Shor, RomanChen, ZhuohengAdepoju, Yaqub Olabanji2020-09-292020-09-292020-08Adepoju, Y. O. (2020). Business Case for Geothermal Energy Development to power LNG Project in BC (Unpublished master's project). University of Calgary, Calgary, AB.http://hdl.handle.net/1880/112640https://dx.doi.org/10.11575/PRISM/38299Geological uncertainties of the Mount Meager volcanic complex in British Columbia, Canada, are analyzed to evaluate the economic viability of a geothermal power plant. This study utilizes empirical petrophysical formulas combined with field data to estimate geologic properties, including rock porosity and permeability. Flow rate, outlet pressure and temperature for three different conceptual flow models, two types of closed loop systems and one open loop system, were simulated. An economic analysis was carried out to understand the impact of rock permeability uncertainty and geothermal aquifer temperature on technical feasibility and economics viability of a geothermal power plant the complex. This study found that Enhanced Geothermal System (EGS) implementation can deliver a mass flow rate of up to 63kg/sec of 197oC fluid from the subsurface in the study area. Sensitivity analyses suggests that permeability is critical for the project economics. De-risking rock permeability with further research and reducing well costs will improve the economic viability of geothermal resource development in British Columbia and should be pursued further.engUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.Business Case for Geothermal Energy Development to power LNG Project in BCreport