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Abstract Our aim was to develop a remote sensing-based forest fire danger forecasting

system (FFDFS) and its implementation in forecasting 2011 fire season in the Canadian

province of Alberta. The FFDFS used Moderate Resolution Imaging Spectroradiometer

(MODIS)-derived 8-day composites of surface temperature, normalized multiband drought

index, and normalized difference vegetation index as input variables. In order to eliminate

the data gaps in the input variables, we propose a gap-filling technique by considering both

of the spatial and temporal dimensions. These input variables were calculated during the

i period and then integrated to forecast the fire danger conditions into four categories (i.e.,

very high, high, moderate, and low) during the i ? 1 period. It was observed that 98.19 %

of the fire fell under ‘‘very high’’ to ‘‘moderate’’ danger classes. The performance of this

system was also demonstrated its ability to forecast the worst fires occurred in Slave Lake

and Fort McMurray region during mid-May 2011. For example, 100 and 94.0 % of the fire

spots fell under ‘‘very high’’ to ‘‘high’’ danger categories for Slave Lake and Fort

McMurray regions, respectively.

Keywords MODIS � Normalized difference vegetation index �
Normalized multiband drought index � Surface temperature � Fire spot

1 Introduction

Forest fire is one of the natural hazards over many forested ecosystems across the world

including boreal ones. Over the boreal forested region in the Canadian province of Alberta,

the annual average fire incidences were 1,541 in numbers that caused burning of

approximately 220 thousand ha during the period 2002–2011 (ASRD 2012). In particular

to 2011 fire season, several catastrophic fires (i.e., Slave Lake and Fort McMurray regional

fires in mid-May) were observed. The Slave Lake fires were responsible for burning
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approximately 22,000 ha of forest with an estimated economic loss of $700 million

(FTCWRC 2012); on the other hand, 595,000 ha of muskeg and bush was burned within

Fort McMurrary region (Treenotic 2011). In addition, fires also influence the regional

biogeochemical processes (e.g., carbon cycling), climate change, etc. (Govind et al. 2011).

Damages from such extensive fires have direct impact on human lives and livelihoods and

also critical to the economy. Thus, it would be worthwhile to study the fire danger con-

ditions in order to develop appropriate fire management strategies (Vadrevu et al. 2012).

In Canada, the forest fire danger conditions are calculated on daily basis using a com-

ponent of Canadian Forest Fire Danger Rating System (CFFDRS), that is, known as Fire

Weather Index (FWI) (Van Wagner 1987). The FWI requires point-based measurements of

several weather/climatic variables (i.e., noontime air temperature, relative humidity, and

wind speed; and 24-h accumulated rainfall). Consequently, the spatial dynamics of the fire

danger is calculated using geographic information system (GIS)-based interpolation tech-

niques. However, the implementation of different interpolation techniques (e.g., inverse

distance weighting, spline, kriging, etc.) may produce different map outputs using the same

input datasets (Chilès and Delfiner 2012). In order to eliminate these uncertainties, remote

sensing-based data have greater advantage over the point-based data as it acquires the spatial

variability and able to capture information over remote areas (Leblon 2005; Wang et al.

2013). In this context, our focus would be on exploring the applicability of remote sensing-

based techniques in understanding the forest fire danger conditions.

The use of remote sensing-based methods for forecasting the forest fire danger conditions is

not new though limited. For example, (i) Huang et al. (2008) developed a fire potential index

using Moderate Resolution Imaging Spectroradiometer (MODIS) data; (ii) Guangmeng and

Mei (2004) and Oldford et al. (2003) demonstrated that the NOAA AVHRR and MODIS-

derived regimes of surface temperature (TS) were gradually increased prior to the fire

occurrence; (iii) Vidal and Devaux-Ros (1995) used Landsat TM-derived normalized differ-

ence vegetation index (NDVI: a measure of vegetation greenness) in conjunction with water

deficit index (WDI: defined as the difference between surface and air temperatures); and (iv)

Akther and Hassan (2011a) integrated MODIS-derived variable/indice(s) of TS, normalized

multiband drought index [NMDI: a measure of water content in the canopy; (Wang and Qu

2007; Wang et al. 2008)], and temperature-vegetation wetness index [TVWI: an indirect way

of estimating soil water content (Hassan et al. 2007; Akther and Hassan 2011b)].

