Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • PRISM

  • Communities & Collections
  • All of PRISM
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alcantara, Joenel"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Identifying the binding domains of transferrin to its bacterial transferrin receptor
    (1995) Alcantara, Joenel; Schryvers, Anthony B.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Improving Algae Growth Kinetics in Suspension Bioreactors for the Production of Recombinant Proteins
    (2016) Clark, Brendan Robert; Sen, Arindom; Alcantara, Joenel; Hollenberg, Morley; De la Hoz Siegler, Hector; Gates, Ian; Tay, Andrew
    Millions of individuals rely on recombinant proteins such as essential biopharmaceuticals. Recently, genetically engineered microalgae have been identified as a potentially inexpensive and fast growing host organism for recombinant protein production. Using Chlamydomonas reinhardtii, a species of unicellular green microalgae, the goal was to improve algal cell growth kinetics, genetically engineer the cells and develop a bioprocess to analyze recombinant protein production. C. reinhardtii growth kinetics were improved under mixotrophic growth conditions using acetate in small scale 10 mL cultures. This process was scaled-up to 500 mL spinner flask suspension bioreactors and through the use of a fed-batch acetate feeding strategy, cell growth rates and maximum cell concentrations were improved. A genetic construct was designed, manufactured, isolated and used to genetically transform C. reinhardtii. A bioprocess was then developed to isolate and analyze protein production rates from these cells. Results indicated product concentrations of 8.44 mg/L of culture.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Plant Defense Responses in Opium Poppy Cell Cultures Revealed by Liquid Chromatography-Tandem Mass Spectrometry Proteomics
    (Molecular & Cellular Proteomics, 2008-08-05) Zulak, Katherine G.; Khan, Morgan F.; Alcantara, Joenel; Schriemer, David; Facchini, Peter J.
    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids, including the narcotic analgesic morphine and the antimicrobial agent sanguinarine. In contrast to the plant, cell cultures of opium poppy do not accumulate alkaloids constitutively but produce sanguinarine in response to treatment with certain fungal-derived elicitors. The induction of sanguinarine biosynthesis provides a model platform to characterize the regulation of benzylisoquinoline alkaloid pathways and other defense responses. Proteome analysis of elicitor-treated opium poppy cell cultures by two-dimensional denaturing-polyacrylamide gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry facilitated the identification of 219 of 340 protein spots based on peptide fragment fingerprint searches of a combination of databases. Of the 219 hits, 129 were identified through pre-existing plant proteome databases, 63 were identified by matching predicted translation products in opium poppy-expressed sequence tag databases, and the remainder shared evidence from both databases. Metabolic enzymes represented the largest category of proteins and included S-adenosylmethionine synthetase, several glycolytic, and a nearly complete set of tricarboxylic acid cycle enzymes, one alkaloid, and several other secondary metabolic enzymes. The abundance of chaperones, heat shock proteins, protein degradation factors, and pathogenesis-related proteins provided a comprehensive proteomics view on the coordination of plant defense responses. Qualitative comparison of protein abundance in control and elicitor-treated cell cultures allowed the separation of induced and constitutive or suppressed proteins. DNA microarrays were used to corroborate increases in protein abundance with a corresponding induction in cognate transcript levels.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The use of plant oilbodies as an antigen production and delivery system
    (2003) Alcantara, Joenel; Moloney, Maurice M.

Libraries & Cultural Resources

  • Contact us
  • 403.220.8895
Start Something.
  • Digital Privacy Statement
  • Privacy Policy
  • Website feedback

University of Calgary
2500 University Drive NW
Calgary Alberta T2N 1N4
CANADA

Copyright © 2023

The University of Calgary acknowledges the traditional territories of the people of the Treaty 7 region in Southern Alberta, which includes the Blackfoot Confederacy (comprised of the Siksika, Piikani, and Kainai First Nations), as well as the Tsuut’ina First Nation, and the Stoney Nakoda (including the Chiniki, Bearspaw and Wesley First Nations). The City of Calgary is also home to Metis Nation of Alberta, Region 3. The University of Calgary acknowledges the impact of colonization on Indigenous peoples in Canada and is committed to our collective journey towards reconciliation to create a welcome and inclusive campus that encourages Indigenous ways of knowing, doing, connecting and being.