the system: the NV electron spin, the mechanical oscillator (SiN mem-

brane), and the high-finesse optical cavity. The NV electron spin is coupled to the mechanical

oscillator via a magnetic tip that is attached to the oscillator, which requires the magnetic
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field gradient to produce the strong spin-mechanics coupling rate λ [149]. The red-detuned

control laser is used to induce the optomechanical coupling rate g. The NV electron spin must

be tuned to be resonant with the red-detuned control laser so that a single spin excitation

would be converted to a single photon emitted at the cavity frequency via the mechanical

oscillator. However, when the control laser is red-detuned from the cavity, it also starts to

cool the mechanical oscillator via the phonon sideband. This converts phonons to single

photons at the cavity frequency as well, which causes a thermal noise that degrades the

quality of the single photon from the NV electron spin. In order to reduce this noise, we

detune the control laser far from the phonon sideband ωm. Since the control laser is detuned

far from the phonon sideband, it is ineffective at cooling the mechanical oscillator. Hence,

we introduce a different laser on resonance with the mechanical oscillator to efficiently cool

it [149].

The triplet NV electron spin state {|0〉 , |−1〉 , |+1〉} is under the dressing of a microwave

source [149], which form a three-level dressed spin states {|0〉 , |D〉 , |B〉} that are noise-

protected from the nuclear-spin bath [151]. Only the bright state |B〉 = (|+1〉 + |−1〉)/
√

2

and the dark state |D〉 = (|+1〉 − |−1〉)/
√

2 couple to the mechanical oscillator with the

rate λ. The states |+1〉 and |−1〉 are two of the triplet ground states of the NV center. The

transition frequency between |B〉 and |D〉 is ωq, which is tuned to be the same as the control

laser via controlling the Rabi frequency of the microwave dressing source. The detuning δ

between the red-detuned control laser ωq and the phonon sideband ωm is δ = ωm − ωq. The

level diagram of this spin-optomechanics system is shown in Fig. 4.2(a).

Then, the system Hamiltonian is given by (~ = 1)

Ĥ = ωq(σ̂+σ̂− + â†â) + ωm(b̂†b̂+ ĉ†ĉ) + ĤI, (4.1)

where σ̂− = |D〉 〈B| is the lowering operator for the dressed NV spin states, and â and ĉ are

the control cavity mode and cooling cavity mode respectively, and b̂ is the oscillator mode.
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Figure 4.2: (a) The level diagram illustrates the coupling between the excited dressed NV
electron spin state and the mechanical phonon with the rate λ, and the coupling between
the mechanical phonon and the cavity photon with the rate g. Coupled states are denoted
as |spin,mechanics, cavity〉. A single photon is generated via the indirect coupling between
the spin and cavity mode through the oscillator and is then released by the cavity at the
rate κ, leaving the whole system in |D00〉. The dressed spin state has a dephasing rate
γ∗s , and the mechanical oscillator is dissipatively driven by the environment with the rate
γmnth. (b) The schematic of the four-level spin-cavity system after the adiabatic elimination
of oscillator mode. The effective coupling strength between the cavity and the NV spin is
λg/δ. This effective spin-cavity system has five effective decoherence rates: the pure spin
dephasing rate γ∗s , the mechanically-induced thermal decay and excitation rates γ1 and γ2

for the spin, and the effective decay rate κ1 and mechanically-induced thermal excitation
rate κ2 for the cavity mode.

ĤI stands for the interaction term, and it takes the following form:

ĤI = (λσ̂− + gâ+ gcĉ)(b̂
† + b̂) + H.c., (4.2)

where λ is the spin-mechanics coupling strength, g is the control optomechanical coupling

rate, and gc is the cooling optomechanical coupling rate.

Under the condition that δ � {λ, g} and κc < ωm (the sideband-resolved regime), and

the cooling mode significantly reduces the thermal noise from the mechanical oscillator,

making it near the ground state [149], it is valid to adiabatically eliminate the δ-detuned

mechanical phonon mode to achieve the effective coupling between the dressed spin state and

a cavity photon [149, 152]. The cooling mode can also be ignored as it cools the mechanical

oscillator, converting phonons to photons that are emitted at a different frequency than the

desired single photon from the NV spin. The effective coupling rate is λg/δ as indicated by
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the blue arrow in Fig. 4.2(b). After adiabatic elimination and rotating-wave approximation

(δ � ωq, ωm), the simplified Hamiltonian is given by [149]

Ĥeff =
g2

δ
â†â+

λ2

δ
σ̂+σ̂− + Ω(â†σ̂− + âσ̂+), (4.3)

where Ω = λg/δ is the effective coupling strength between the cavity photon and NV bright

state. Although this system is a three-level system containing two coupled ground states of

NV spin {|D〉 , |B〉} and the cavity mode, it is convenient to include the uncoupled ground

state |0〉 in the system for the later analysis. From now, we call this system a four-level

system. Then, the corresponding effective master equation is given in Sec. 4.8.2:

˙̂ρ =− i[Ĥeff, ρ̂] + κ1D[â]ρ̂+ γ∗sD[σ̂z]ρ̂

+ γ1D[σ̂−]ρ̂+ γ2D[σ̂+]ρ̂+ κ2D[â†]ρ̂,

(4.4)

where κ1 = κ + g2γm(nth + 1)/δ2 is the effective cavity decay rate with original cavity

decay rate κ, and κ2 = g2nthγm/δ
2 is the mechanically-induced thermal excitation rate for

the cavity photon with the oscillator damping rate γm, and the average phonon number nth

determined by the environment temperature is given by nth = 1/(e~ωm/kBT −1), and γ∗s is the

pure spin dephasing rate, and γ1 = λ2γm(nth + 1)/δ2, γ2 = λ2nthγm/δ
2 are the mechanically-

induced thermal decay and excitation rates for the NV spin state, respectively. Here D[Â]ρ̂ =

Âρ̂Â†− Â†Âρ̂/2− ρ̂Â†Â/2. The inherent NV spin flip-flop rate is ignored because it is much

smaller than the pure spin dephasing rate γ∗s even at ambient temperature [104].

4.3.2 Entanglement generation

Step 1 in Fig. 4.1 is to generate entanglement between two remote NV electron spins at

room temperature. This can be achieved using the protocol described in Sec. 4.3.1. Pho-

tons with high indistinguishability, brightness and purity can be produced using this spin-

optomechanics interface at room temperature [149]. Each of the two spin-optomechanical
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interfaces can be modeled as described in the previous section.

If the initial state of the NV center is prepared as (|B〉+ |0〉)/
√

2, a single photon would

be released from |B0〉 at the cavity frequency via the effective coupling between |B0〉 and

|D1〉. Therefore, a spin-photon entangled state (|D1〉 + |00〉)/
√

2 is created. Then, after

interfering the photonic modes from each interface at a beam splitter, detection of a single

photon projects the two spins into an entangled state. Here, we propose to use the spin-time

bin protocol (the Barrett-Kok scheme) to generate the entanglement between two distant

nodes, which is much more robust against some important errors such as photon loss, detector

loss and cavity parameters mismatch compared the single-photon detection scheme [38, 42].

In this protocol, two rounds of single-photon detection are required. After the first round,

we flip the spin states |D〉, |0〉 of both systems and re-excite |D〉 to |B〉. The detection of

two consecutive single photons (one at each round), will then project the joint state of the

quantum systems onto a Bell state. Depending on which detectors click in these two rounds,

we obtain two Bell states |ψ±〉 = (|D0〉 ± |0D〉)/
√

2 with a 50% total probability.

Due to the existing mechanically-induced cavity emission at room temperature, the initial

state of the cavity is not perfectly the vacuum state. A more precise initial state can be

obtained by solving the steady state of cavity mode with only the optomechanical coupling

g turned on. Then, the initial state of the cavity is given in Sec. 4.8.4:

ρic =
κ1 − 2κ2

κ1 − κ2

|0〉 〈0|+ κ2

κ1 − κ2

|1〉 〈1| , (4.5)

where κ1 � κ2. The mechanically-induced initial thermal occupation κ2/(κ1 − κ2) is quite

small, which is estimated to be around 0.1% using the parameters in Fig. 4.3. Since this ther-

mal occupation is so small, and it does not affect the quantum system dynamics significantly,

we can treat its contributions classically by modeling it as dark counts to simplify the calcu-

lations [43]. This dark count rate is given by Dth = κ1κ2/(κ1−κ2). Therefore, we start with

the initial state of the system: ρ̂(t0) = |ψ(t0)〉〈ψ(t0)| where |ψ(t0)〉 = (1/2)(|0, 0〉+ |B, 0〉)⊗2.
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Figure 4.3: Entanglement generation fidelity Fgen and efficiency ηgen/η
2
t for a single link as

a function of protocol time tf. The mechanically-induced initial thermal noise in the cavity
is modeled as dynamical dark counts as described in the text, while the detector dark count
rate is set to 10 Hz [153]. The detection time window for each time bin Td is set to be equal
to half the total detection time window: tf = 2Td. Due to the loss in the channel, it is
difficult to see the efficiency curve so it is divided by the factor η2

t = exp(−L0/Latt), where
L0 = 100 km is the length of the link, and Latt = 22 km is fiber attenuation distance of
telecom photons. The peak value of the fidelity curve Fgen is around 97%. All parameters are
chosen to be the same for both spin-optomechanics systems and similar to those in Ref. [149],
where the parameters are optimized for achieving high indistinguishability and single-photon
purity: λ = g = 2π × 100 kHz, δ = 2π × 1 MHz, Qm = 3 × 109, κ1 = 2Ω = 2π × 20 kHz,
γ?s = 0.01κ1 [104], and γ1 = γ2 = 1.0× 10−3κ1.

Under this approximation, the mechanically-induced thermal excitation rate in the cavity

mode can be set to 0 in Eq. (4.4), i.e., κ2 = 0. In this way, the total number of quantum

states to simulate is reduced.

Now, in order to quantify the entanglement fidelity and efficiency, we follow the photon

number decomposition method developed in [43] to compute the time dynamics. The basic

idea of this method is to decompose the master equation dynamics into evolution conditioned

on single photon detection, which can be done by rewriting the master equation of the whole

system (in this case two distant spin-optomechanical systems) as follows:

ρ̇ = L0ρ̂(t) +
2∑
i=1

Siρ̂(t), (4.6)
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where L0 = L −
∑2

i=1 Si with L being the Liouville superoperator that contains all the

dynamics of this composite system, and Siρ̂ = d̂iρ̂d̂
†
i is the collapse superoperator of the

source field d̂i at the ith single-photon detector [43]. As can be seen, at a given detection

time window tf if there is no photon detected, then the system evolves only subject to

L0, but if there is a photon detected during this time window, then we apply the collapse

superoperator to the system. Moreover, as the final state of the system depends on the

detected photon count, we would obtain a set of different states, which we call conditional

states.

In the Barrett-Kok scheme, there are four possible detected photon counts: {nl,ne} =

{(1, 0), (1, 0)}, {(1, 0), (0, 1)}, {(0, 1), (1, 0)}, and {(0, 1), (0, 1)} where nl and ne stand for

the photon count in the early and late detection time window, and each can take two possible

outcomes (1, 0), (0, 1) which correspond to the click in the left detector and the right detector

as shown in Fig. 4.1. Thus, the entanglement generation efficiency and the entanglement

generation fidelity can be defined in the following way:

ηgen = Tr[ρ̂(tf )] =
∑
n

Tr[ρ̂n(tf )]

Fgen =
1

4

∑
n

〈ψ±| ρ̂n(tf ) |ψ±〉
Tr[ρ̂n(tf )]

,

(4.7)

where n stands for the detected photon count as mentioned above. We use |ψ+〉, when

n = {(1, 0), (1, 0)}, {(0, 1), (0, 1)}, otherwise we use |ψ−〉. Further, due to dark counts (both

from detectors and the initial thermal occupation as mentioned above), zero or single-photon

conditioned states would give spurious photon counts. This imperfection is also taken into

account when estimating the entanglement generation fidelity and efficiency, which is dis-

cussed in more detail in [43].

Fig. 4.3 shows the entanglement generation fidelity Fgen and efficiency curves ηgen/η
2
t for

the effective spin-cavity system described by Eq. (4.4) over the total detection time window

tf for a link of 100 km. Td is the detection time window for each time bin, which is set to be
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half the total detection time window tf. The loss in the channel degrades the entanglement

efficiency in proportion to the square of the transmission rate, i.e., η2
t = exp(−L0/Latt),

which makes the efficiency curve difficult to see, so it is divided by this factor. We assume

a dark count rate of 10 Hz, which is predicted to be achievable for photons in the telecom

band using up-conversion single photon detectors (USPDs) in the free-running regime [153]

(which do not require cryogenic cooling). After taking the loss in the channel into account,

this detector dark count rate is comparable to the rate Dth ∼ 100 Hz. This type of detector

is also predicted to have low afterpulsing probability [153], making afterpulsing negligible in

estimating entanglement fidelity and efficiency. For the detection efficiency, we consider 45%

[153], which is later used in the readout fidelity estimates and the repeater rates calculations.