In this paper, we opted to develop a forest fire danger forecasting system (FFDFS) by

combining MODIS-derived indices (that included 8-day composites of TS, NMDI, and

NDVI) and its implementation over the boreal forested region of Alberta during the 2011

fire season. Among the two specific objectives, the first one was to implement a data gap-

filling technique in replacing the null values in the primary input variables (i.e., TS, NMDI,

and NDVI); which happened due to several reasons (e.g., cloud contamination, missing

input, data fault and pixels out of bound correction, etc.). The proposed data gap-filling

technique would be on the basis of integrating both of the spatial and temporal dimensions

illustrated in Kang et al. (2005) and described in Sect. 3.2 in details. The second objective

was to perform a quantitative evaluation between the outcome of the FFDFS (i.e., the fire

danger conditions) and actual fire occurrences.

2 Study area and data requirements

The northern part of the Canadian province of Alberta is considered as the study area, which

lies between 52–60 oN latitude and 110–120 oW longitude. It is shown in Fig. 1 using a
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MODIS-derived annual land cover composite map at 500-m spatial resolution (i.e.,

MCD12Q1 v.005) during 2008. The study area is found to have eleven land coverage types

(that include water, grasses/cereal crops, shrubs, broadleaf crops, savanna, evergreen

broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest, deciduous nee-

dleleaf forest, non-vegetated, and urban). Among these, the forest types (i.e., evergreen

broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest, deciduous nee-

dleleaf forest) occupy approximately 75 % of the study area, which is considered as the

region of interest for forecasting the fire danger conditions. Topographically, the study area is

variable in the range 162–3,596 m above the mean sea level and having a general increasing

trend from north-east to south-west. Climatically, the study area experiences relative cold

(mean annual temperature varies in the range -3.6 to 1.1 �C) and dry (i.e., mean annual

precipitation varies in the range 377–535 mm) conditions (Downing and Pettapiece 2006).

In addition to the above mentioned land cover map, other remote sensing data available

from NASA were used in the study. The MODIS-based data products, which were 8-day

composites acquired over the 2011 fire season [i.e., April–September in the range of

89–265 Julian day of year (DOY)]. These included (i) MOD11A2 v.005 product, which

provided TS images and its associated quality control (QC) information at 1-km spatial

resolution. The QC was used to quantify the amount of data gaps and/or good quality

pixels; (ii) MOD09A1 v.005 product, which provided surface reflectance at 7 (seven)

spectral bands and its associated quality assurance (QA) information at 500-m spatial

resolution. Among the seven spectral bands, the bands centered at 0.645 lm (i.e., red),

0.86 lm (i.e., near infrared (NIR)), 1.64 lm (i.e., shortwave infrared (SWIR)), and

2.13 lm (i.e., SWIR) were used. These surface reflectance images were used to calculate

both NDVI and NMDI. Additionally, the QAs were used to quantify the amount of data

gaps and/or good quality pixels in the NDVI and NMDI images; and (iii) MOD14A2 v.005

product, which provided fire spot images at 1-km spatial resolution. These images were

used for validating the outcomes of the FFDFS.

3 Methodology

A schematic diagram illustrating the methods employed in this study is shown in Fig. 2. It

consisted of three major components, such as (i) generating of the required input variables

of the FFDFS, (ii) developing of the gap-filling algorithm and its validation, and (iii)

calculating the fire danger conditions and its validation. Their brief descriptions can be

found in the following subsections.

3.1 Generating the required input variables of the FFDFS

3.1.1 Normalized difference vegetation index (NDVI)

The NDVI is the most widely used index in the history of remote sensing. Its 8-day

composite values at 500-m resolution were computed using the expression first described

in (Rouse et al. 1973) as follows:

NDVI ¼ q0:86 � q0:645

q0:86 þ q0:645

ð1Þ

where, q is the surface reflectance values of the NIR (centered at 0.86 lm) and red

(centered at 0.645 lm) spectral bands.
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3.1.2 Normalized multiband drought index (NMDI)

The NMDI is a relatively new index first described by Wang and Qu (2007). Its 8-day

composite values at 500-m resolution were computed using the following expression:

NMDI ¼ q0:86 � q1:64 � q2:13ð Þ
q0:86 þ q1:64 � q2:13ð Þ ð2Þ

where, q is the surface reflectance values of NIR (centered at 0.86 lm) and SWIR (cen-

tered at 1.64 and 2.13 lm) spectral bands.

