Alim, UsmanJubair, Mohammad Imrul2017-01-022017-01-0220162016http://hdl.handle.net/11023/3527The icosahedral non-hydrostatic (ICON) model is a climate model based on an icosahedral representation of the Earth and is used for numerical weather prediction. In this thesis, we investigate the unstructured representation of different cells in ICON and undertake the task of designing a technique that converts it to a common structured representation. We introduce icosahedral maps, data structures that are designed to fit the geometry of cells in the ICON model irrespective of their types. These maps represent the connectivity information in ICON in a highly structured two-dimensional hexagonal representation that provides explicit neighborhood information. Our maps facilitate the execution of a multiresolution analysis on the ICON model. We demonstrate this by applying a hexagonal version of the discrete wavelet transform in conjunction with our icosahedral maps to decompose ICON data to different levels of detail and to compress it via a thresholding of the wavelet coefficients.engUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.Atmospheric ScienceComputer ScienceClimate ModelsMeshData StructureMapping TechniqueMultiresolution Analysis and WaveletsIcosahedral Maps for a Multiresolution Representation of Earth Datamaster thesis10.11575/PRISM/26413