Barclay, Paul E.Masuda, Tamiko2018-05-222018-05-222018-05-15http://hdl.handle.net/1880/106643A key architectural element of future quantum photonic networks is an efficient light-matter interface to connect electronic and photonic qubit systems. Nanophotonic resonators can be fabricated on-chip to provide such interfaces for atomic-like defect centers in diamond, which are leading qubit candidates. Fabrication advancements have recently lead to the construction of high quality diamond microdisk resonators, which show potential to reach enhancements with Purcell factor CNV ∼ 50. Here, a room-temperature experimental apparatus integrating free space and visible wavelength fiber-taper measurement capabilities is built to characterize diamond microdisk resonators. Using this setup, microdisk wisphering gallery modes with quality factors at visible wavelengths resonant with defect centers as high as Q ∼ 1 × 105, are observed for the first time. Spectral filtering effects of the taper on the microdisk are analysed to reveal that coupling to these disks may be limited by phase matching requirements. By thinning these disks it should be possible to improve coupling while lowering mode volumes, as desired to optimize Purcell factors.engUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.nanophotonicsfiber tapernitrogen vacancy centerEducation--SciencesPhysicsFiber-taper collected photoluminescence characterization of diamond microdisksmaster thesis10.11575/PRISM/31924