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ABSTRACT

Communicating Sequential Prolog (Csp*) is a
single-solution distributed logic programming language for
discrete event simulation. Its primary goal is to speed up
the execution of logic programs through the use of
parallelism, while as far as possible preserving the
semantics of standard Prolog. A CSP* program consists of
a set of parallel processes, synchronized by simulation
time and by message passing. The underlying interprocess
communication mechanism is Time Warp. The pertinent
features of parallel logic programing and Time Warp are
described. The syntax of CSP* is introduced and the
semantics of new predicates and their control structures
are discussed. LExamples are given to show the expressive
power and simplicity of CSP*.

1. INTRODUCTION

Logic programing offers two kinds of parallelism:
AND-parallelism is the parallel solution of more than one
goal in a given goal sequence; and OR-parallelism is the
parallel creation of many solutions for a given goal. These
two kinds of parallelism are a2 consequence of
nondeterminism in logic programming: we are [ree to
choose any order in which to satisly several subgoals in
the body of a clause; and, when evaluating a selected

subgoal, we are free to choose any clause which can match
the subgoal.

There have been attempts to design systems using
either one of these types of parallelism (or a combination
of both)[Clark 1986, Shapiro 1983, Conery 1987]. OR-
parallelism serves the same purpose in parallel that
backtracking does in standard Prolog. Problems in the
implementation of OR-parallelism are the combinatorial
explosion in the number of processes and the
representation of variable binding environments. AND-
parallelism, although offering advantages such as being
able to exploit parallelism in determinitic programs, has
been difficult to implement due to the overhead involved
in the handling of shared variable bindings and the
problem in preserving the “don’t know nondeterminism”
semantics of logic programs. Proposed AND-parallel
Prologs usually sacrifice the completeness of logic

programs (not all possible solutions may be found) in
order to minmize these overheads.

For example, in order to avoid variable binding
conflicts,  Concurrent Prolog[Shapiro 1083]  and
PARLOG(Clark 1986] adopt a model called Stream AND-
parallelism. In this model, all subgoals in a goal sequence
run in parallel and the bindings of shared variables are
incrementally passed from a producer to consumers. In
other words, only one of the processes, i.e., the producer,
is eligible to bind a shared variable, and the other
processes (the consumers) are suspended until the variable
has been bound. However, the drawback of this model is

that it is hard to implement nondeterminism. Therelore,
the systems which exploit Stream AND-parallelism do not
implement the conventional “don’t know”
nondeterministic semantics of logic programs and
implement “don't care” nondeterminism, i.e., commitied-
choice OR-parallelism instead. Committed-choice OR-
parallelism is implemented by using a guard in the body
of each clause. For a selected subgoal, parallel processes
are set up to evaluate the guards of all clause whose heads
match the subgoal. If all guards fail, the subgoal fails. If
more than one guard succeeds, exactly one of them is
chosen to commit, by some mutual exclusion algorithm.
Once a choice has been committed, there is no way to
backtrack to find other solutions. Thus it is possible for a
goal to terminate in failure even though there may be a
successful refutation for the goal.

Parallel logic programmming has been used for
discrete event simulationlCleary 1085, Broda 19084,
Vaucher 1987). Having its {oundation in logic, a Prolog-
like language encourages the programmer to describe
problems in a manner that facilitates checking for
correctness and consequently reduces the verification, i.e.,
the debugging, efiort. Since most discrete event
simulation models involve deterministic and sequential
objects, and the most commonly used relations between
those objects are the producer-consumer and the client-
server relation, it seems that AND-parallelism offers
potential speed up for discrete event simulation.

We focus our attention now on Time Warp[Jeflerson
1985/ as the communication mechanism underlying a
parallel  logic programming system.  Time Warp
implements Virtual Time using an optimistic mechanism
which relies on generalised process lookahead and
rollback. The definition of Virtual Time ensures that
messages are received by a process in timestamp order. In
a Time Warp system, each process charges ahead,
blocking only when its input queue (which holds all the
incoming messages with nondecreasing timestamp order) is
exhausted. Whenever a message with a timestamp “in the
past” arrives at a process's input queve, the Time Warp
mechanism rolls the process back to a state with a time
earlier than the late message. During the rollback the
effect of any further messages sent during that period are
cancelled and then starts the process forward again. Using
the Time Warp mechanism to synchronize the execution
of simulation components gives significant potential for
achieving concurrency within distributed simulation|Berry
1086, Jeflerson 1982, Li 1987].