Fig. 4.3 shows that the efficiency degrades gradually after it reaches the maximum due to

the thermal-induced flip-flop effect between the bright and dark states. Under the influence

of the flip-flop effect, both systems continue to emit photons, resulting in the probability of

detecting only two photons to vanish when the detection time tf goes to infinity. Likewise,

the fidelity decreases after it reaches the maximum, and it starts with fairly low values due to

the small signal-to-noise ratio in the beginning. If we choose to terminate the measurement

at a proper time as κ1tf ∼ 10, then the fidelity is approaching 97% at room temperature.

One can obtain approximate analytical expressions for the entanglement fidelity and

efficiency by following the methods developed in [154, 155]. In the incoherent regime (2Ω ≤

κ+2γ∗s +2Γth), we can model this four-level system as a three-level system with the effective

emission rate by adiabatically eliminating the spin-photon coherence [149]:

R =
4Ω2

(κ+ 2γ?s + 2Γth)
, (4.8)

where Γth = λgnthγm/δ
2 is the thermal-induced noise. By applying the photon number

decomposition method to this spin-optomechanics system [43], we get the entanglement
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generation efficiency in the Barrett-Kok scheme:

ηBK =
η2
t

2
(1− e

−tf
2
R)2, (4.9)

where R is the effective emission rate for each system, and ηt is the transmission rate in the

channel. This is proportional to the product of the two total emission intensities from the

two emitters. However, for the room-temperature case where the cavity starts with a small

thermal occupation, a more precise expression of the efficiency is given by taking the dark

counts into consideration as discussed in [43].

The entanglement generation fidelity FBK is then given by [43]

FBK =
1

2

(
1 +

1

2ηBK

|C̃(tf)|2
)
, (4.10)

where C̃(tf) takes the following form

C̃(tf) =
ηtR

Rtot

(
1− e−

1
2
tfRtot

)
, (4.11)

where Rtot = R + 2γ?s is the spectral width of the emitted photons for both systems. This

fidelity equation is the upper bound for the cryogenic temperature case when there is only

optical dephasing. For the room-temperature case, one needs to take into account the

mechanically-induced thermal contribution in the cavity and the mechanically-induced spin

flip-flop effect, which makes the precise analytical fidelity expression very difficult to obtain.

4.3.3 Entanglement mapping

After the successful entanglement generation, we need to store the entanglement between

two remote NV electron spins in nuclear spins via performing memory swapping between an

electron spin and a nuclear spin at both ends of the link as indicated by two yellow arrows

in Fig. 4.1. This operation is achieved through performing a CnNOTe gate between the
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electron and nuclear spins plus the measurement of the state of the electron spin.

Assuming that |ψ+〉 is obtained in step 1, since quantum systems are in the dressed basis

{|B〉 , |D〉 , |0〉}, we need to bring them back to the original basis {|+1〉 , |−1〉 , |0〉} by turning

off the microwave source adiabatically. Then, |D〉 returns to |−1〉 and |0〉 remains the same.

Here, we denote {|−1〉 , |0〉} as {|↑e〉 , |↓e〉} for the electron spin. Then, we prepare the nuclear

spin in the superposition of the spin-up and spin-down states by applying a π/2 RF pulse

to the nuclear spin that is initially polarized to the spin-down state via the combination of

optical, microwave, and RF fields as discussed in [156]. There are several options for nuclear

spins in diamond such as 14N [157] and 15N [158]. Here, we use 13C as the nuclear spin in an

isotopically purified sample, which has the nuclear spin I = 1/2 [104, 35, 159]. The state is

then given by

1√
2

(|⇓n〉+ |⇑n〉)⊗
1√
2

(|↓e↑e〉+ |↑e↓e〉)⊗
1√
2

(|⇓n〉+ |⇑n〉), (4.12)

where |⇓n〉 and |⇑n〉 correspond to mI = −1/2 and mI = +1/2 individually. Now, a CnNOTe

gate can be performed between the electron and nuclear spins using the hyperfine interaction

between them. Fig. 4.4 shows the hyperfine structure for performing two-qubit gates between

the electron spin and the nuclear spin and one-qubit gates on each of them individually.

The electron-nuclear spin Hamiltonian is given by

He,n = ∆0S
2
z + µeBSz + µnBIz + ASzIz, (4.13)

with the zero-field splitting ∆0=2.87 GHz, the electronic spin gyromagnetic ratio µe = −2.8

MHz/Gauss, the nuclear spin gyromagnetic ratio µn =1.07 kHz/Gauss, the external magnetic

field B is applied along the symmetry axis of the NV, and the hyperfine coupling A ranges

from tens of kHz to 100 MHz for a 13C nuclear spin [102, 103, 35]. The CnNOTe gate can

be implemented by a Ramsey sequence on the electron spin at room temperature, where

the free precession time is chosen to be t = π/A with the magnetic field of several hundred
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Figure 4.4: The NV center with a 13C can be modeled as a four-level system. Nuclear
spin sublevels |⇑n〉 and |⇓n〉 are addressed by RF radiation with Rabi frequency ΩRF . The
electronic spin sublevels are driven via a microwave field ΩMW but when the electron spin is
|↓e〉, the microwave field has relative detuning given by hyperfine interaction A.

Gauss [35, 157, 156]. The efficient realization of the CNOT gate with fidelity of 99.2% at

ambient conditions has been demonstrated using composite pulses and an optimized control

method [160] as well as the dynamical decoupling technique [161, 162, 111]. The dynamical

decoupling technique is also important in the entanglement generation where the electron

spin can be decoupled from the nuclear spin bath to have millisecond-long coherence time at

room temperature [105, 111]. However, in our entanglement generation step the NV electron

spin is in dressed states under a far-detuned microwave source, which itself is already robust

against the nuclear-bath-induced noise [151, 112].

Two CnNOTe gates on both ends of the link lead to a four-qubit entangled state. So the

projective measurement in the Z basis on the state of the electron spin is required to complete

the entanglement storage, which projects this four-qubit entangled state to an entangled state

of the nuclear spins. Typically, fluorescence detection can be used to determine the state of

the electron spin after the projective measurement at a low temperature of around 4K with

good fidelity [163], which enables the cryogenic-temperature entanglement storage in nuclear

spins [37, 159]. Unfortunately, at room temperature, the intensity of electronic spin-up and

spin-down states only differ by roughly a factor of 2 due to the fact that the phonon-induced

broadening greatly diminishes the resolution of these two Zeeman states [157]. Thus, the

past decade has seen a great deal of experimental efforts put into solving this problem [156,
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108, 164, 109]. In Sec. 4.4, we propose two electron spin readout schemes based on the

spin-optomechanics system.

4.3.4 Entanglement swapping

After mapping the entanglement to the nuclear spins, the electron spins are free and we can

use them again to generate entanglement between the electron spins i and i + 1. This is

done in step 3 as illustrated in Fig. 4.1. Then, the entanglement swapping is achieved as

follows: a CnNOTe gate at each endpoint of this link is applied, giving us an entangled state

of these six spins. Via performing measurements on the electron spin in the Z basis, one

ends up obtaining an entangled state of four nuclear spins. Depending on the measurement

outcomes, one gets different entangled states. Here, we assume that we get the following

four-qubit entangled state:

1√
2

(|⇑n⇑n⇑n⇑n〉+ |⇓n⇓n⇓n⇓n〉). (4.14)

In order to complete the entanglement swapping, i.e. to only entangle nuclear spins i− 1

and i + 2, one still needs to disentangle two nuclear spins i and i + 1 in between. This can

be done by measuring them in the X basis but unfortunately, one cannot optically read out

the nuclear spin directly. However, it turns out that the nearby electron spins can be used

to indirectly read out the nuclear spin state [157, 165]. The basic idea is as follows: first, a

Hadamard gate is performed on the nuclear spins i and i+ 1 individually by applying a π/2

RF pulse to make |⇑n〉 → 1/
√

2(|⇓n〉+ |⇑n〉) and |⇓n〉 → 1/
√

2(|⇓n〉 − |⇑n〉).

Second, the electron spin nearby is initialized to |↑e〉, and we again perform a CnNOTe

gate, mapping the nuclear spin state to the electron spin state. Therefore, the readout of

the nuclear spin could be achieved by performing the measurements in the Z basis on the

electron spin, followed by the readout of the measurement outcome which is discussed in
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detail in Sec. 4.4. The post-measurement state is given by


1√
2
(|⇑n⇑n〉 − |⇓n⇓n〉) ↑e↓e or ↓e↑e

1√
2
(|⇑n⇑n〉+ |⇓n⇓n〉) ↑e↑e or ↓e↓e,

(4.15)

where the final state depends on the outcomes of the electron spins readout. Therefore,

nuclear spins i−1 and i+2 are entangled as indicated by the long red wavy line in Fig. 4.1(b).

As we can see, the entanglement swapping process is in fact equivalent to the entanglement

mapping process plus the readout of two nuclear spins.

4.4 The electron spin readout

Applying previously proposed readout methods to our system is quite challenging since

they require extra techniques and apparatus such as using nuclear spin ancillae, spin-to-

charge conversion [108] and photoelectrical imaging [109] to achieve a high-fidelity readout

of electron spin at room temperature. Hence, we propose to read out the electron spin

state at room temperature using the spin-optomechanics interface. In this section, two

intensity-based readout schemes are proposed to distinguish the electron spin state at room

temperature.

4.4.1 Readout scheme using periodic driving pulses

In the readout scenario, the aim is to distinguish the states |0〉 or |D〉. The intuitive idea

is to perform a π pulse on the transition between |B〉 and |D〉, which will excite the state

|D〉 to |B〉 while keeping the state |0〉 unchanged. Then the state |B〉 will decay back to

|D〉 according to the process described in Fig. 4.2(a) and will emit a single photon. By

measuring a single photon, we can determine that the state is initially in the state |D〉 or

|0〉. However, measuring a single photon may not be the optimal way to distinguish these

two spin states due to the photon loss in the channel and the dark counts in detectors.
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(a)

(b)

Figure 4.5: (a) Periodic driving pulse scheme. The driving pulse is applied once the NV spin
occupation is nearly 0, meaning that the spin state decays from |B〉 to |D〉. (b) Continuous
driving pulse scheme. The NV spin and the cavity mode will reach a non-zero equilibrium
state. The red solid curve and the purple dot-dashed curve represent cavity photon number
and NV bright state (|B〉) population respectively. The gray shaded area corresponds to
the time window for the readout operation, and the hatched area in (a) corresponds to the
detection time window in one pulse cycle. The parameters used in (a) and (b) are the same
as the ones in the entanglement generation section.

Therefore, we provide two extended readout schemes, the periodic driving scheme, and the

continuous driving scheme to achieve the high-fidelity readout of NV electron spin states.

In the periodic driving scheme, periodic pulses are used to drive a cycling transition

between the states |B〉 and |D〉. Assuming a perfect MW π pulse is applied to the state |D〉,

it is excited to the state |B〉 and then returns to the state |D〉 with a single photon emitted.

Then we repeat this process. In the adiabatic elimination regime, the total Hamiltonian is

given by

Ĥ1 = Ĥeff + gd[σ̂+ exp(−iωqt) + σ̂− exp(iωqt)]f(t), (4.16)
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where Ĥeff is given by Eq. (4.3), and gd is the coupling strength for the driving pulse, and f(t)

is a periodic delta function with the form δ(t− nTp) and the period Tp is the inverse of the

decay rate R. The simulation results are shown in Fig. 4.5 (a). The solid red and dot-dashed

purple curves are the cavity photon population and the NV spin population respectively

when the NV spin is initially in the state |D〉, and the dashed red and purple lines are the

cases where the initial NV spin state is |0〉. We can define the brightness (intensity) as the

average number of emitted photons: βi = κ
∫ t0+T

t0
dt〈â†(t)â(t)〉i with i = D or 0 representing

the initial NV spin states in |D〉 and |0〉 respectively, where 〈â†(t)â(t)〉i is the corresponding

average cavity photon number. A single photon is emitted within a period shown as the gray

shade in Fig. 4.5(a).

To estimate the readout fidelity, we consider the measurement being repeatedN times and

each measurement is independent. Thus, the number of photons detected within the total

measurement time NTp can be described by a binomial distribution, and the probability

of detecting n photons is PN,n,p =
(
n
N

)
pn(1 − p)N−n, where pi = ηβi is the probability

of detecting a single photon within the detection time window, and η is the total efficiency

with which an emitted photon can be detected. One can plot PN,n,p corresponding to βD and

β0 and find the intersection point (details can be found in Sec. 4.8.5). The intersection point

is the threshold that decides the measurement result: if the number of photons detected is

more than the threshold, the photons are most likely coming from the emitter and therefore

the NV spin state is decided to be |D〉; if the number of photons detected is less than the

threshold, the NV state is assumed to be |0〉 because these photons are highly possible from

the thermal noise.
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Figure 4.6: The relation between the readout infidelity (1 − F ) and the total readout time
with the parameters used in Fig. 4.5. For the periodic driving scheme (plotted as purple
squares), βD = 0.929, β0 = 0.034, and the driving period is T = 0.02 ms; for the continuous
driving scheme (plotted as red triangles), 〈a†(t)a(t)〉D = 0.202 and 〈a†(t)a(t)〉0 = 0.014. The
solid, dashed, and dash-dotted lines correspond to the total detection efficiency η = 0.05,
0.1, and 0.5, respectively [153, 166, 167]. The time axis is the total readout time NTp, where
N is the total pulse number in the periodic driving scheme. The discontinuity of the first
derivative shown on the curves is due to the change in the threshold (because the threshold
is always an integer).