Fig. 1 a Location of Alberta province in Canada and b extent of study area within a MODIS-derived land
cover map during 2008
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3.2 Developing the gap-filling algorithm and its validation

In order to quantify the amount of data gaps in TS, NMDI, and NDVI images; we cal-

culated the total number of variable-specific pixels where these were not produced due to

cloud effects and other reasons by considering: (i) QC image of the respective TS images;

and (ii) QA image considering both of the MODLAND QA bits and band-specific quality

bits of the respective surface reflectance images for calculating both NMDI and NDVI

variables. Then, we attempted to fill such gap pixels by considering both of the spatial and

temporal dimensions. In the boreal landscape, the spatial extent might vary gradually

within similar land cover types and temporal dimension might influence significant

changes in temperature, greenness and moisture conditions within the 8-day time period.

Our proposed gap-filling algorithm was as follows:

XðiÞ ¼ Xði� 1Þ � Abs �XðiÞmxm � �Xði� 1Þmxm

� �
ð3Þ

where, X(i) and X(i - 1) are the infilled and non-gap values for the variables (i.e., TS/

NMDI/NDVI) of interest during i and i - 1 period, respectively; �XðiÞm x m and �Xði�
1Þm x m are the mean values of the variables (i.e., TS/NMDI/NDVI) of interest for the

window size of m x m during i and i - 1 period, respectively. The mean values of the

variables were computed based on different moving window sizes (i.e., in the range 3 9 3–

Fig. 2 Schematic diagram of the methods employed in this study describing the proposed gap-filling
algorithm and its application in forecasting forest fire danger conditions
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15 9 15) within the selected land cover types. So, thus, we obtained mean value images

for each 8-day period according to different window sizes. The absolute deviation of the

mean values of the variables during i and i - 1 period for m x m window size was added

with the instantaneous value at i - 1 period when the mean value at i period was found to

be larger than i - 1 period. Similarly, the absolute deviation of the mean values was

subtracted from the instantaneous value at i - 1 period when the mean value at i period

was found to be smaller than i - 1 period. The process would initiate with the smallest

window size (i.e., 3 9 3) and then check whether the filling would complete by recalcu-

lating the remaining gap pixels in the image. If not, the remaining gap pixels would be

filled by increasing the window size to next level (i.e., in the range 5 9 5 to 15 9 15).

Note that the increment of the window would depend on the status of filling condition and

only be performed on the remaining gap pixels. In some instances, the employment of even

15 9 15 window size might unable to fill the gaps. Then, we might consider the window

size equivalent to the entire study area of selected land covers. In the implementation of the

above gap-filling algorithm, it was assumed that the probability of a particular pixel having

data gap within 16 days would be very rare. In such cases, filling data gap at i period would

not be possible if gap-free pixels at i - 1 period found to be absent.

In reality, it would not be possible to verify the accuracy of the above described algorithm

due to the fact that level and local occurrence of cloud formation and other causes is

extremely difficult to measure. However, we performed a validation by synthetically treating

good quality pixels as gap ones; and quantified statistically by determining coefficient of

determination (r2) and root mean square error (RMSE). Note that such good pixels were

retrieved based on the following criterion: (i) for TS when the average TS errors were found to

be either equal or less than 2 K; and (ii) for surface reflectance, we employed a set of

parameters, such as MOD35 cloud (i.e., clear), cloud shadow (i.e., no), aerosol quality (i.e.,

climatology and low), cirrus detected (i.e., none and small), internal cloud algorithm flag

(i.e., no cloud), and pixel to adjacent to cloud (i.e., no).

3.3 Calculating the fire danger conditions and its validation

We employed 8-day composites of MODIS-derived input variables of TS, NMDI, and NDVI

in the proposed FFDFS framework (see Fig. 3a for details). The FFDFS consisted of three

steps. In first step, we calculated the study area-specific mean values for the input variables

during the i period [i.e., TSðiÞ, NMDIðiÞ, NDVIðiÞ]; and their associated seasonal dynamics

are shown in Fig. 3b. In second step, we determined the individual input variable-specific

danger conditions (either high or low, see Fig. 3c) during i ? 1 period upon comparing the

instantaneous values of each of the input variables at a given pixel from i period [i.e., TS (i)/

NMDI(i)/NDVI(i)] with their respective mean values [i.e., TSðiÞ, NMDIðiÞ, NDVIðiÞ] cal-

culated in first step. Finally, we combined the individual input variable-specific danger

conditions determined in second step into four categories, such as (i) very high: if all the three

variables demonstrated that the fire danger would be high; (ii) high: if at least two of the three

variables demonstrated that the fire danger would be high; (iii) moderate: if at least one of the

three variables demonstrated that the fire danger would be high; and (iv) low: if all of the

three variables demonstrated that the fire danger would be low.