This paper describes Communicating  Sequential
Prolog (CSP*), a single-solution distributed logical
programming language for discrete event simulation. It
uses a weak form of commitied-choice called committed-
communication together with explicit send and recejve
message passing primitives in order to obtain an eflicient
AND-parallel Prolog. Section 2 introduces the design
goals, the syntax of CSP*, the semantics of new predicates



and control structures, and the reasons behind these

choices. Section 3 gives some examples to show the
expressive power and the simplicity of Csp-.

2. COMMUNICATING SEQUENTIAL PROLOG

2.1. Overview

CSP* is an extension of Prolog for distributed
discrete event simulation. Dased on its declarative
semantics, it encourages the programmer to describe
problems in a manner that facilitates checking for
correctness and consequently reduces the verification
effort. It can be used both for model specification and
programm implementation,

Another major reason for choosing Prolog is that the
backtracking facility of Prolog can be used as a part of
the rollback mechanism in a Time Warp system. In order
to achieve maximum speed up, the Time Warp
mechanism uses a large amount of memory to remember
the execution histories of a program. The major memory
cost is due to saving old states. The Time Warp
mechanism has no knowledge about what should be saved
and what should not, and thus the entire data space of a
process is saved for each snapshot. If a process
manipulates a large amount of data, its memory will be
exhausted very soon by saving several successive
snapshots of its data space.

On the other hand, saving states is an inherent
property of Prolog which uses a2 left-most-goal-first
computation rule with depth-first search. When a goal
fails, Prolog starts backtracking by traversing a sequence
of goals in reverse, from right to left. As it backtracks
over each goal, any variables which were bound during
the evaluation of that goal are unbound. Then Prolog
tries to re-evaluate the goal by choosing an alternative
clause. Thus, the set of variables changed on a given
computation path, ie., the computation or process
history, is completely captured by Prolog. Backtracking
is very similar to rollback. By combining Prolog and the

Time Warp mechanism, the cost of state saving can be
reduced.

Even though CSP* exploits AND-parallelism in logic
programs, it has the following major differencies with
other AND-parallel logic programming languages, such as
Concurrent Prolog and PARLOG.

1) CSP* is an object oriented language in that programs
are decomposed into parallel processes which act as
objects with their own local state.

2) CSP* preserves the sequential execution of a process
and the nondeterminism local to a process.

3) Processes communicate only by message passing.
There are no shared variables among processes,

4) CSp* uses committed-communscation

nondeterminism instead of commitied-choice
nondeterminism.

2.2. The Syntaz and Semantics of csp*

A CSP’ program consists of a set of clauses (A
simple syntax for CSP* in Extended Backus-Naur Form
can be found in Appendix). Clauses are classified into
sequential clauses and parallel clauses, A sequential clause
has the same meaning and syntax as a clause in the
standard Prolog. A parallel clause is a clause of the form

r(Name, Time, t1, ..., tk) == Bl, B2, ..., Bn.

In the evaluation of a relation call r(nl,n2,...,n|), a
match with the goal r is tried with the head of each clause
in a program. If a match is found and the matched clause
is a paraliel clause, a new process is created and the goal
succeeds immediately. This explanation only tells us that
process creation is guaranteed, but it does not imply that
the process will finally succeed. The “:=" notation is a
control definition which is used to invoke a new logical
refutation stream. On the other hand, if the matched
clause is a sequential clause or an unit clause, the goal is
evaluated as a normal Prolog procedure call.