4.4.2 Readout scheme using continuous driving pulses

The continuous driving scheme employs a continuous-wave (CW) laser to drive the bright

and the dark spin states. Similarly, the Hamiltonian in this case is given by

Ĥ1 = Ĥeff + gd(σ̂+ exp(−iωqt) + σ̂− exp(iωqt)). (4.17)

Under this Hamiltonian, the cavity mode will eventually reach a non-zero equilibrium state

as shown in Fig. 4.5(b). To give the calculation of the readout fidelity, we assume that

the detection is a Poisson process, where the probability of detecting n photons is given by

P (n, λ) = λne−λ/n!, where λ is the average photon counts within total detection time T0,

given by λi = ηκ
∫ t0+T0

t0
dt〈â†(t)â(t)〉i with i = D or 0 corresponding to the initial states |D〉

or |0〉 respectively. Similarly to the treatment in the periodic driving scheme, the intersection

point of these two plots of the probability distribution functions gives the threshold and the

detailed discussion can be found in Sec. 4.8.5.
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Instead of showing the readout fidelity, here we show the readout infidelity (1−F ) of these

two schemes in Fig. 4.6 for a clearer demonstration of how well our readout schemes work.

The dark count rate is taken to be 10 Hz in detectors [153], which is negligible because the

average number of dark counts within ms time period is on the order of 10−3, much smaller

than the average number of emitted photons during the whole readout process. Also, the

afterpulsing probability can be efficiently suppressed to be lower than 1% [153], which makes

it negligible as well. Comparing these two schemes, the continuous driving scheme requires

more time to have the same infidelity due to the lower signal-to-noise ratio in the present

parameter regime than the periodic driving scheme. To achieve the high-fidelity readout

(> 99%), the readout time is typically in the ms timescale for both of our schemes with

detectors that have pretty poor efficiencies. However, a high-fidelity readout can be achieved

in a shorter timescale if we use higher-efficiency detectors, which are however challenging

to realize for telecom wavelength photons [166, 168] at non-cryogenic temperatures. In

comparison to other proposed methods [156, 108, 169, 164, 109, 170], which also demonstrate

a high-fidelity readout of the electron spin in NV centers in ms timescale, these two readout

schemes appear to predict comparable performance, without having to add extra elements

to our setup. Thus, in our proposal for building a room-temperature quantum network,

these spin-optomechanics system-based readout schemes serve as more natural and friendly

candidates than other room-temperature readout methods.

4.5 Entanglement generation rates and overall fideli-

ties

We use a “two-round” repeater protocol. During the first round, the entanglement is gen-

erated between electron spins in every other elementary link and then is mapped to corre-

sponding nuclear spins, which also sets those electron spins free. For the remaining links,

the entanglement is generated in the second round, followed by the entanglement swapping
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that distributes entanglement between the first and last nuclear spins. Although entangle-

ment generation between the electron spins is probabilistic, the failure of such an attempt

does not disturb the entanglement stored in the nuclear spins if the dynamical decoupling

is being applied during the entanglement generation [171, 162, 111, 172]. This means that

the second round of the entanglement generation process can be repeated many times until

success while not affecting the stored entanglement. However, this is true only when the

decoherence of nuclear spins is negligible, which is discussed in more detail below. Hence,

our two-round repeater protocol makes the widely-used nested repeater structure no longer

necessary [11, 10, 12].

Considering an even number of links m, each with length L0, the total entanglement

distribution time is given by

〈T 〉L = 2f(m/2)
L

cmp0

+ Tmp + Tsw, (4.18)

where f(m/2) is the factor of the average number of attempts required to successfully estab-

lish entanglement in all m/2 links, and p0 is the entanglement generation probability, and

L is the total distance, and c = 2× 108 ms−1 is the speed of light in optical fiber, and Tmp,

Tsw are the total entanglement mapping time and the total entanglement swapping time

respectively. Both of these times are made up of CNOT gate time plus the measurement

time as discussed in Sec. 4.3.3 and Sec. 4.3.4. The numerical results shown in Sec. 4.8.6 show

that f(x) = 0.64 log2(x)+0.83 is a good approximation, and one can recover the well-known

3/2 factor by setting x = 2. In contrast to the nested repeater approach [11], where the

average entanglement distribution time has a linear dependence on the number of links, we

here have a logarithmic dependence. Intuitively, the scaling improvement of the two-round

protocol comes from the fact that there is no hierarchy of the entanglement swapping pro-

cess, where higher-level swapping can only start under the condition of the success of the

lower level. Therefore, the main thing left for us is to successfully generate the entanglement
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simultaneously for these links, which is calculated to have logarithmic dependence on m/2.

This scheme could significantly enhance the entanglement distribution rate for a quantum

network with much more links, e.g., networked quantum computing [173]. Fig. 4.7(a) shows

the repeater rates as the function of distance for four different numbers of links and direct

transmission. With 45% detection efficiency, our protocol yields 10 Hz with 8 links at 800

km. This rate is comparable to cryogenic schemes, such as the rare-earth ion-based scheme

[11] and the microwave cat qubit-based scheme [10], and it outperforms the well-known

DLCZ protocol for laser-cooling based systems [12], which gives less than 1 Hz rate at 800

km. However, if the detection efficiency is significantly lower, e.g. 10% [167], multiplexing

would be needed with about 15 multiplexed channels to achieve similar rates.

The whole repeater protocol consists of three parts described in Sec. 4.3. However, instead

of taking the fidelity of each part into consideration, here we consider the overall fidelity as

Ftot = (Fgen)m × (Fmp)m × (Fnro)m−1 , (4.19)

where Fgen is the fidelity of entanglement generation given in Fig. 4.3, which needs to be

established over m elementary links. Fmp is the fidelity of an entanglement mapping oper-

ation as described in Sec. 4.3.3, and Fnro is the readout fidelity of the nuclear spin. This

overall fidelity equation is only valid in the high-fidelity regime. The fidelity of entangle-

ment swapping includes the fidelity of entanglement mapping plus the readout of two nuclear

spins. Therefore, in total we need to generate entanglement for m links and perform m times

entanglement mapping to obtain a chain of nuclear spins followed by the readout of m − 1

nuclear spins to achieve the final entangled state between the first and the last nuclear spins.

The nuclear spin readout can be achieved by mapping its state to the electron spin and

applying the readout methods discussed in Sec. 4.4. Fig. 4.7(b) shows the overall fidelities

with respect to the total distance for this quantum network with the detection efficiency of

45%. At 800 km, the overall fidelities are still fairly high, except for the case of 4 links where
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(a)

(b)

Figure 4.7: (a) Repeater rates for different numbers of links and direct transmission (dashed
line). p0 = 0.5p2η2

dη
2
t is the success probability of entanglement generation for the Barrett-

Kok scheme with the success probability of emitting a single photon p = 0.9, the transmission
loss ηt = exp{(−L0/2Latt)} where L0 = L/m is the length of each elementary link, and the
detector efficiency ηd = 0.45 [153]. (b) Fidelity plots with respect to the total distance
with a detection efficiency of 45%. The CNOT gate fidelity is taken to be 99.2% [160]. The
electron spin readout fidelity is taken to be 99.9% based on Fig. 4.6. At 800 km, the overall
fidelity for four links drops below 60%, which is due to detector dark counts.

the overall fidelity drops below 60% due to the comparatively large effect of detector dark

counts when the transmission loss for the comparatively long elementary links is taken into

account.

For an eight-link repeater with 45% detection efficiency, the rate is far above 10 Hz at

the cross-over point (around 450 km) as shown in Fig. 4.7(a), on which time scale it is well

within the coherence time of nuclear spins which can be longer than a second [35] so the

decoherence is negligible in this case. This is also true for the four-link, six-link, and ten-link

cases. Thus, Fig. 4.7(b) is a valid approximation of overall fidelities in this regime. For the

repeaters with much lower detection efficiencies, e.g. 10%, the rates are significantly lower
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so the decoherence of nuclear spins would seriously degrade the final fidelities. In this case,

we can use multiplexing to enhance the rates (about 15 multiplexed channels are needed),

which will make the decoherence of nuclear spins negligible.

In addition, our eight-link repeater yields a final fidelity of around 74% at the cross-over

point (around 450 km) with 45% detection efficiency and the six-link repeater yields around

80% final fidelity at the cross-over point (around 470 km) with 45% detection efficiency.

These fidelities are comparable to the DLCZ protocol for laser-cooling-based systems with

75% for eight links [12], and cryogenic schemes such as the rare-earth ion-based scheme

with around 80% for eight links and the microwave cat qubit-based approach with around

60% for eight links [10]. The overall entanglement fidelity could be further improved using

entanglement purification protocols [27, 174, 159], which would make this quantum network

architecture fault-tolerant.

4.6 Implementation

The spin-optomechanics setup proposed in Ref. [149] is mainly composed of a high-Q cavity

patterning with a SiN membrane of ultrahigh Qf (quality×frequency) product, where a

small magnetic tip is attached. This hybrid device allows a single NV electron spin to be

effectively coupled to photons inside the cavity, emitting a single photon with high purity

and indistinguishability at room temperature. However, due to the design where the SiN

membrane serves as a part of the optical cavity, the cavity finesse is limited to the order

of 104. The other key requirement for this system to work well is the low decay rate,

κ ∼ 104 Hz in the optical cavity. These two key factors constrain the length of the cavity to

be around 0.6m [149]. Here, we propose a new design for this spin-optomechanics interface

that uses the membrane-in-the-middle geometry to greatly reduce the cavity length. With

this membrane-in-the-middle design, one could significantly reduce the cavity length using a

high-finesse cavity, since the finesse scales as F = πc/Lcκ, where κ is the cavity damping rate.
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As previously estimated, the cavity length is around Lc = 60 cm with finesse F = 12000.

With the new design, it might be possible to reduce this to around Lc = 0.6 cm, if a finesse

of order 106 can be achieved, see e.g. Ref. [175].

The spin-optomechanics interface shown in Fig. 4.1(b) illustrates our envisioned spin-

optomechanical transducer. A SiN membrane is placed between the node and the anti-

node of the cavity modes (of both the cooling mode and the control mode) such that the

optomechanical coupling is still linear and not quadratic like many other membrane-in-the-

middle experiments [176, 177, 113]. The membrane-in-the-middle design allows us to use

a membrane with a thickness much smaller than the light wavelength, which reduces the

potential optical losses such as absorption and scattering due to the significantly smaller

overlap between the membrane and the optical field [176]. Similar to the previous proposal,

a red-detuned control laser is used to drive the cavity for single photon extraction, which

is set to be equal to the transition energy between dressed spin states ωq. The other red-

detuned laser with detuning equal to the phonon sideband ωm is used to cool the oscillator

from room temperature, which is also possible to achieve in this proposed device [148, 178].

Moreover, the spin-mechanics coupling is achieved by a magnetic tip that is attached

to the SiN membrane at the bottom, and a NV center in bulk diamond is placed nearby

as shown in Fig. 4.1(a). The required strong spin-mechanics coupling (λ ∼ 105 Hz) can

be realized by a magnetic field gradient of 107 T/m with a SiN membrane of ∼pg effective

mass [149]. This SiN membrane also needs to have ultra-low damping rate γm, which is

discussed in [117, 149]. As the magnetic tip is attached to the SiN membrane, the quality

factor of the membrane may be degraded. This could be compensated by further improving

the initial quality factor of the membrane without the tip, which is possible to implement

as the limit of the quality factor still has been not reached. With the combination of the

methods in [117] and [148], one can get quality factors as high as 1010, which gives some

room to improve our current Q factor ∼ 109.
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4.7 Conclusions and outlook

We presented a room-temperature quantum network architecture based on NV centers in

diamond and a spin-optomechanical interface. We showed that high-fidelity entanglement

between electron spins can be generated between two distant nodes under realistic condi-

tions. Nuclear spins associated with the NV centers can be utilized as quantum memories.

We showed that the spin-optomechanical interface also offers the possibility to read out

electron spins at room temperature with high fidelity on ms timescales. Furthermore, we

proposed an entanglement distribution protocol where the average distribution time shows

logarithmic scaling with the number of links as opposed to linear scaling in conventional

nested protocols. A membrane-in-the-middle design may allow to reduce the dimensions

of the spin-optomechanics interface to the sub-cm range, thus improving its potential for

integration and scalability.