Upon generating the fire danger maps, we compared them with the MODIS-derived fire

spot images on cell-to-cell basis in order to evaluate the performance of the FFDFS. The

integration of individual input variables (e.g., TS, NMDI, and NDVI) of different spatial

resolution was done so that the geometric element and object structure, for example,
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gridded pixels of the datasets would match to each other. The data integration was done in

two steps in the FFDFS, that is, (i) the TS images were resampled at 500 m from 1 km prior

to integrate with the NMDI and NDVI variables having 500-m spatial resolution; and (ii)

the fire spot images were also resampled at 500-m spatial resolution prior to comparison

with the fire danger condition maps having 500-m spatial resolution.

4 Results and discussion

4.1 Evaluation of gap-filling algorithm

We found that the amount of data gaps was approximately 11.41, 0.86, and 0.08 % in the

TS, NMDI, and NDVI images, respectively, during the entire study period (Fig. 4). Rel-

atively high amount of data gaps in the TS images were observed due to the fact that the

quality of the MODIS-based TS products would be often contaminated to a large scale as a

matter of inherent limitation of the thermal infrared remote sensors (i.e., retrieved only in

clear-sky conditions) (Wan 2008).

Upon implementing the proposed gap-filling algorithm, we used five (5) imaging

periods for each of the TS, NMDI, and NDVI images for evaluating its performance, which

were well distributed over the entire growing season. The use of the 3 9 3 window size

Fig. 3 a The conceptual diagram of FFDFS, b study area-specific average values for TS, NMDI, and NDVI
variables for 2011 fire season (i.e., between 89 and 265 DOY), c the criterion of describing fire danger
conditions for the input variables of TS, NMDI, and NDVI
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revealed that approximately 84.14 and 100 % of the data gaps were filled for TS and both

NMDI and NDVI images, respectively. During the period of validation, our analyses

showed strong agreements of the predicted values for the variable of interest with the

observed data (i.e., the good quality pixels which were declared as data gaps). For

example, the slope, r2, and RMSE values were on an average: (i) 0.94, 0.88, and 0.883 K,

respectively, for TS images (see Fig. 5 for details); (ii) 0.93, 0.91, and 0.021, respectively,

Fig. 4 Percentage of gap pixels in TS images upon gap-filling using various window sizes

Fig. 5 Comparison between observed and predicted TS upon using 3 9 3 window size for gap-filling: a 97
DOY, F = 286507, p value \0.0001 b 137 DOY, F = 368260, p \ 0.0001 c 177 DOY, F = 320805,
p \ 0.0001, d 217 DOY, F = 382576, p \ 0.0001, e 249 DOY, F = 607077, p \ 0.0001
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for NMDI images for 90 % of the data points (Fig. 6); and (iii) 0.97, 0.93, and 0.021,

respectively, for NDVI images for 90 % of the data points (Fig. 7). The observed RMSE

values for both TS (i.e., 0.80–1.12 K; Fig. 5) and NDVI (i.e., 0.017–0.024; Fig. 7) gap-

filling were similar to other study, such as (i) MODIS-derived TS values in comparison

with ground-based such measurements over homogeneous rice fields and forested areas

yielded a RMSE of 0.70 K (Coll et al. 2009); (ii) MODIS-derived NDVI values over the

good quality pixels were within an error bar of ±(0.02 ? 2 %NDVI) for 97.11 % of the

observations (Vermote and Kotchenova 2008); and (iii) the evaluation of MODIS-derived

NDVI over all of the land cover types at Jornada Experimental Range in New Mexico,

USA in comparison with MODIS Quick Airborne Looks-based observations showed

RMSE values less than 0.03 (Gao et al. 2003). So far, we did not find studies reporting

accuracy information associated with NMDI retrieval or gap-filling. However, we might

consider that the observed RMSE values for NMDI (i.e., 0.011–0.034) would be reasonable

due to their similarities with that of NDVI. It would be the case as both of the NMDI and

NDVI were calculated as a function of surface reflectance.

In the case of TS images, we required to increase the window size (in the range from 5 9 5

to 15 9 15; and also entire study area) in order to gap-filling the remaining data gaps (i.e.,

*15.86 %). For each of the window size, we compared the predicted values with the

observed data (i.e., the good quality pixels which were declared as data gaps); and calculated

RMSE and r2 values (see Table 1 for details). It revealed that both of the RMSE and r2 values

were deteriorating with the increment of the window sizes (e.g., RMSE & 1.097 K and

r2 & 0.85 for 5 9 5 window size; RMSE & 1.444 K and r2 & 0.75 for 15 9 15 window

size; and RMSE & 2.380 K and r2 & 0.36 for the window size equal to the study area).