A newly created process executes concurrently with
other existing processes and it sequentially evaluates the
goals in the tail of the parallel clause. Associated with
each process is a Logical Clock. In the head of a parallel
clause, there are two system defined arguments: the
process name and the process creation time. The process
name can be any meaningful literal which is used to direct
communication. The creation time is an integer which
represents a relative simulation time. When a process is
created, its Logical Clock is set to sum of the creator's
time and the creation time.

The csp* programmer can give other arguments
following these two. For example, one way to create a
network with B-tree structure is as follows:

node(n(X), Ct, Layer) «:- create(X, Layer),
/* some other conditions */.

create(_, 1),

createEX, L) :-
Ln is X*2,
Rnis X¥2+41,
Lt is L-1,
node(n(Ln), 0, L1),
node nERn), 0, L1).

When we call the goal

?- node(n(1), 100, 4)
the root process creates process n(l) because the goal
matches the head of the first clause which is defined as a
parallel clause, and then terminates. Dynamically, process
1151; creates n(2) and n(3), process n(2) creates n(4) and
n{5), and so on. Altogether fifteen processes are spawned

by logical time 100. They have the same process body
with diflerent process names.

2.8, Bult-in

] Predicates  for
Communication

Time and

Once a simulation model has been decomposed into
processes, one has to synchronize these processes so that
events occur in a correct order. The first key notion is
simulation time which determines the order in which
events occur. In CSP*, each process holds a local Logical
Clock which runs its own simulation time. A process can
increase its Logical Clock by the predicate

advance(T),
where T is an integer number representing a relative
simulation time. If a process evaluates a goal advance(t1)
at simulation time t2, then when the goal succeeds, the
new simulation time t is defined as
t=t1+t2.
A process can get its current simulation time using
time(T)
which always instantiates variable T to the current value
of the associated Logical Clock,

CSP* permits some limited nondeterminism both
locally within a process and between processes. Within a



process backtracking is limited by a commilted-
communication mechanism using double-cut(!). When this
is encountered all choice points in the current process are
committed. Any later attempt to backtrack to a double-_
cut causes it to succeed repeatedly. - .
Inter-process nondeterminism is controlled by
interactions between double-cut and the try_send
predicate. A try_send predicate sends a message from one
process to another. If the message is received and the
receiving process subsequently commits by executing a
double-cut, then the system sends an acknowledgement
back to the try send, which succeeds and continues
execution. While waiting for an acknowledgement, the
sender does not remain idle. Rather it will backtrack and
continue executing. This may involve further try_sends all
waiting for acknowledgements. The first try_send which
receives an acknowledgement causes the path leading to it

to be re-executed and then execution continues from
there.

This lookahead for try_sends allows some OR-
parallelism in addition to the AND-parallelism between
processes. It also requires an underlying mechanism for
coordinating the commitment of processes and the
acknowledgement of try_sends.

Four predicates are provided for inter-process
communication.  They are send(D,M), try_send(D,M),
receive(S,M) and receive(S,M,T).

The predicate send is used for sending a message M

to the destination D. The goal:
send(D, M)

succeeds if D is instantiated with the name of an existing
process and M is instantiated with any data structure.
The predicate send never blocks, it returns control to the
next goal as soon as the message has been queued for
subsequent transmission. Each message is stamped with
the sender's name and the send time which is the Logical
Clock value of the sender at the moment the message is
sent. CSP* assumes that the transmission time of a
message is zero, i.e., a message send at logical time t is
guaranteed to arrive at the destination at the same logical
time.

The predicate:
try_send(D,M)

sends a message M to a destination I and eventually
expects an acknowledgement back from the system. If
there is no such acknowledgement in the current input
queue, the system delays the decision as to whether it
succeeds or not and backiracks to evaluate other
alternatives. When an acknowledgement comes back, the
system will automatically direct the control to the
successful path.

The predicate receive is used for receiving a message

M from a source process S. All messages are queued in
nondecreasing send time order. The goal:

receive(S, M)
tries to unify its arguments with the first message in the
input queue, that is, unify S with the sender’s name and
unify M with the content of the message. If a unification
is made, the message is removed from the input queue and
the predicate succeeds. Otherwise the predicate fails.
When a process executes a receive predicate at logical
time t1 which receives a message with timestamp t2, then
its new logical time t will be decided by the following
formula:

t=max(t1, 12)
Up to here, we can sce that the simulation time of a
process can be increased explicitly wlhen the process calls

the advance predicate, or implicitly when the process
receives a message.