We have here focused on room-temperature quantum repeaters as a medium-term goal,

but the proposed approach also holds promise for the implementation of distributed quantum

computing [179, 173], extending photonic approaches to quantum information processing in

diamond [180, 181] beyond cryogenic temperatures. Nuclear spins in diamond offer the

possibility to implement quantum error correction codes [159, 182, 183, 30], which, when

integrated into our present approach, may enable fault-tolerant quantum communication

and quantum computation under ambient conditions.
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4.8 Supplementary material

4.8.1 S1: System Hamiltonian and dissipation

The spin-optomechanics system has the following Hamiltonian (~ = 1):

Ĥ = ωqσ̂+σ̂− + ωqâ
†â+ ωmb̂

†b̂+ λ(b̂†σ̂− + b̂σ̂+)

+ g(b̂†â+ b̂â†),

(4.20)

where we already performed rotating wave approximations and the cooling laser mode ĉ is

ignored as it just cools the mechanical oscillator to be close to the ground state, converting

phonons to photons that are emitted at a different frequency than the desired single photon

from the NV spin. In order to perform the adiabatic elimination, we need to convert the

Hamiltonian into the natural picture [184] by entering the rotating frame using the following

transformation:

Ĥ1 = ÛĤÛ † − iÛ ˙̂
U †, (4.21)

where Û = eiωq(â
†â+σ̂+σ̂−+b̂†b̂)t. Then, one obtains the Hamiltonian

Ĥ1 = δb̂†b̂+ λ(b̂†σ̂− + b̂σ̂+) + g(b̂†â+ b̂â†), (4.22)

where δ = ωm− ωq is the detuning between the control laser (and the dressed NV spin) and

the phonon sideband. Taking dissipation into consideration, the master equation is given by

˙̂ρ =− i[Ĥ1, ρ̂] + κD[â]ρ̂+ γ∗sD[σ̂z]ρ̂+ nthγmD[b̂†]ρ̂

+ (nth + 1)γmD[b̂]ρ̂,

(4.23)
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where the intrinsic NV spin flip-flop rate is ignored because it is much smaller than the spin

dephasing rate γ∗s in an isotopically purified diamond [104].

Then, the corresponding Heisenberg-Langevin equations are given by

˙̂a = −κ
2
â− igb̂+

√
κâin

˙̂
b = −iδb̂− γm

2
b̂− igâ− iλσ̂− +

√
γmF̂b(t)

˙̂σ− = −2γ∗s σ̂− + iλσ̂z b̂,

(4.24)

where F̂b(t) and âin are the input noise operators that satisfy:

〈F̂ †b (t)F̂b(t
′)〉 = nthδ(t− t′),

〈âin(t)â†in(t′)〉 = δ(t− t′),

〈â†in(t)âin(t′)〉 = 0.

(4.25)

Here the operator âin is manually included for completeness as the cavity is driven by the

control laser.

4.8.2 S2: Adiabatic elimination

When δ � λ, g, one can adiabatically eliminate the oscillator either by following the method

[185] to obtain the Heisenberg-Langevin equations for cavity mode â and NV spin σ̂− after

the elimination of b̂ or by setting
˙̂
b = 0, and obtaining b̂ in terms of â and σ̂−. Here, we

follow the second way to obtain

b̂ =
igâ+ iλσ̂− −

√
γmF̂b(t)

−iδ − γm/2
. (4.26)

Under the conditions δ � γm/2 and γm � 1, which are true in this system, this can be well

approximated as

b̂ ≈ gâ+ λσ̂−
−δ

, (4.27)
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where we ignore decay-related terms and only keep coherent parts. Now, substituting this

in the Hamiltonian (Eq. (4.22)), we obtain the effective Hamiltonian after the adiabatic

elimination

Ĥeff =
λ2

δ
σ̂+σ̂− +

g2

δ
â†â+ Ω(â†σ̂− + âσ̂+), (4.28)

where Ω = λg/δ is the effective interaction between the cavity mode and the NV electron

spin. In order to get the effective master equation, we also need to compute the decoherence

terms related to the oscillator mode b̂. Using Eq. (4.27), the thermal relaxation Lindbladian

(nth + 1)γmD[b̂]ρ̂ can be rewritten as

(nth + 1)γm

[
(
gâ+ λσ̂−
−δ

)ρ̂(
gâ† + λσ̂+

−δ
)− (

gâ† + λσ̂+

−δ
)(
gâ+ λσ̂−
−δ

)ρ̂/2− ρ̂(
gâ† + λσ̂+

−δ
)(
gâ+ λσ̂−
−δ

)/2
]

≈(nth + 1)γm

[g2

δ2
âρ̂â† +

λ2

δ2
σ̂−ρ̂σ̂+ −

g2

δ2
â†âρ̂/2− λ2

δ2
σ̂+σ̂−ρ̂/2−

g2

δ2
ρ̂â†â/2− λ2

δ2
ρ̂σ̂+σ̂−/2

]
=
g2

δ2
(nth + 1)γmD[â]ρ̂+

λ2

δ2
(nth + 1)γmD[σ̂−]ρ̂,

(4.29)

where the off-diagonal terms correspond to the incoherent interaction between the cavity

mode and the spin and the thermal-induced cross-decoherence between these two modes,

which can be ignored if δ � nthγm. This is satisfied in our system even at ambient conditions.

The same is true for the thermal excitation Lindbladian nthγmD[b̂†]ρ̂, which can be written

as

nthγmD[b̂]ρ̂ ≈ g2

δ2
nthγmD[â†]ρ̂+

λ2

δ2
nthγmD[σ̂+]ρ̂. (4.30)

Therefore, the effective master equation is given by

˙̂ρ =− i[Ĥeff, ρ̂] + κ1D[â]ρ̂+ κ2D[â†]ρ̂+ γ∗sD[σ̂z]ρ̂

+ γ1D[σ̂−]ρ̂+ γ2D[σ̂+]ρ̂,

(4.31)

where κ1 = κ + g2γm(nth + 1)/δ2 is the effective cavity decay rate, and κ2 = g2nthγm/δ
2,

γ1 = λ2γm(nth+1)/δ2, and γ2 = λ2nthγm/δ
2 are the mechanically-induced thermal excitation
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rate for the cavity mode, and the mechanically-induced thermal flip-flop rates for the spin

respectively.

4.8.3 S3: Effective emission rate

Under the condition λ = g, the effective Hamiltonian shown in Eq. (4.28) can be rewritten

in the rotating frame of the spin frequency λ2/δ

Ĥint = Ω(â†σ̂− + âσ̂+). (4.32)

Together with the effective master equation shown in Eq. (4.31), we obtain a set of optical

Bloch equations for the cavity photon population, NV spin population and the coherence

between them as

d〈â†â〉
dt

= iΩ(〈âσ̂+〉 − 〈â†σ̂−〉)− (κ1 − κ2)〈â†â〉+ κ2,

d〈σ̂+σ̂−〉
dt

= iΩ(〈â†σ̂−〉 − 〈âσ̂+〉)− (γ1 + γ2)〈σ̂+σ̂−〉+ γ2,

d〈â†σ̂−〉
dt

= iΩ(〈â†âσ̂z〉+ 〈σ̂+σ̂−〉)−
κ1 − κ2

2
〈â†σ̂−〉 −

γ1 + γ2

2
〈â†σ̂−〉 − 2γ∗s 〈â†σ̂−〉,

d〈âσ̂+〉
dt

= −iΩ(〈â†âσ̂z〉+ 〈σ̂+σ̂−〉)−
κ1 − κ2

2
〈âσ̂+〉 −

γ1 + γ2

2
〈âσ̂+〉 − 2γ∗s 〈âσ̂+〉.

(4.33)

Since we are mainly interested in the single-photon regime, the term 〈â†âσ̂z〉 can be simplified

as −〈â†â〉. Hence, these optical Bloch equations can be rewritten as

d〈â†â〉
dt

= iΩ(〈âσ̂+〉 − 〈â†σ̂−〉)− (κ1 − κ2)〈â†â〉+ κ2,

d〈σ̂+σ̂−〉
dt

= iΩ(〈â†σ̂−〉 − 〈âσ̂+〉)− (γ1 + γ2)〈σ̂+σ̂−〉+ γ2,

d〈â†σ̂−〉
dt

= iΩ(〈σ̂+σ̂−〉 − 〈â†â〉)−
κ1 − κ2

2
〈â†σ̂−〉 −

γ1 + γ2

2
〈â†σ̂−〉 − 2γ∗s 〈â†σ̂−〉,

d〈âσ̂+〉
dt

= −iΩ(〈σ̂+σ̂−〉 − 〈â†â〉)−
κ1 − κ2

2
〈âσ̂+〉 −

γ1 + γ2

2
〈âσ̂+〉 − 2γ∗s 〈âσ̂+〉.

(4.34)
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In the incoherent regime, the cross terms that are responsible for the Rabi oscillation,

i.e., 〈â†σ̂−〉 and 〈âσ̂+〉, can be eliminated [186], resulting in

d〈â†â〉
dt

= −(R + κ1 − κ2)〈â†â〉+R〈σ̂+σ̂−〉+ κ2,

d〈σ̂+σ̂−〉
dt

= −(R + γ1 + γ2)〈σ̂+σ̂−〉+R〈â†â〉+ γ2,

(4.35)

where R is the effective decay rate which describes the population transfer between the cavity

photon and the NV spin, and it is given by

R =
4Ω2

κ1 − κ2 + γ1 + γ2 + 2γ∗s
. (4.36)

Moreover, given that at room temperature nth � 1, the effective decay rate R can be written

in a more compact form

R =
4Ω2

κ+ 2γ∗s + 2Γth

, (4.37)

where Γth = λ2nthγm/δ
2 = λgnthγm/δ

2 is the thermal noise for the NV electron spin.

4.8.4 S4: Initial state of the cavity

The initial state can be obtained by solving the steady state of cavity mode with only the

optomechanical coupling g turned on. Thus, we set Ω = 0, and we obtain the following

equation:

d〈â†â〉
dt

= −(κ1 − κ2)〈â†â〉+ κ2 = 0. (4.38)

Solving this equation, we get the average occupation number of the cavity mode: n̄c =

〈â†â〉 = κ2

κ1−κ2
. As this occupation is very small n̄c ≈ 10−3, it is valid to truncate the Hilbert

space up to |1〉. Hence, the initial state of the cavity is given by:

ρic =
κ1 − 2κ2

κ1 − κ2

|0〉 〈0|+ κ2

κ1 − κ2

|1〉 〈1| . (4.39)
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Figure 4.8: Photon-counting histogram for pulsed driving scheme (a) and the continuous
driving scheme (b) with a total readout time of 2 ms. The threshold is determined by the
intersection of the two plots.

4.8.5 S5: Photon counting statistics

Our goal is to distinguish spin states |D〉 and |0〉. Let us denote the conditional probabilities

of measurement outcome ± given that the initial state of system is |i〉, with i ∈ {D, 0}, as

P (±|i) = p±i . The total probability of outcome ± is then given by p± = pDp
+
D+p0p

+
0 where pi

is the total probability of the system being in state i. Then the conditional fidelity is defined

as the conditional probability P (D|+) (P (0|−)) of having state D (0) given outcome + (−).

This is given by Bayes’ theorem: F+ ≡ P (D|+) = pDp
+
D/p

+ and F− ≡ P (0|−) = p0p
−
0 /p

−.

We can then define the total fidelity as the weighted average F = (p+F+ + p−F−)/pη where

pη = p+ + p− is the total probability of having a measurement outcome. In the case that

pD = p0 = 1/2 and pη = 1, the fidelity reduces to the average of the conditional probabilities

F = (p+
D + p−0 )/2.

The most widely-used approach for spin readout is to use a cycling transition, which

involves the emission and detection of a large number of photons. The photon-counting
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histogram shows the probability distribution of the number of photons detected and has

two traces: one for photons emitted from the emitter and the other for the thermal noise

contribution (non-zero cavity photon number when the spin state is at |0〉). The cross-over

point of the two traces corresponds to the photon number threshold, above which we can

be confident that the photons come from the emitter, thus determining that the spin state

is |D〉; otherwise, the spin state is |0〉, meaning that the photons most likely come from the

thermal noise.

Here we show the photon-counting histogram for the pulsed driving scheme and the

continuous driving scheme in Fig. 4.8. For the pulsed driving scheme, the photon-counting

histogram is described by a binomial distribution PN,n,p =
(
n
N

)
pn(1− p)N−n, where p = ηβ,

η is the total efficiency that an emitted photon can be detected, and β is the brightness of

the cavity photon. For the parameters used in Fig. 4.5, β = 0.929 and β = 0.034 for the

initial spin states |D〉 and |0〉 respectively. We plot the photon-counting histogram in Fig.

4.8(a) for a total pulse number of 100 (so the corresponding total readout time is 2 ms). The

blue solid line and the yellow solid line show the probability distribution with respect to the

detected photon number when the spin is in state |D〉 and |0〉, respectively. The threshold

is thus determined by the corresponding number of photons at the intersection of the two

lines, and it is nt = 9 in this case. The readout fidelity is given by

F =
1

2
(
∑
n<nt

PN,n,p2 +
∑
n≥nt

PN,n,p1). (4.40)

Then the estimated fidelity is 0.99999.

For the continuous driving scheme, we plot the photon-counting histogram for the corre-

sponding Poisson distribution, shown in Fig. 4.8(b). In this case, the probability distribution

of detecting n photons is P (n, λ) = λne−λ/n!, where λ is the average number of photons

detected and is proportional to the readout time. For the parameters we used in Fig. 4.6,

λD/λ0 = 14.43, where λD and λ0 are for the case of spin state |D〉 and |0〉, respectively. This
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gives two probability distributions that intersect at a photon number of 4. This means that

the threshold is 4, and the readout fidelity is 0.997 using Eq. (4.40).

