Schulich School of Engineering Research & Publications
Permanent URI for this collection
Browse
Browsing Schulich School of Engineering Research & Publications by Author "Ahmed, M. Razu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Evaluation of Selected Mitigation Strategies for Reducing Forest Fire-induced Risk(2021-12) Ahmed, M. Razu; Rahman, Khan R; Hossain, Sheikh M; Hassan, Quazi KThe aim was to study post-fire perceptions of selected mitigation strategies for wildland fire- induced risks proposed in a previous scientific study for the communities situated within the forested areas. Consequently, we considered engaging relevant professionals in the Regional Municipality of Wood Buffalo (RMWB), Alberta who experienced the costliest wildland fire occurrences in Canadian history known as the 2016 Horse River Fire (HRF). To meet our goal, we formulated a questionnaire based on the scientific evidence presented in a previous study and con-ducted a structured survey. Our results revealed that 24 professionals participated in the survey during the June 2020-April 2021 period, providing a 32% response rate. We observed that a high percentage of the participants agreed (i.e., between 63% and 80%) with the proposed wildland fire-induced risk mitigation strategies, including the presence of no to little vegetation in the 30 m buffer zone from the wildland–urban interface (WUI), extending the 30 m buffer zone to 70 m from the WUI, constructing a 70 m width ring road around the communities, and parking lots of the social infrastructures in the fringe of the communities encountering to the forest. We also found other views, including the use of non-combustible and fire-resistant construction materials, and developing the 70 m buffer zone as a recreational space.Item Open Access Remote Sensing of Wildland Fire-induced Risk Assessment Framework(National Fire Information Database (NFID) Project, 2017-12) Hassan, Quazi K.; Ahmed, M. Razu; Rahaman, Khan RubayetWildland fire is one of the critical natural hazards that pose a significant threat to the communities located in the vicinity of forested/vegetated areas. In this report, our overall goal was to use very high spatial resolution (0.5-2.4m) satellite images to develop wildland fire-induced risk framework. We considered two extreme fire events, such as the 2016 HRF over Fort McMurray, and 2011 Lesser Slave Lake fire in Alberta. Thus, our activities included the: (i) estimation of the structural damages; and (ii) delineation of the wildland-urban interface (WUI) and its associated buffers at certain intervals, and their utilization in assessing potential risks. Our proposed method of remote sensing-based estimates was compared with the ground-based information available from the Planning and Development Recovery Committee Task Force of Regional Municipality of Wood Buffalo (RMWB) and National Fire Information Database (NFID); and found strong linear relationships (i.e., r2-value of 0.97 with a slope of 0.97 for the 2016 HRF over Fort McMurray; and 378 from satellite image vs. 407 from 378 from satellite image vs. 407 from NFID system for the 2011 Lesser Slave Lake fire). Upon delineating the WUI and its associated buffer zones at 10m, 30m, 50m, 70m and 100m distances; we found existence of vegetation within the 30m buffers from the WUI for all of the damaged structures. In addition, we noticed that the relevant authorities had removed vegetation in some areas between 30m and 70m buffers from the WUI in case of Fort McMurray area, which was proven to be effective in order to protect the structures in the adjacent communities. Furthermore, we mapped the wildland fire-induced vulnerable areas upon considering the WUI and its associated buffers. We found that there were still some communities that had the existence of vegetation within the buffer zones; thus such vegetation should be removed and monitored regularly in order to reduce the wildland fire-induced risks.