Browsing by Author "Bayly, Warwick"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Field-training in young two-year-old thoroughbreds: investigating cardiorespiratory adaptations and the presence of exercise induced pulmonary hemorrhage(2024-04-26) Massie, Shannon; Bayly, Warwick; Ohmura, Hajime; Takahashi, Yuji; Mukai, Kazutaka; Léguillette, RenaudAbstract Background Comparatively little is known regarding the initial cardiorespiratory response of young racehorses to training. The objectives were to compare physiological parameters before and after introductory training and determine whether young Thoroughbreds show endoscopic signs of exercise-induced pulmonary hemorrhage (EIPH). Ten Thoroughbreds (20–23 months) underwent 12-weeks of introductory training, including weekly speed sessions. Two 600 m high-speed exercise tests (HSET) were performed following weeks 4 and 12 while wearing a validated ergospirometry facemask. Peak oxygen consumption (V̇O2pk) and ventilatory parameters (tidal volume, VT; peak inspiratory and expiratory flow, PkV̇I, PkV̇E; respiratory frequency, Rf; minute ventilation, V̇E) were measured. The ventilatory equivalent of oxygen (V̇E/V̇O2) and the aerobic and anaerobic contributions to energy production were calculated. Maximal heart rate (HRmax) and HR at maximal speed (HRVmax) were determined. Post-exercise hematocrit, plasma ammonia and blood lactate were measured. Evidence of EIPH was investigated via tracheobronchoscopy post-exercise. Results were compared (paired t-test, P < 0.05). Results Horses were faster following training (P < 0.001) and V̇O2pk increased 28 ml/(kg total mass.min) (28 ± 16%; P < 0.001). Ventilatory (V̇E, P = 0.0015; Rf, P < 0.001; PkV̇I, P < 0.001; PkV̇E, P < 0.001) and cardiovascular parameters (HRmax, P = 0.03; HRVmax, P = 0.04) increased. The increase in V̇E was due to greater Rf, but not VT. V̇E/V̇O2 was lower (26 ± 3.6 vs 23 ± 3.7; P = 0.02), indicating improved ventilatory efficiency. Anaerobic contribution to total energy production increased from 15.6 ± 6.1% to 18.5 ± 6.3% (P = 0.02). Post-exercise hematocrit (P < 0.001), plasma ammonia (P = 0.03) and blood lactate (P = 0.001) increased following training. Horses showed no signs of EIPH. Conclusions Young two-year-old Thoroughbreds responded well to introductory training without developing tracheobronchoscopic evidence of EIPH.Item Open Access Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters(2017-11-28) Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, RenaudAbstract Background Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O2), ventilation (respiratory frequency, tidal volume (VT)), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Results Water height and its interaction with speed had a significant effect on V̇O2, VT and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O2 = 16.70 ml/(kg.min), VT = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Conclusions Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.