4.8.6 S6: f(x) Derivation

Here we provide a derivation of f(x) used in Sec. 4.5. For x elementary links, we define

the average number of attempts required to independently generate entanglement in all x

links as nmax,x = f(x)/p0, where p0 is the entanglement generation probability. For a single

link, the probability of a successful entanglement generation with n attempts is given by

P (n) = p0(1 − p0)n−1. Thus the joint probability of successful entanglement generation for

all x links with attempts n1, n2, ..., nx is

Pj(n1, n2, ..., nx) =
x∏
k=1

P (nk)

= px0(1− p0)
∑x
k=1 nk−x.

(4.41)

The probability distribution function (PDF) of nmax,x is

P (nmax,x) =
x∑
k=1

Pj(nk = nmax,x, n6=k < nmax,x) +

l,x∑
k=1,l=2

Pj(nk,l = nmax,x, n6=k 6=l < nmax,x)

+ ...+ Pj(n1 = n2 = ... = nx = nmax,x).

(4.42)

However, it is difficult to calculate nmax,x from Eq. (4.42). To simplify the problem, we

assume x = 2k. The PDF of nmax,x = nmax,2k can be calculated iteratively by separating 2k

links into two groups of sublinks with each having 2k−1 sublinks. nmax1,2k−1 and nmax2,2k−1

denote the number of attempts for these two sublinks respectively. Then the probability

distribution of nmax,x can be expressed as
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Table 4.1: Numerical results of f(x)

x 2 22 23 24 25

f(x) 1.5 2.08 2.72 3.38 4.05

Pj(nmax1,2k−1 , nmax2,2k−1) = P (nmax1,2k−1) ∗ P (nmax2,2k−1),

P (nmax,2k) = Pj(nmax1,2k−1 = nmax,2k , nmax2,2k−1 < nmax,2k)

+ Pj(nmax1,2k−1 < nmax,2k , nmax1,2k = nmax,2k .

(4.43)

The simplest case is k = 1,

Pj(n1, n2) = P (n1)P (n2),

P (nmax,2) = Pj(n1 = nmax,2, n2 < nmax,2)

+ Pj(n1 < nmax,2, n2 = nmax,2).

(4.44)

We numerically calculate f(n) with respect to k = 1 to 5, shown in Tab. 4.1.

One can check that the function f(2k) almost linearly increases with k, and the regression

result gives

f(2k) = 0.64k + 0.83. (4.45)

Therefore, we obtain the following empirical expression for f(x) by replacing 2k with x and

k with log2(x) in Eq. (4.45).

f(x) = 0.64 log2(x) + 0.83. (4.46)

85



Chapter 5

Proposal for non-cryogenic quantum

repeaters with hot hybrid alkali-noble

gases

5.1 Preface

The successful implementation of global quantum networks would have many applications

from secure communication, blind quantum computing, and private database queries to a

“quantum internet” of networked quantum computers and other quantum devices. Here we

propose a non-cryogenic quantum repeater architecture, which builds on a cell of hot alkali

atoms and noble-gas spins which offer ultra-long storage times. The cell is placed inside a

ring cavity which allows for the strong suppression of FWM.

This work was done in collaboration with a few co-authors. My main contributions to this

work include proposing the architecture scheme, quantifying the entanglement generation

fidelity and efficiency, and computing the repeater rates and the fidelities. I also wrote the

first draft of the manuscript.

86



Proposal for non-cryogenic quantum repeaters with

hot hybrid alkali-noble gases

arXiv:2210.09504 (2022)

J.-W. Ji1, F. Kimiaee Asadi1, K. Heshami2,3, and C. Simon1

1Institute for Quantum Science and Technology, and Department of Physics

& Astronomy, University of Calgary, 2500 University Drive NW, Calgary,

Alberta T2N 1N4, Canada

2National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario

K1A 0R6, Canada

3Department of Physics, University of Ottawa, Advanced Research Complex,

25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada

Abstract

We propose a quantum repeater architecture that can operate without cryogenics. Each

node in our architecture builds on a cell of hot alkali atoms and noble-gas spins which offer

an hours-long storage time. Such a cell of hybrid gases is placed in a ring cavity, which

allows us to suppress the detrimental four-wave mixing (FWM) noise in the system. We

investigate the protocol based on a single-photon source made of an ensemble of the same

hot alkali atoms. A single photon emitted from the source is either stored in the memory

or transmitted to the central station to be detected. We quantify the fidelity and success

probability of generating entanglement between two remote ensembles of noble-gas spins by

taking into account finite memory efficiency, channel loss, and dark counts in detectors. We

describe how the entanglement can be extended to long distances via entanglement swapping

operations by retrieving the stored signal. Moreover, we quantify the performance of this
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proposed repeater architecture in terms of repeater rates and overall entanglement fidelities

and compare it to another recently proposed non-cryogenic quantum repeater architecture

based on nitrogen-vacancy (NV) centers and optomechanical spin-photon interfaces. As the

system requires a relatively simple setup, it is easier to perform multiplexing, which enables

achieving rates comparable to the rates of repeaters with NV centers and optomechanics,

while the overall entanglement fidelities of the present scheme are higher than the fidelities of

the previous scheme. Our work shows that a scalable long-distance quantum network made

of hot hybrid atomic gases is within reach of current technological capabilities.

5.2 Introduction

The realization of global quantum networks would bring many fascinating applications to

the world, which include secure communication [1], blind quantum computing [2], private

database queries [3], and eventually, a quantum internet that connects quantum comput-

ers and other quantum information processing devices [4, 5, 6]. In such a quantum net-

work, photons are used as information carriers for establishing long-distance connections,

but they are adversely affected by transmission loss, which significantly limits the distance

of connecting remote locations. Unlike its classical counterparts, photon loss cannot be

compensated by amplification as unknown quantum states cannot be perfectly cloned ac-

cording to the no-cloning theorem [7]. Therefore, quantum repeaters have been proposed

to solve this issue but this requires stationary quantum memories for storing and process-

ing the quantum information [12, 139, 5]. Currently, a vast majority of approaches to

quantum networks need either vacuum equipment and optical trapping or cryogenic cool-

ing [9, 10, 11, 140, 36, 12, 141, 142, 143], which makes scaling up such architectures very

difficult. However, there have been some efforts in proposing quantum networks that operate

at room temperature based on solid-state systems [149, 39] but they require complex setups

and have high demands in designing the hardware for realizing the spin-photon interface. On
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the other hand, hot alkali vapors have been actively investigated as quantum memories for

the application of quantum networks [123, 145, 187, 188, 124], and as they require relatively

simple setups, it is easier to scale, which even offers a great potential for being deployed in

space [85].

In spite of the appealing features of hot alkali vapor, there are a few challenges in the

system. The main roadblock towards using this system for quantum networks is four-wave

mixing (FWM) noise as it is quite significant and ubiquitous in Λ-type hot atomic ensem-

bles, posing serious challenges to the single-photon level applications [125, 126]. Proposed

solutions to this issue include blocking FWM channels by polarization selection rules [129],

Raman absorption-enabled suppression in a mixed hot vapor [130], cavity engineering [131],

and by means of coherent destructive interference of FWM [132]. The advantage of using a

cavity to suppress FWM noise compared to other solutions is that it offers enhanced light

storage and retrieval efficiency while only introducing a cavity. It has been experimentally

verified, reporting a noise floor of around 1.5× 10−2 photons per pulse in a Raman-type hot

vapor memory [133]. Another significant challenge in the Λ-type hot atomic ensembles is

short storage time in the collective spin state, which is mainly affected by the atomic colli-

sions between the hot vapor and the buffer gas and the collisions in the hot vapor itself. Due

to this detrimental effect, the storage time in hot ensembles is limited to a microsecond [189],

thus restricting its application in quantum networks. However, there has been some work

towards reducing this detrimental effect either by the motional averaging method [123, 124]

or by using a decoherence-free subspace of spin states [33] with the spin coherence time

extended to a second but even second-long coherence time may not be sufficient for long-

distance quantum networks [12]. It is worth noting that minute-long spin relaxation time in

hot alkali atoms has already been achieved [190] but no light storage was demonstrated in

this experiment.

Rare isotopes of noble gas have non-zero nuclear spins, which are isolated from the envi-

ronment by electronic shells. Thus, they maintain hours-long coherence time even at room
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temperature [134]. They can be accessed either via the collisions with metastable helium

atoms or via the collisions with alkali atoms [134]. A quantum interface between noble-gas

spins and alkali atoms has been proposed based on weak spin-exchange collisions [135]. Using

this interface, the storage time can be significantly enhanced, which has been experimentally

demonstrated with the coherence time of a minute [137] and an hour [138].

In this work, we propose a quantum repeater architecture without cryogenics, which is

based on hot alkali vapor and noble-gas nuclear spins. In our proposal, we adopt the cavity

engineering method to suppress FWM noise when the input gets stored as a collective spin

excitation in hot vapor via the off-resonant Raman protocol [131], and then it is mapped

to noble-gas spins via weak spin-exchange collisions [135, 136]. We consider the single-

photon-based protocol [12] where single-photon sources and quantum memories are used

for entanglement generation and swapping. We propose to use the same hot alkali atomic

ensembles for single-photon sources. We quantify and analyze the entanglement generation

efficiency and fidelity between two remote ensembles of noble-gas spins. Then, we show how

entanglement swapping can be done to extend the entanglement to longer distances. Finally,

we compute the repeater rates and overall fidelities and compare them to quantum repeaters

with NV centers and optomechanics.

This paper is organized as follows. In Sec. 5.3, we introduce the hybrid system of hot

vapor and noble-gas spins in a ring cavity. The single-photon protocol is presented in Sec.

5.4. Sec. 5.5 discusses the repeater rates and fidelities. Sec. 5.6 gives more details on system

implementation. We conclude and provide an outlook in Sec. 5.7.

5.3 Hybrid atomic gas system

As shown in Fig. 5.2(a), the hybrid atomic gas system is composed of a ring cavity and a cell

of two hot atomic gases: alkali atoms and noble-gas atoms. This cell placed inside the cavity

is driven by the control field (red) and the Stokes field (green). The ring cavity consists of two
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Figure 5.1: The level diagram of a hybrid system with hot vapor and noble gases. The |g〉-|e〉
transition is coupled by the input signal (Stokes field) with the strength proportional to

√
na

where na is the number density of alkali atoms in the cell. The control field is coupled to
the |e〉-|s〉 transition with a time-dependent Rabi frequency Ω(t). Both fields are detuned
from |e〉 by ∆s, and the control field can also couple the |g〉-|e〉 transition with the detuning
∆a, which generates the anti-Stokes field A. The collective spin state for noble-gas atoms
is denoted by |k〉. The |s〉 − |k〉 transition is coupled to each other via the spin-exchange
collision with a constant strength J when these two states are in resonance with other, i.e.
δk = 0. The collective excited state, alkali spin state, and noble-gas spin state decohere at
the rates of γe, γs, and γk respectively. Typically, γk � γs as noble-gas spins have extremely
low decoherence rates.
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fully reflective mirrors and a mirror that serves as an input-output coupler with amplitude

reflectivity r. The coherent interaction between the noble-gas spins and alkali atoms is

achieved by spin-exchange collisions [135]. As shown in Fig.5.1, an ensemble of alkali atoms

is modeled as a Λ-type system with a collective ground state |g〉, a collective spin state |s〉

and an excited state |e〉. Each noble-gas atom is modeled as a spin-1/2 system with up and

down states |⇑〉, |⇓〉. Here, we denote the collective noble-gas spin state as |k〉. The input

signal (Stokes field) S couples the |g〉 − |e〉 transition with the strength proportional to the

density of alkali atoms na, and the control field couples to the |e〉 − |s〉 transition with the

Rabi frequency Ω(t). Both fields are detuned from |e〉 by ∆s. The control field can also

couple the |g〉-|e〉 transition with the detuning of ∆a, which generates the anti-Stokes field

A (FWM noise) because here all alkali atoms are prepared in one of the ground states that

has higher energy [131]. Due to the effect of spatial diffusion, there could be many spatial

modes for the alkali and noble gases. However, in the light-dominated regime where the

power broadening in the alkali atoms due to the control beam dominates over diffusion in

the alkali atoms, the collective spin mode of the alkali gas and the collective spin mode of

the noble gas can be well approximated as single uniform modes by engineering the spatial

profile of the control field [136]. This condition is satisfied in this work, which is discussed

in detail in Sec. 5.6.