The predicate
receive(S,M,T)
is also used to receive a message M from a source S.
However, when this predicate is called, the third argument
T must be instantiated to an integer which indicates an
interval of simulation time. Instantiating T to + means an
infinite time interval. The predicate succeeds only when
there is a unifiable message in the current input queue
whose timestamp is less than or equal to the current

simulation time plus T. Otherwise the predicate fails
immediately.

3. EXAMPLES

8.1. Single server queueing model

Fig. 1 shows a typical single scrver queueing
simulation model. Each arriving customer generates a
successor and sends a request to a bank server, then the
customer waits until receiving a result from the server and
leaves the system. The bank serves customers in first-
come-first-serve order. Requests, inter-arrival and service
times are random.

arrivals departures
e R

Fig. 1 A single server queueing model

customer(c(I), StartTime, EndTime)::-
ranexp(0.125, Next), % negexp with mean 1/8
generate_next(EndTime, Next, 1),
ranunif(Request), % uniform 1-5
send(server, Request),

receive(server, Resuit).

generate_nex{(EndTime, _, _):-

time(T),

T >= EndTime. % stop generating
generate_next(EndTime, Next, I).-

I1is I+1,

customer(c(11), Next, EndTime).

server(server, StartTime):-
service,

service:-
n

sy
receive(Customer, Request),
process_request(Iiequest, Kesult),
send(Customer, Result),
service,
process_request(l, open_nccount):- advance(10).
process_request(2, deposit):-- advance(s).
process_request(3, withdraw):- advance(5).
process_request(4, eash_cheque):- advance(7).
process_request(5, credit_bill):-advance(lSS



Suppose customers arrive from 8:30 until 15:00, the
bank server starts serving from 9:00 until the last
customer is served, the program can be invoked by

?- server(server, 540), customer(c(1), 510, 900)
where the time unit is minute, -

3.2. Bank robbery

The following is a nondeterministic simulation model
taken from T-prolog|Futo 1082]. Jim and Dick want to
rob the Prolog savings bank. Jim climbs in the bank - it
takes him 5 minutes, Dick waits outside, There are
different safes in the bank. Jim and Dick cooperate to find
the appropriate tool to open a safe. The robbery has to
finish in 25 minutes. The question is which safe is to be
chosen for a successful robbery.

jim(jim, 0)::-
ﬁdvance(s), % climb_into_bank

receive(dick, Safe),

open(Safe),

time(T),

T=<25.

open(milner):- advance(40).
open(wertherm):- advance(27).
open(chatwood):- advance(10

dick(dick, 0):-
I

i;;tsg,ool(Safe),
try_send(jim, Safe).

has_tool(milner).
has_tool(chatwood).

When we call

I- jim(jim, 0), dick(dick, 0)
the simulation tries to find the correct safe and tool by
backtracking and attempting different safes with diflerent

opening times until one is found that can be opened in the
time available.

3.8. Ilierarchical Health Care System

The following is a model of health care typical of
health delivery systems in developing countries.

health center
legend: <(0)

heavy 2-way flow  em——
lighter 1-way flow 4— '
health center @
) 4

health center
o(3)

Fig. 2 A health care model

There are two kinds of objects in the above model:
the villages and the health centers. The villages
periodically generate patients, send them to the
corresponding health centers and recejve the treated
people back. The health centers assess the incoming
patients, if a person is treatable, then after the treatment,
the person is sent back to his(lier) village, otherwise, the

person is sent to a higher health center.

create_system(5, _, _).

create_system{], St, ISt):-
center(c(l), St), % create Ith center process
village(v(l), St, It), % create Ith village process
I1is 1+1,
create(l1, St, Et).

