Ghaderi, MajidNaghibi, Seyedmohammad2015-11-172015-11-172015http://hdl.handle.net/11023/2638Heterogeneous networks are designed to increase the capacity for cellular data traffic. Self-organization is a key element of heterogeneous cellular networks. In this thesis, we present a randomized algorithm that addresses two challenges in HetNets, namely energy saving and throughput maximization, in a self-organizing manner. More specifically, the proposed algorithm seeks to maximize an objective function that balances the trade-off between the downlink bit rate of users, and the energy consumption of base stations. To achieve this goal, we deactivate under-utilized picocells to save energy, and adjust low-power Almost Blank Subframes to utilize the frequency spectrum and minimize the interference between macrocells and picocells. An important feature of our algorithm is its distributed design, which eliminates the need for a central device to coordinate the base stations. In fact, the base stations directly interact with each other in a locally defined neighborhood to drive the system toward the optimal state.engUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.Computer ScienceCellularHeterogeneousNetworkDistributedOptimizationDistributed Energy Minimization in Heterogeneous Cellular Networksmaster thesis10.11575/PRISM/25726