We need to polarize both the alkali and noble gases along the vertical axis. The former

can be done using standard optical pumping, and the latter can be done using spin-exchange

optical pumping (SEOP). The SEOP takes around 10 hours to complete, but this preparation

can last up to 100 hours. The collective alkali spin state |s〉 can be coupled to the collective

noble-gas spin state |k〉 via weak spin-exchange collision with the strength J . The coupling

strength J is given by J = ζ
√

(2I + 1)papbnanb/4 where ζ is the local average interaction

strength of an alkali-noble atom pair in a single collision, and pa and pb are the polarization

degrees of alkali and noble gases, and na and nb are the densities of alkali and noble gases

in the cell. I is the nuclear spin of an alkali atom. Thus, J is the effective interaction

92



Figure 5.2: (a) Schematic of the setup of hybrid quantum memories. A cell that contains
alkali atoms (red dots) and noble-gas atoms (blue dots) is placed inside a ring cavity where
the green signal and red control field interact with alkali atoms directly. The FWM noise is
the generated blue anti-Stokes field during the storage and retrieval processes, which can be
largely suppressed via tuning the cavity. The interface between alkali atoms and noble-gas
spins is based on spin-exchange collisions. (b) Schematic of a two-link repeater with single-
photon sources [44] as an example. There are two elementary links with four nodes and each
one has a single-photon source which is a hot alkali atomic ensemble, a beam splitter, and
a hot alkali-noble gases hybrid system serving as a quantum memory. The single-photon
source emits a photon that either transmits through the beam splitter or gets reflected to
enter the quantum memory. Two steps are required to establish the entanglement between
nodes A and D. The first step is to generate the entanglement between A and B, C and D.
The second step is to perform the entanglement swapping between B and C to distribute the
entanglement to A and D. (c) Schematic of post-selection. This is the same as in the DLCZ
protocol [9]. The entanglement is established both in links A-D and A’-D’, and the stored
photons are retrieved to be detected, which allows us to rotate the measurement basis by
adjusting the transmission coefficients and phases of the beam splitters [12].

strength in multiple collisions with each collision averaging over all alkali-noble atom pairs

in the ensembles [135]. δk is the detuning between these two states, which can be tuned by

applying a magnetic field along the vertical axis. This detuning can be used to decouple these

two species of atoms [135, 138]. γe, γs, and γk are the decoherence rates for the collective

excited state, spin state, and noble-gas spin state respectively. Moreover, we have γk � γs

as noble-gas spins have an extremely low decoherence rate.

The Maxwell-Bloch equations of this hybrid system with the excited state |e〉 being
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adiabatically eliminated take the form [131, 136]

(c∂z + ∂t)S = ic

√
dγe
Lc

Ω

Γs
B − κsS,

(c∂z + ∂t)A = ic

√
dγe
Lc

Ω

Γa
B† − κaA,

∂tB = −i
√
dγe
Lc

Ω∗

Γs
S + i

√
dγe
Lc

Ω

Γa
A† − (

1

Γs
+

1

Γ∗a
)|Ω|2B − γsB − iJK,

∂tK = −(γk + iδk)K − iJB,

(5.1)

where S,A,B, and K are the annihilation operators for the signal field, anti-Stokes field,

bosonic collective spin wave, and collective noble-gas spin wave (we use the same notation

as in [135]). Γs,a = γe − i∆s,a is the complex detuning of the signal and anti-Stokes fields.

d ∝ g2paNa/γe is the optical depth where Na is the total number of alkali atoms inside the

cell, and g is the average coupling strength between the Stokes/anti-Stokes fields and the

alkali atoms, which is given by g =
√

1
Na

∑Na
i=1 |gi(ri)|2. This approximation is valid when

the number of excitations is much smaller than Na [191], which is the case here. Lc is the

length of a roundtrip in the cavity, and c is the speed of light. The coordinate z indicates

the direction along the optical path inside the cavity. Moreover, the bosonic operators

B and K take the form as B(z, t) = eiωgs(t−z/c)
∑

j∈[z,z+δz] |g〉j 〈s| /(δz
√
pana) and K =

eiδk(t−z/c)∑
i∈[z,z+δz] |⇓〉i 〈⇑|/(δz

√
pbnb). As mentioned before, the spin-exchange coupling

rate J is proportional to the densities of the two atomic gases na and nb, i.e. J ∝ √nanb [135].

Thus, by increasing the pressure, one can increase this interaction strength. κs = cdγe/(LcΓs)

and κa = cdγe/(LcΓ
+
a ) stand for the decay rates of the Stokes field and anti-Stokes field in the

ring cavity where Γ+
a = γe− i(∆a + δs) with δs being the splitting between the states |g〉 and

|s〉. Strictly speaking, Eq. (5.1) should also have the Langevin noise operators. However,

for both the signal and the anti-Stokes field, the noise is vacuum which is zero in normal

ordering [128]. The first two equations in the above set of equations describe the dynamics

of the signal and anti-Stokes field inside the cavity, and the third equation describes the

dynamics of the density of the collective spin state of the alkali atoms, which couples not
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only to the signal and anti-Stokes field but also to the noble-gas spins. The last equation

describes the dynamics of the density of the noble-gas spin state.

Now, we have the boundary condition where the intra-cavity fields S0 and A0 (z = 0)

can be related to the input fields Sin, Ain and the fields at z = Lc: SLc and ALc by the

input-output coupler. Thus, we obtain the following relations [131]:

S0 = reiksLcSLc + trSin,

A0 = reikaLcALc + trAin,

(5.2)

where tr =
√

1− r2 is the transmission coefficient of the coupler, and ks and ka are the

wavevectors of the signal and the anti-Stokes fields respectively. Moreover, SLc and ALc can

be directly related to S0 and A0 by Taylor expansion. To the first-order approximation, we

have the following:

SLc ≈ e−ks
Lc
c (S0 + iLc

√
dγe
Lc

Ω

Γs
B0 −

Lc
c
∂tS0),

ALc ≈ e−ka
Lc
c (A0 + iLc

√
dγe
Lc

Ω

Γa
B†0 −

Lc
c
∂tA0),

(5.3)

where B0 is the collective alkali spin operator for z = 0. Combining these two sets of

relations, one can obtain the following Maxwell-Bloch equations:

∂ts = −κ̃ss+ i

√
dγe
τ

Ω

Γs
b+ e−iφs

tr
µs
√
τ
Sin,

∂ta = −κ̃aa+ i

√
dγe
τ

Ω

Γa
a+ e−iφa

tr
µa
√
τ
Ain,

∂tb = −γsb+ i

√
dγe
τ

(−Ω∗

Γs
s+

Ω

Γa
a)− (

1

Γs
+

1

Γ∗a
)|Ω|2b− iJk,

∂tk = −(γk + iδk)k − iJb,

(5.4)

where τ = Lc/c is the cavity roundtrip time. s =
√
τS0, a =

√
τA0, b =

√
LcB0, and

k =
√
LcK0 (K0 is obtained by setting z = 0 in K) are the intra-cavity amplitudes for
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the signal, anti-Stokes field, collective alkali spin state, and collective noble-gas spin state

respectively. κ̃s,a is the resonant and anti-resonant decay rates for the signal and anti-Stokes

field. They are given by [131]:

1

κ̃s,a
= τ

µs,ae
iφs,a

1− µs,aeiφs,a
, (5.5)

where φs,a = ks,aLc − Im{κs,a}τ is the accumulated phases in the cavity roundtrip by the

signal and anti-Stokes fields, and µs,a = re−Re{κs,a}τ is the cavity roundtrip amplitude trans-

mission for the fields.

Eq. (5.4) can be solved in the bad-cavity regime where the signal/anti-Stokes field evolved

at a rate much slower than the corresponding decay rate, i.e. |κ̃s,a| � |
√
dγe/τΩ/Γs,a| [128].

In this limit, we can set ∂ta ≈ 0 and ∂ts ≈ 0. Moreover, as we can decouple the alkali and

noble gases by applying a large magnetic field, we can break the storage into two steps: first

consider the storage in the alkali atoms in the presence of the anti-Stokes field and then

consider the transfer from the alkali to the noble gas. This sequential storage is optimal

when the signal pulse duration T satisfies T � 1/γs [136], which is adopted in this work.

We discuss how this sequential storage is achieved in detail and the optimal storage efficiency

in Sec. 5.4.1. The main noise present in the system is FWM, and in order to achieve the

maximum suppression of this noise, we need to tune the ring cavity to be in resonance with

the signal and to be in anti-resonance with the anti-Stokes field, which means φs = 0 and

φa = π. This is crucial in the first step of storage and retrieval, which is discussed in more

detail in Sec. 5.4.2. Other sources of noise in hot vapor systems include collision-induced

fluorescence noise, the Doppler broadening, and inhomogeneous broadening for the |g〉 − |e〉

transition. However, in this system, we ignore these effects as it has been demonstrated that

fluorescence noise is negligible for the off-resonant scheme with a short pulse input [192],

and this is also true for the Doppler broadening and inhomogeneous broadening with the

detuning ∆s much larger than their bandwidth, which is discussed in Sec. 5.6.
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5.4 The single-photon repeater

Here, we focus on the single-photon-based protocol [44] for entanglement generation and

entanglement swapping where each node consists of a beam splitter (BS), a single-photon

source (SPS) and a hybrid quantum system as depicted in Fig. 5.2(b), where we just show

a two-link repeater as an example. As the noble-gas spins offer ultralong coherence time at

room temperature, they will be used as the memory for storing the signal. There are two

steps to establish the entanglement between two remote locations, and Fig. 5.2(a) shows

how to achieve this between nodes A and D by cutting this distance into small pieces of equal

length. In Fig. 5.2(b), it is cut into two equal pieces: A-B and C-D but it can be more general

to have more links. In this example, we need to first establish the entanglement between

A and B, and C and D, which is called entanglement generation, and then we perform the

entanglement swapping between two local memories B and C to distribute the entanglement

to A and D, i.e. only entangling A and D. Moreover, as a single excitation in the noble-gas

spins is shared between A and D, it is difficult to perform measurements in other bases than

the basis {|k〉, |0〉}. In order to relax this, we can introduce another entangled link A′ −D′

where nodes A′ and D′ are in the same locations as A and D respectively [44], which is

depicted in Fig. 5.2(c). In this way, we can use two beam splitters and two detectors in

each location to read out the stored photons, which allows measurements in an arbitrary

basis by choosing the transmission coefficients and phases. This step is known as post-

selection. In this section, we show how entanglement generation, entanglement swapping,

and post-selection can be achieved in our hybrid system, and we also quantify the established

entanglement generation fidelity and efficiency in the elementary link.

5.4.1 Entanglement generation

Before we characterize how the entanglement generation can be done, we would like to first

talk about how signal storage can be achieved and give optimal storage efficiency. Our goal
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is to store the signal in the quantum memory as a collective excitation in the noble-gas

spins, and this process can be divided into two steps: storing the signal in the collective

spin excitation of alkali atoms and transferring this excitation to the collective excitation in

noble-gas spins. This sequential storage is optimal when the signal pulse duration T satisfies

T � 1/γs [136]. In order to execute the first step, we make the detuning δk between |s〉 and

|k〉 large enough such that δk � J , and when this condition is satisfied, the states |s〉 and |k〉

are decoupled from each other [135]. Then, this process is simply described by the first three

equations in Eq. (5.4) with J = 0. Given that the maximum suppression of noise is achieved

by tuning the ring cavity to be in resonance with the signal and to be in anti-resonance

with the anti-Stokes field (φs = 0 and φa = π), it has been shown that the optimal storage

efficiency in the first step is η1 = 1 −
√
dγe/(

√
2∆s) in the strong coupling regime (more

details can be in Sec. 5.4.2) and the far-detuned regime (∆s � γe) without mode mismatch

in the cavity [131]. This efficiency could be achieved when using lossless optical components.

The requirements for all the related parameters can be realized experimentally, which are

discussed in Sec. 5.6. It is worth noting that this optimal efficiency depends on the signal

detuning ∆s as opposed to the previous result in [128] where the optimal efficiency was found

to be detuning-independent in the absence of FWM. The second step is to transfer the signal

stored in the alkali atoms to the noble-gas spins. Thus, we need to turn off the control field

Ω(t) and tune |k〉 on resonance with |s〉 to make them interact, which can be done using an

external magnetic field [138]. The efficiency of this transfer is maximized when the transfer

time is set to be π/(2J) and it is in the strong coherent coupling regime, i.e. J � γs � γk

[136]. Then, we obtain the optimal transfer efficiency η2 = exp(−π(γs+γk)
2J

), which gives us

the total storage efficiency:

ηs = η1η2 = (1−
√
dγe√
2∆s

)exp(−π(γs + γk)

2J
). (5.6)

Now, we shall see how entanglement can be established in an elementary link. There
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are two links illustrated in Fig. 5.2(b), and here we focus on the first link for describing

how the entanglement generation is achieved. In this link, for the left node, a single photon

emitted from the source after a beam splitter can be described as (αa†1 +βa†2) |0〉 where α, β

are reflection and transmission amplitudes of a beam splitter, and they satisfy the relation

|α|2 + |β|2 = 1. The same is true for the right node where the state of a single photon after

a beam splitter is (αb†1 + βb†2) |0〉. Thus, the joint state is given by:

[α2a†1b
†
1 + αβ(a†1b

†
2 + a†2b

†
1) + β2a†2b

†
2] |0〉 . (5.7)

The first term in this state is the case where both single photons are reflected to be stored

in quantum memories, ideally yielding no heralding in detectors. However, the detector

dark counts could potentially lead to spurious clicks, thus causing infidelity in the desired

entangled state. This probability is given by ε0(1−ε0)α4 where ε0 is the probability of having

no dark counts in detectors. Here, we take it into account, but later on, we will see that its

effect can be negligible if we choose the detector and detection window time properly. The

second and third terms are the main contributions to single photon heralding where a†1 and b†1

are to be stored in quantum memories. We use noble-gas nuclear spins as quantum memories

where the storage of a single photon is achieved in two steps as described above. As the finite

storage efficiency, ηs could create vacuum components, we take it into consideration in this

work. The probability of having this contribution is given by ε0α
2β2ηtηcηdηs where ηt, ηd, ηc

are the transmission, detection, and frequency conversion efficiencies. The last term could

also lead to the single-photon detection event when one of the two photons gets lost in the

transmission, thus creating vacuum components as well. As discussed in Sec. 5.4.2, although

the hindsight from post-selection tells us that the vacuum components can be eliminated,

which seems to have no effect on overall fidelity, it still could decrease the overall repeater

rates. This probability is given by ε0β
4ηtηcηd(1 − ηtηc). Moreover, we assume that the

probability that the single-photon source emits a photon is p1, which depends on the source
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we use.