These finding would be reasonable due to the fact that the spatial integrity would start to fall

apart with the increment of the search window (Girard and Girard 2003; Li and Heap 2011).

Fig. 6 Comparison of observed and predicted NMDI upon using 3 9 3 window size for gap-filling: a 113
DOY, F = 18880, p \ 0.0001, b 153 DOY, F = 241571, p \ 0.0001, c 193 DOY, F = 263602,
p \ 0.0001, d 233 DOY, F = 111437, p \ 0.0001, e 265 DOY, F = 510446, p \ 0.0001
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Also, it would be worthwhile to note that both of the window size (i.e., 15 9 15 and the study

area) were not able to gap-filling similar portion of the data gaps (i.e., *0.295 % of the data

gaps; see Fig. 4). Under these circumstances, we considered that the choice of 15 9 15

window size would be appropriate because it produced reasonable agreements (i.e.,

RMSE & 1.444 K and r2 & 0.75) in comparison with that of the window size equal to the

entire study area (i.e., RMSE & 2.380 K and r2 & 0.36). The rationale behind the inability

to gap-filling all of the data gaps would be due to the absence of gap-free pixels in both

temporal and spatial dimensions (Kang et al. 2005).

Fig. 7 Comparison of observed and predicted NDVI upon using 3 9 3 window size for gap-filling: a 105
DOY, F = 18880, p \ 0.0001, b 145 DOY, F = 241571, p \ 0.0001, c 185 DOY, F = 263602,
p \ 0.0001, d 225 DOY, F = 111437, p \ 0.0001, e 257 DOY, F = 510446, p \ 0.0001

Table 1 Coefficient of determination (r2) and root mean square error (RMSE) between observed and
predicted TS variable using different window size

Window
size

DOY Average

97 137 177 217 249

r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE

3 9 3 0.87 0.819 0.90 0.869 0.89 1.116 0.90 0.804 0.94 0.808 0.90 0.883

5 9 5 0.81 1.009 0.85 1.085 0.83 1.413 0.86 0.994 0.91 0.981 0.85 1.096

7 9 7 0.77 1.112 0.81 1.215 0.79 1.583 0.82 1.106 0.89 1.085 0.81 1.220

9 9 9 0.74 1.178 0.79 1.305 0.76 1.693 0.80 1.181 0.87 1.150 0.79 1.301

11 9 11 0.72 1.227 0.76 1.371 0.74 1.768 0.78 1.234 0.86 1.210 0.77 1.362

13 9 13 0.70 1.264 0.75 1.424 0.73 1.824 0.77 1.274 0.85 1.235 0.76 1.404

15 9 15 0.69 1.295 0.73 1.468 0.71 1.868 0.76 1.306 0.85 1.285 0.75 1.444

Study
area

0.20 2.116 0.42 2.328 0.49 2.626 0.33 2.233 0.37 2.597 0.36 2.380

330 Nat Hazards (2013) 67:321–334

123



4.2 Evaluation of the FFDFS

During study period, the temporal dynamics of study area-specific average values of the TS,

NMDI, and NDVI variables showed distinct patterns (Fig. 3b), which were identical to the

generalized ones shown in Fig. 3a. Upon applying quadratic fits to the variable of interest

as a function of DOY, we found strong relations having r2 values of 0.82, 0.91, and 0.97 for

TS, NMDI, and NDVI, respectively.

Table 2 shows the outcomes of the FFDFS using the combinations of input variables (i.e.,

TS, NMDI, and NDVI) as per the criterion illustrated in Fig. 3c. These outcomes were

compared with the % of pixels represented by the fire spots. The combined variables revealed

strong agreements, where 98.19 % of fire fell under the categories from ‘‘very high’’ to

‘‘moderate’’ danger classes, respectively. However, the small amount of disagreements (i.e.,

1.81 %) between the predictions and fire spots could be attributed by other factors, such as

precipitation, wind speed, topography, fuel cover types, phenological variability (Leblon

et al. 2001; Oldford et al. 2003; Desbois and Vidal 1996; Ardakani et al. 2011; De Angelis

et al. 2012), which were beyond the scope of this study. It would be interesting to note that

similar results were demonstrated by Akther and Hassan (2011a). For example, the com-

bination of TS, NMDI, and TVWI variables revealed 91.6 % of the fires spots fell under

‘‘very high’’ to ‘‘moderate’’ danger classes when compared between the fire danger cate-

gories and actual fire occurrences data during the period of 2006–2008 fire seasons. Despite

the similar results, our study addressed two major drawbacks of Akther and Hassan (2011a);

such as the implementation of a data gap-filling technique for the pixels having null values

and the replacement of TVWI using NDVI. Such replacement would be critical as the

computation of TVWI was complex, due to the interpretation of the scatter plots of TS and

NDVI requires extensive knowledge and potentially differs from person to person.