/* village process */
village(v(l), St, Et)::-
1"

i-.:;ndoml(Next), % uniform 20 to 100
village_operation(l, Et, Q, Next).

village_operation(_, E, Q, _):-
time(T),
T>=LE, %% stop generating
receive_rest(Q). % receive rest patients

village_operation(l, E, ((C, P}jT], N):-

time(T1), .
receive(C, P, N), % receive a treated patient
time(T?l),

TimeLeft is N-(T2-T1),
T
village_operation(l, E, T, TimeLeft).

village_operation(], E, Q, N):-
advance(N),
send{c(l), |, N

)» % generate next patient
random1(Next
i

.v'iyllage_operation(l, E, Q, Next).
receive_rest(||C,P)|T]):-
f

.rt;ceive(C, P),
receive_rest(T).

/* health center process */

center(c(I), St):-
center_operation(l).

center_operation(l):-
i

’
receive(_, Patient),
advance(2), % assessment
treat(l, atient).

treat(l, [In, N]):-
draw{N, N1), 9% uniform 0 to 1
treatable(l, N1), 9% if the patient is treatable
random?2(TreatTime), % uniform 5 to 10
advance(Treat Time),

send(v(In), TreatTime), % send the patient back
center_operation(l).

treat(l, Patient):-

parent_center(I1, 1), 9 not locally treatable

send(c(11), I’a.(,ientj, % transfer to parent center
center_operation(l).
parent_center(0, 1).
parent_center(0, 2).
parent_center(l, 3).
parent_center(1, 4).

treatable(0, ). %% all treatable in c(0)

treatable(1, T):- T==<0.75. 9 0.75 treatable in (1), ¢(2)
treatable(2, T):- T=<0.75.

treatable(_, T):- T=<0.5. 9% 0.50 treatable in ¢(3), c(4)




This program can be invoked by using
{- create_system(0, 100, 1000}
which will create five village processes and five heath

center processes. A village process- stops generating.

patients when it reaches the end time and then goes to
receive the rest treated patients; a center process
repeatedly treats incoming patients. The program

terminates when all process’s simulation times become
infinity.

4. CONCLUSION

Practical simulation involves defining a project and
its goals, specifying the model, implementing it as a
working computer program, verifying and validating the
program, experimenting with the model, and producing
documentation. The development of a large simulation
model is a complex and difficult task. In many research
areas, expensive computers are devoted alinost exclusively
to simulation. It is therefore becoming an increasing
important research goal to speed up simulations by
exploiting the concurrency inherent in them.

CSP* is a distributed logical programming language
for discrete event simulation. It is an extension of
standard  Prolog  combined with an optimistic
communication mechanism - Time Warp mechanism.
CSP* provides: the flexibility that comes from dynamic
process creation; the concurrency that comes from
asynchronous communication; an explicit naming facility

that not only makes a program easy to understand but
also makes it easier to develop large programs and
libraries; and the expressive power that supports the
description of concurrent operations, communication
synchronizations, message segregation and
nondeterministic computation. However, there are some
open issues which need further investigation.

An experimental version of CSP* has been built in a
distributed programming environment Jade[Joyce 1987,
Unger 1986a, Unger 1986b]. Jade provides layers of tools
for monitoring, debugging and graphically animating the
execution of distributed programs. Our next step is to
complete the implementation of CSP* and to measure the
performances of Ccsp* programs.

APPENDIX

<clause > =< parallel clause>.|<sequential clause>.
| <unit clause>.
<parallel clause>::= < parallel head> - <tail>
<sequential clause > = <sequential head > - <tail>
<unit clause> =< literal>
< paralle] head>::=<functor>(<process name>,
<creating time> {, <term>})
<sequential head> :=<literal>
<tail> = <iteral > {,<literal > }
<process name > == <literal>
<creating time>:=integer
<Iiteral>::=<functor>(<term>{,<term>})
| <functor>
<functor>::= lower case identifier
<term>::=<coust.ant>|<variable>|<list>|<liberal>
<constant >:i=integer|lower case identifier
<variable>::=identifier starting with an upper
case letter or a “_"
<list>z=(]|[<term>’[' <Tist >
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