Here, we choose to use the same hot alkali gas as a single-photon source, which can be

charged with a single excitation via the FWM process used in the DLCZ protocol [9], and this

atomic excitation can then be reverted to emit a single photon. A few experimental works

have been reported for using hot rubidium atoms to generate bright and indistinguishable

photons [193, 194]. In this way, we do not need to perform frequency conversion to match

with the alkali gas we use in the system, but the frequency conversion is needed for long-

distance communication, i.e. for a2 and b2. Using atomic ensembles to generate single

photons could lead to multi-photon errors thus degrading the repeater fidelities. This is

discussed in detail in Sec. 5.5. We envision using the reverse-proton exchange (RPE) PPLN

waveguide technique to convert a single photon emitted from the source to a telecom photon,

which can operate at room temperature with a conversion efficiency of 23% for the 863 nm

signal [195] but it is promising to apply it to the signal of different wavelengths. Moreover,

by choosing the proper waveguide mode filter and fibre type, one can greatly improve this

conversion efficiency to 60% [195], and we use a higher value of 80% in Sec. 5.5 for rates

calculations. Also, we assume that the relative phase in two optical fibres remains stable.

Practically, this requirement can be achieved by actively stabilizing the lengths of fibre [12],

or through the use of self-compensating Sagnac-type configurations [196].

After taking all these effects into account, the entanglement generation fidelity and ef-

ficiency of the state created by detecting a single photon in one of the detectors are given

by:

Fgen =
α2β2ηtηcηdηs

β2ηtηcηd + (1− ε0)α4 − β4η2
t η

2
cηd

, (5.8)

ηgen = 2p1(ε0β
2ηtηcηd + ε0(1− ε0)α4 − ε0β4η2

t η
2
cηd), (5.9)

where ε0 = exp(−λTd) with λ being the dark count rate, and Td is the detection window

time which is set to be the time duration of the signal, that is Td = T . ηt is the function of
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the length of an elementary link L0, which takes the following form: ηt = exp(−L0/2Latt)

with Latt = 22 km being the attenuation length for telecom photons. The factor of 2 in the

efficiency expression comes from the fact that the detectors are symmetric, and the herald-

ing in either of them contributes to the efficiency. We envision using silicon single-photon

avalanche diodes (Si SPADs) [197, 198] and frequency conversion to detect telecom photons.

Si SPADs combined with a monolithic integrated circuit of active quenching and active reset

(AQAR) can enable detection efficiency as high as 75% with dark count rates below 100 Hz

at 785 nm [197]. This type of detector can operate at non-cryogenic temperatures which

only require a thermoelectric cooler. The parameters are taken to be α2 = 0.84, β2 = 0.16,

ηd = 0.6, ηc = 0.8, Td ∼ 12.5 ns (the signal bandwidth is around 80 MHz, which is compatible

with the hot vapor bandwidth as discussed in Sec. 5.6). In this regime, the term (1−ε0)α4 is

a few orders of magnitude smaller than β2ηtηcηd so Eq. (5.9) can be approximately written

as Fgen ≈ α2ηs, and ηgen ≈ 2p1β
2ηtηcηd. Moreover, we can now write the entangled state for

each elementary link as

α2ηs |ψab〉 〈ψab|+ [α2(1− ηs) + β2] |0〉 〈0| , (5.10)

where |ψab〉 = 1√
2
(|ka〉 |0b〉 + |0a〉 |kb〉). The storage inefficiency 1− ηs increases the vacuum

component proportion, and therefore it decreases the repeater rates. The required input

pulse is short as it satisfies the condition T � 1/γs, which is also the requirement for

the optimal signal storage in noble-gas spins using the sequential scheme [136]. Moreover,

when we have two elementary links, there is some waiting time for both links to establish

entanglement, and as noble-gas spins offer ultralong coherence time, the decoherence that

happened during the waiting time is ignored.
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5.4.2 Entanglement swapping

After we successfully establish the entanglement in two adjacent elementary links as shown in

Fig. 5.2(b), we then need to perform entanglement swapping to propagate the entanglement

between A and D. This can be done by recalling the single photon stored in either quantum

memories B or C that are in the same location, and the heralding at one of the beam

splitters informs us of the success in the swapping process, leading to the entangled state

shared between A and D. At this level, it is well known that the swapping probability takes

the following form [12]:

P1 =
p1Fgenη

2
(2− p1Fgenη), (5.11)

where η = ηdηr is the product of the detection efficiency and the retrieval efficiency. Here,

the retrieval process happens in two phases as well. First, we map the excitation in noble-

gas spins to the excitation in hot vapor via the spin-exchange interaction by turning on the

magnetic field for the amount of time of π/(2J) [135, 136]. Second, we need to read out the

signal from the collective spin state of the hot vapor. In this process, we need to turn on

the control field Ω(t) and decouple the hot vapor from the noble gas by applying an external

magnetic field to detune |s〉 from |k〉. The efficiency of retrieving the signal from hot vapor is

the same as η1, and it only holds under the condition that the decoherence of |s〉 is negligible

during this process, which is true as the decoherence happens on the time scale much slower

than that of memory interactions [136, 131]. Thus, the overall retrieval efficiency is ηr = ηs,

which is given in Eq. (5.6).

Now, putting all together, we can further simplify Eq. (5.11) as P1 = p1α
2ηtot(1 −

1
2
p1α

2ηtot), where ηtot = ηsηrηd. If we have more than two elementary links, the entanglement

swapping is nested, which requires higher levels of swapping. This leads to a more general

expression for the success probability of entanglement swapping at the ith level [12]:

Pi =
p1α

2ηtot

2

[2i − (2i − 1)p1α
2ηtot]

[2i−1 − (2i−1 − 1)p1α2ηtot]2
. (5.12)
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After the entanglement swapping, a single excitation in noble-gas spins is shared between

two remote locations (in Fig. 5.2(b), it is between A and D). As mentioned before, we

need to perform post-selection by reading out the stored photons in each location, which

allows us to generate an effective state 1/
√

2(|kAkD′〉 + |kA′kD〉). Here, the dark counts are

negligible because of the short detection time Td as mentioned in Sec. 5.4.1. Then, the

success probability of performing this projection is given by [12]:

Pps =
(p1α

2ηtot)

2

1

[2i − (2i − 1)p1α2ηtot]2
. (5.13)

This post-selection step enables us to eliminate the vacuum components in Eq. (5.10) as it

is impossible to detect a single photon on each side if both links are vacuum. Hence, the

overall fidelity is not affected by the vacuum components in Eq. (5.10) but as mentioned

they have a significant impact on repeater rates.

In the retrieval process, FWM noise can be strongly suppressed by choosing φs = 0

(on resonance) and φa = π (anti-resonance). In the strong coupling regime, this noise

can be quantified by calculating the g
(2)
re function of the retrieved signal, which is equal to

2|x|2ζ1|Γs|2/|Γa|2 [131] when there is no mode mismatching, and the input signal contains

one photon. x is the FWM noise suppression factor, which is given by

x ≈ 1− µs
2µs

=
1− re−d( γe

∆s
)2

2re−d( γe
∆s

)2 . (5.14)

ζ1 � 1 is the dimensionless coupling strength between both the signal and anti-Stokes field

and the alkali gas, which in this case is given by:

ζ1 ≈ 2
∣∣∣√CsγeW

Γs

∣∣∣2, (5.15)

where Cs = dµs/(1 − µs) ≈ d/2x, and W =
∫ Tc

0
|Ω(t)|2dt stands for the integrated Rabi
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Figure 5.3: (a) Repeater rates as a function of total distance L with Ftarg = 0.9 for hot
hybrid gases-based scheme (referred to as scheme 1), and repeater rates for NV centers
and optomechanics-based scheme (referred to as scheme 2) [39] with corresponding fidelities
shown in (b). Here, we plot 4-link case (B), and 8-link case (A) for scheme 2, and we also
plot 4-link case (D), multiplexed 4-link case (C), and 8-link case (E) for scheme 1 with the
efficiency ηs = ηr = 0.9, and 4-link case (G) for scheme 1 with efficiency ηs = ηr = 0.8.
The choice of the storage/retrieval efficiency is justified in Sec. 5.6. The direct transmission
(F) is plotted with a single-photon source of 10 GHz. For C, it is multiplexed by a factor
of 100. In general, the rates of scheme 2 are much higher than the rates of scheme 1. All
these repeaters outperform direct transmission. We assume ηc = 0.8, ηd = 0.6, α2 = 0.84,
β2 = 0.16, ttrans = 1.5 ms for all cases in scheme 1. We also use tch = 0.048 ms for D and
G, and 1.03 ms for E. The emission probability for single-photon source p1 is assumed to be
0.9 for all repeaters in both schemes. (b) Repeater fidelities as a function of total distance
L for schemes 1 and 2. A and B are 8-link and 4-link cases in scheme 2 [39]. C stands
for a 100-multiplexed 4-link repeater in scheme 1 with Ftarg = 90% and Fre = 98.6%. As a
multiplexed 8-link repeater in scheme 1 has fidelities very close to C, it is not shown here.
In general, scheme 1 yields much higher fidelities than scheme 2, and they are independent
of the total distance.
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frequency with Tc being the control pulse duration. Then, the readout fidelity is given by

Fre =
1

1 + SNR−1 , (5.16)

where SNR−1 = g
(2)
re /2 is the signal-to-noise ratio [131]. Here, we ignore the infidelity that

comes from the detector’s dark counts as the detection window time is assumed to be around

12.5 ns. Using the parameters discussed in Sec. 5.6, it is possible to have a readout fidelity

as high as 98.6%.

5.5 Repeater rates and overall fidelities

In our system as the storage and retrieval time are mainly limited by how fast we can transfer

the coherence from hot vapor to noble-gas spins via the spin-exchange collisions, and these

times are given by ttrans = π/2J , which is around 1.5 ms based on the parameters in Sec.

5.6. This transfer time is on the same order as the two-way communication time L0/c for

L0 ranging from 50 km to 100 km with c = 2× 108 m/s, which makes the total length of an

8-link repeater ranging 400 km to 800 km. Furthermore, the average charging time tch in the

ensemble also needs to be taken into account as it is comparable to ttrans both in a four-link

repeater and an eight-link repeater with the final target fidelity Ftarg = 0.9 as discussed later

in this Section. Now, taking ηgen, Pi, and Pps into the standard entanglement distribution

time for the single-photon protocol [12] plus the extra time spent for retrieving the signal

and charging the ensemble, we obtain

Ttot =
3n+1

2
(
L0

c
+ ttrans + tch)

∏n
i=1 (2i − (2i − 1)p1α

2ηtot)

ηtηcηdp
n+3
1 β2α2n+4ηn+2

tot

. (5.17)

where n indicates the number of nesting levels, and the number of links associated with

it is 2n. Thus, the total length of a repeater is L = 2nL0. In Fig. 5.3(a), we plot 4-link

case (D), multiplexed 4-link case (C), and 8-link case (E) for hot hybrid gases-based scheme
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(referred to as scheme 1) with respect to total distance when ηs = ηr = 0.9 and Ftarg = 0.9 as

discussed below, and we plot 4-link case (G) for scheme 1 with ηs = ηr = 0.8. The choice of

the storage/retrieval efficiency is discussed in detail in Sec. 5.6. Also, we plot 4-link case (B),

and 8-link case (A) for NV centers and optomechanics-based scheme (referred to as scheme

2) [39] for comparison. The direct transmission (F) is plotted with a source of 10 GHz.

For C, it is multiplexed by a factor of 100, which can be implemented spatially [199, 12] or

spectrally [11] as discussed in Sec. 5.6. All these repeaters outperform direct transmission at

some point but in general, the rates of scheme 2 are much higher than the rates of scheme 1.

