Samavati, FaramarzHall, John2022-05-022022-05-022022-04Hall, J. (2022). Disdyakis Triacontahedron Discrete Global Grid System (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.http://hdl.handle.net/1880/114595The amount of information collected about the Earth has become extremely large. With this information comes the demand for integration, processing, visualization and distribution of this data so that it can be leveraged to solve real‑world problems. To address this issue, a carefully designed information structure is needed to store all of the information about the Earth in a convenient format such that one can easily use it to solve a wide variety of problems. In this thesis, we explore the idea of creating a Discrete Global Grid System (DGGS) using a Disdyakis Triacontahedron (DT) as the initial polyhedron. We have adapted a simple, closed‑form, equal‑area projection to reduce distortion and speed up queries. We have also derived an efficient, closed‑form inverse for this projection that can be used in important DGGS queries. The resulting construction is indexed using an atlas of connectivity maps. Using some simple modular arithmetic, we can then address point to cell, neighborhood and hierarchical queries on the grid, allowing for these queries to be performed in constant time. We have evaluated the angular distortion created by our DGGS by comparing it to a traditional icosahedron DGGS using a similar projection. We demonstrate that our grid reduces angular distortion while allowing for real‑time rendering of data across the globe.engUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.Computer ScienceDisdyakis Triacontahedron Discrete Global Grid Systemmaster thesis10.11575/PRISM/39715