During the second week of May 2011, the study area experienced several severe fires.

Thus, we opted to evaluate the performance of the FFDFS during the period May 9–16,

2011, which were calculated as a function of the combined input variables of TS, NMDI

and NDVI acquired during the prior period (i.e., May 1–8, 2011) (see Fig. 8 for details).

The fire danger map revealed that *17.4, 34.1, and 35.6 % of the pixels fell under danger

categories of ‘‘very high,’’ ‘‘high,’’ and ‘‘moderate’’ for the entire study area. In addition,

fire danger conditions were analyzed further over both of Slave Lake and Fort McMurray

regions (where the worst fires were occurred during the recent history) (see Fig. 8b). It

revealed that 100 and 94 % of the fire spots fell under ‘‘very high’’ to ‘‘high’’ danger

classes for Slave Lake and Fort McMurray regions, respectively. Thus, the effectiveness of

the FFDFS in forecasting devastating fires was also proved.

In this paper, the input variables of the FFDFS were derived using different spectral

bands of MODIS products which might not be autocorrelated. Because the TS was derived

Table 2 Percentage of data under each fire danger categories using combined input variables of TS, NMDI,
and NDVI in comparison with the fire spot

Combination
of input variables

No. of input variables
satisfying the fire danger
conditions

Fire danger
classes

% of data Cumulative
% of data

TS, NMDI, and NDVI All Very high 49.13 49.13

At least 2 High 38.91 88.04

At least 1 Moderate 10.15 98.19

None Low 1.81 100.00
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from the thermal bands in between 10.78 and 12.27 lm; NMDI was computed based on the

spectral bands centered at 0.86 lm (controls cell structure of the plant leaves), 1.64, and

2.13 lm (controls water content of the leaves); and NDVI was derived from spectral bands

centered at 0.645 lm (chlorophyll absorption band) and 0.86 lm, respectively. Though the

NIR band (i.e., 0.86 lm) was used in calculating both the NDVI and NMDI variables along

with other spectral bands (see Eqs 2 and 3); thus, we might assume no autocorrelation

between them. The validation of the FFDFS was also done using the fire spot data as a

function of 3.9 lm (fire detection and characterization) and 11 lm (fire detection and

cloud masking) thermal bands during the i ? 1 period, while the input variables were

calculated during i period. Thus, it could be considered not be autocorrelated despite that

MODIS data were used in both formulation and validation of the FFDFS.

5 Conclusions

In this paper, we proposed a simple protocol in order to filling the data gaps in the 8-day

composites of MODIS-derived TS, NMDI, and NDVI on the basis of both spatial and

Fig. 8 Example Fire danger map for the period May 9–16, 2011, generated by combining the TS, NMDI,
and NDVI variables acquired during the prior 8-day period (i.e., May 1–8, 2011)
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temporal connotations. It revealed that the use of the 3 9 3 window size would infill

approximately 84.14 and 100 % of the data gaps for TS and both NMDI and NDVI images,

respectively. In these cases, we also observed strong agreements between the predicted

values for the variable of interest with the observed data (i.e., the good quality pixels which

were declared as data gaps), such as r2, and RMSE values were on an average: (i) 0.88 and

0.883 K, respectively, for TS images; (ii) 0.91 and 0.021, respectively, for NMDI images;

and (iii) 0.93 and 0.021, respectively, for NDVI images. In order to filling the remaining

data gaps (i.e., *15.86 %) for TS images, we increased window size (in the range from

5 9 5 to 15 9 15); and both of the RMSE and r2 values were still found to be in the

reasonable bounds (i.e., RMSE & 1.096 K and r2 & 0.85 for 5 9 5 window size;

RMSE & 1.444 K and r2 & 0.75 for 15 9 15 window size). In addition, the combination

of TS, NMDI, and NDVI also produced good results (i.e., 98.19 % of the fire fell under

‘‘very high’’ to ‘‘moderate’’ danger classes). Thus, the proposed methods would be an

effective operational framework of FFDFS.
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