The lower rates for scheme 1 are due to the fact that the single-photon protocol is nested as

the entanglement swapping and post-selection are probabilistic as opposed to the non-nested

scheme used in [39], and the interface between alkali atoms and noble-gas spins is also quite

slow, which further degrades the repeater rates. The other factors that limit the repeater

rates in this proposal are detection efficiency ηd and frequency conversion efficiency ηc, which

could be improved to further enhance the rates. We expect an order of magnitude increase in

rates when we increase ηd from 0.6 to 0.9. The slow interface between hot vapor and noble-

gas spins also plays a role in reducing the rates, but the room for improving the speed of

this interface is limited as it is based on weak spin-exchange interactions [135], which means

J cannot be too large. It is worth noticing that it is much easier to perform multiplexing

in hot hybrid gases-based repeaters than NV centers and optomechanics-based repeaters

because the latter requires much more complex setups than the former [39]. Moreover, there

is a trade-off between the target fidelity Ftarg and repeater rates as Ftarg determines tch.

However, the improvement in rates is not significant when we set a lower target fidelity.

The infidelities in our repeaters mainly come from multiphoton emissions of the single-

photon source and FWM noise in the entanglement swapping and post-selection. The effect

of FWM noise in the signal readout has been estimated in Sec. 5.4.2 based on the parameters

discussed in Sec. 5.6, which gives us a high readout fidelity of 98.6%. In addition, the

decoherence of the noble-gas spins does not affect the final fidelities as we perform post-
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selection in end to filter out the vacuum components. Now, the overall fidelity is given

by

Ftot = Ftarg × (Fre)
n+2, (5.18)

where n+2 is the number of performing readouts. Ftarg is a target fidelity of repeaters, which

we choose to be 90% for all repeaters in scheme 1 with different nesting levels. This fidelity is

determined by errors due to multiphoton emission in the ensemble-based single-photon source

[12]. The probability of having a two-photon contribution is given by p2 = 2p(1−ηst)p1 where

p is the probability of emitting the Stokes photon when charging the ensemble, and ηst is

the efficiency of detecting a Stokes photon, assumed to be 0.75 using a silicon single-photon

detector [197, 198]. In order to make p2 small enough to have Ftarg = 0.9, we need to make

p sufficiently small. It can be shown that when we have a four-link repeater, the maximum

value that p2 can take is 0.00093 [12], which leads to p = 0.0021. This emission probability

results in a charging time given by tch = 1/(Rp) = 0.048 ms with the repetition rate R = 10

MHz. If we have an eight-link repeater with Ftarg = 0.9, we obtain p = 9.73 × 10−5, which

leads to tch = 1.03 ms. Assuming the readout fidelity for both swapping and post-selection

is 98.6%, the overall fidelities of a 4-link and 8-link repeaters in scheme 1 are estimated to

be 85.1% and 83.87%. In Fig. 5.3(b), we plot the overall fidelities as a function of total

distance L for scheme 1 and scheme 2. A and B are 8-link and 4-link repeaters in scheme

2 which decrease as total distance increases due to thermal noise present in the system

which are treated as dark counts [39]. C is the multiplexed 4-link repeater in scheme 1,

which is independent of the total distance. In general, scheme 1 yields fidelities that are

significantly higher than the fidelities in scheme 2, which is mainly due to the fact that the

accumulated infidelities induced by vacuum components are eliminated in the end by post-

selection. Overall, these two schemes have their own advantages and disadvantages. Scheme

1 is much slower than scheme 2 but has much higher fidelities, and scheme 1 requires much

less complex setups than scheme 2 which also facilitates multiplexing. Moreover, it is possible

to boost the fidelities using entanglement purification [200], but this comes at the cost of
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further reducing the rates. A quantitative discussion of repeaters including purification goes

beyond the scope of the present work.

5.6 Implementation

Here, we consider 39 K atoms as the hot vapor and 3 He atoms as the noble-gas spins in

our system, where the optical depth d of the hot vapor is assumed to be 100, which can be

achieved in the high-density hot vapors. The linewidth of the excited state 2γe is taken to be

27 GHz for broadened D1 line due to collisions with buffer gas, which is much smaller than

the assumed detuning ∆s = 2700 GHz so it makes the system in the far-off resonant regime

[131]. Moreover, such a large detuning ∆s also makes the Doppler broadening negligible,

around 1 GHz at 230◦ C. But this often comes at the cost of reducing the efficiency due

to large detuning so we also need to make sure the system is still in the strong coupling

regime in the far off-resonant regime, which then requires a strong control pulse as discussed

below in this section. In fact, it has been shown that at high enough optical depth (or high

enough cooperativity), the effect of Doppler broadening or any inhomogeneous broadening

is negligible [201]. So far, the experimentally achieved value of J is around 78 Hz [138]

but if we further increase the pressure to increase the gas densities, it is possible to have

J = 1000 Hz [135]. In this condition, for γs and γk, they are estimated to be 17.5 Hz and

2.8 × 10−6 Hz respectively, dominated by intra-gas and inter-gas collisional spin-rotation

couplings [135, 137, 138]. However, one also needs to take the diffusion-induced effect into

account. For the single uniform mode of the alkali atoms, the diffusion-induced decay rate is

given by Daπ
2/R2 where Da is the diffusion coefficient of the alkali atoms, and R is the radius

of the spherical cell. For a cell with R ∼ 0.15 cm, in high buffer-gas pressure configuration

(Da = 0.054cm2/s), the diffusion-induced decay rate is estimated to be around 28 Hz. Thus,

the actual decay rate of 39 K atoms γs is the sum of the original rate and the diffusion-

induced rate, which becomes 45.5 Hz. For the single uniform mode of the noble-gas atoms,
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the spatial diffusion does not affect its own decay rate, thus leaving γk unchanged. To verify

that we are in the light-dominated regime, the power broadening due to the control beam is

Re(|Ω|2(1/Γs+1/Γ∗a)), which is around 3700 Hz, thus much larger than the diffusion-induced

decay rate 28 Hz. Overall, this yields a storage efficiency of around 90%. In real experiments,

this efficiency could be lower due to possible mode mismatch in the cavity, so we also use a

lower value of 80% in calculating repeater rates and fidelities in Fig. 5.3.

Moreover, ∆a = ∆s + δs where δs is the splitting between the states |g〉 and |s〉, which is

around 0.46 GHz in 39 K vapor. The dimensionless coupling strength ζ1 is taken to be 10 to

ensure we are in the strong coupling regime, which could be achieved by using a square pulse

as the control field with the Rabi frequency Ω ∼ 2π × 1 GHz and the duration Tc ∼ 50 ns.

The power of the control laser can be related to the Rabi frequency as P = (~Ω/di)
2cε0πR

2
w/2

where di is the dipole moment of the D1 line, and ε0 is the vacuum permittivity, and Rw

is the waist width of the control beam. Then, given the waist is on the same order as the

radius of the cell, ∼ 0.15 cm, the required power of the control laser is estimated to be

around 2 W, and the energy is 100 nJ. In general, the larger the signal detuning ∆s is, the

more difficult it is to achieve the strong coupling regime as we need a stronger and longer

control pulse, which can be seen from Eq. (5.15). In the strong coupling regime, the noise

suppression factor x is given in Eq. (5.14), and when the storage and retrieval efficiencies are

optimized, the reflectivity r is given by r = (1−
√

1− α2
s)/αs with αs ≈ exp{−d(γe/∆s)

2},

which is estimated to be 93.2%. Thus, we obtain the signal readout fidelity Fre ∼ 98.6%.

The cavity linewidth κc is linked to r and the hyperfine splitting δs as κc = 8δs(1 − r)/r,

which is estimated to be 0.27 GHz. Moreover, in the bad cavity regime, the bandwidth δB

of this hybrid quantum memory is upper bounded by the cavity linewidth as 0.3κc [131],

which gives δB ∼ 80 MHz. The size of the ring cavity is given by the length of roundtrip

L = πc/(2δs) = 160 mm. As for the time-bandwidth product, this hybrid quantum memory

yields an unprecedented value of 2.8 × 1013 which is mainly attributed to the hours-long

storage time in the noble gas and the large bandwidth of the hot vapor. The multiplexing
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can be implemented either spatially or spectrally. For spatial multiplexing, we envision

having many hybrid memories in each node [199]. The spectral multiplexing also requires

many hybrid memories in one node but the emitted photons need to be converted to different

frequencies fed into a common channel [11, 202]. This can be accomplished using frequency

translation which can be noise-free using waveguide electro-optic modulators [203]. The

feeding to a common channel can be achieved by a tunable ring resonator filter that enables

MHz-level resonance linewidths [204].

5.7 Conclusions and outlook

We presented a quantum network architecture based on hot hybrid alkali-noble gases that

can operate without cryogenics. We showed that under realistic conditions, high-fidelity en-

tanglement can be distributed over long distances thanks to the ultra-long coherence time of

noble-gas spins. We showed that the rates of our proposed quantum repeaters can outperform

direct transmission, and with realistic multiplexing, the rates can be greatly enhanced, close

to the corresponding rates of NV centers and optomechanics-based repeaters. Furthermore,

compared to the complex setup in room-temperature repeaters based on NV centers and op-

tomechanics, this hybrid gas system only requires a moderate-finesse ring cavity, an external

magnetic field, and optical pumping equipment. This significantly reduces the complexity

of the system while offering a great potential to be scalable. We hope that this work could

further stimulate the development of high-efficiency silicon single-photon detectors and even

room-temperature detectors that offer both high detection efficiencies and low dark count

rates for telecom photons.

We here have focused on hot atomic gas-based quantum repeaters on the ground, but

this compact hybrid quantum system also offers a good potential for being used as memory

in space [85], which could unlock the possibility of establishing a truly global quantum

network [205, 206, 84] that goes beyond the limit of terrestrial quantum repeaters, and such
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a global quantum network could enable ultra-long distance quantum teleportation, quantum

entanglement and applications in fundamental physics tests [85].
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Chapter 6

Conclusion and outlook

The realization of quantum networks will bring numerous applications that are beyond the ca-

pability of classical networks such as secure communication [1], blind quantum computation

[2], quantum clock synchronization [80, 77], enhanced imaging of distant optical telescopes

[207], and ultimately a global quantum internet that connects a broad range of quantum

devices on a global scale. Quantum repeaters are indispensable components of quantum

networks in the long-distance transmission of quantum information, thus having drawn sub-

stantial attention in the past two decades, and how to realize them still poses great challenges.

Among the numerous challenges, the need for cryogenics and optical trapping greatly com-

promises the scalability of most proposed quantum repeaters. Thus, the main goal of this

thesis is to advance the development of quantum networks by proposing two novel quantum

repeater architectures that can operate without cryogenics and optical trapping.

The first direction we pursued is to utilize NV centers’ excellent electron and nuclear

spin properties at room temperature as communication qubits (generate spin-photon entan-

glement) and quantum memories. However, the zero-phonon emission line is considerably

broadened at room temperature, thus preventing us from directly generating spin-photon

entanglement. Inspired by recent progress in the development of room-temperature spin-

optomechanical interface [149] which bypasses the phonon-broadening issue using optome-

112



chanics, we proposed a room-temperature quantum repeater architecture that builds on NV

centers, high-Q cavities, and ultra-high Q membranes. We quantified the entanglement gen-

eration fidelity and efficiency using the so-called photon-number decomposition method. We

also proposed to use the spin-optomechanical interface to read out electron spins at room

temperature with high fidelity on ms timescales. Furthermore, we proposed an entanglement

distribution protocol where the average distribution time shows logarithmic scaling with the

number of links as opposed to linear scaling in conventional nested protocols, and the rates

of the repeaters beat direct transmission.

The second approach to realizing non-cryogenic quantum repeaters is based on hot alkali

and noble gases. Our approach builds on the cavity engineering method to suppress the

detrimental four-wave mixing, in which a cell of hybrid gases is placed. The long-lived

noble-gas spins are used as quantum memories, which coherently interact with alkali atoms

via weak spin-exchange collisions. We investigated the single-photon protocol and quantified

the entanglement generation fidelity and efficiency by taking into account the finite memory

efficiency, channel loss, and dark counts in detectors. We also estimated the repeater rates

and fidelities and compared them with the rates and the fidelities of the NV centers and

optomechanics-based repeaters. Although the rates of this approach are generally lower

than the rates of the previous proposal, it is promising to perform multiplexing to achieve

comparable rates as it requires a relatively simple setup. Moreover, the overall entanglement

fidelities of the present scheme are higher than the fidelities of the previous scheme.

The NV centers and optomechanics-based approach holds promise for distributed quan-

tum computing at room temperature [179, 173] where a cell containing a few electron and

nuclear qubits can be entangled with other cells to perform computational tasks. More-

over, nuclear spins in diamond also offer the possibility to perform quantum error correction

codes even at ambient conditions [159, 182, 208], which could enable fault-tolerant quan-

tum communication [183, 41] and quantum computation. For hot hybrid alkali-noble gases,

we only investigated the possibility of using them for building terrestrial repeaters but this
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system also offers the possibility of being deployed in space as it is relatively simple, which

could unlock the potential of establishing a truly global quantum network [205, 5] that

will bring many new exciting applications. At the same time, there is another interesting

room-temperature quantum system: two-dimensional hexagonal boron nitride (hBN), which

contains a color center that exhibits ultra-bright emission and Fourier transform (FT) lim-

ited lines at room temperature [209]. This system may serve as a spin-photon interface for

long-distance quantum communication at room temperature without extra components and

complex engineering in the future but it is still under investigation.
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