Johansen, CraigTrivedi, Maulin2016-02-032016-02-032016-02-032016http://hdl.handle.net/11023/2829Hotwire experiments were performed to assess the effects of suspended 112 nm diameter aluminum oxide (Al2O3) nanoparticles in air on the rate of convective heat transfer. The particle mass loading was varied over a range of flow Reynolds number. The results indicate up to a 36% increase in Nusselt number for a particle mass loading of 0.35% at a Reynolds number of 6,000. The enhanced heat transfer rate is an order of magnitude larger compared to results from experiments reported in the literature using micro-particles at similar particle mass loadings. Existing models for prediction of Nusselt number increase for particle-gas suspensions are modified for use with nanoaerosols over a range of Knudsen number regime. The models and experimental data are found to predict same order of enhancement for nanoaerosol. The transitional model, for 0.01 < Kn < 10, is extended to predict effect of particle size on heat transfer gains.engUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.Engineering--AerospaceEngineering--MechanicalAluminum OxideNanoaerosolHeat TransferNusselt NumberKnudsen NumberThe Enhancement of Convective Heat Transfer in an Aluminum Oxide Nanoaerosolmaster thesis10.11575/PRISM/28130