Prenner, ElmarKerek, Evan2016-06-212016-06-2120162016http://hdl.handle.net/11023/3066Inorganic mercury (Hg2+) and Inorganic Cadmium (Cd2+) are toxic heavy metals linked to the development of cancer, diabetes and neurological dysfunctions. The effect of these metals on the fluidity and phase transition (Tm) of biomimetic and polar extract membranes was investigated using Laurdan Generalized Polarization (GP) and Dynamic Light Scattering (DLS). Hg2+ and Cd2+ electrostatically target and induce rigidity in membranes containing cationic and anionic lipids respectively. Hg2+ also imparts rigidity by acting as a catalyst in the vinyl ether hydrolysis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) plasmalogens. Cd2+-induced rigidity of anionic membranes results in a stabilization of the gel phase and a suppression of the Tm of membranes composed of phosphatidic acid (PA), cardiolipin (CL), phosphatidylserine (PS), phosphatidylglycerol (PG) and phosphatidylinositol (PI). Cd2+ induces more rigidity in rigid anionic membranes compared to more fluid anionic membranes. These results further our understanding of metal-lipid interactions.engUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.BiochemistryMercuryCadmiumLipidsLaurdanFluorescenceInteractions of Inorganic Mercury and Inorganic Cadmium with Biomimetic and Complex Biological Membranes and their Influence on Membrane Packing and Sizemaster thesis10.11575/PRISM/26601