Browsing by Author "Bruce, Olivia L"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Lower-limb joint kinetics in jump rope skills performed by competitive athletes(Routledge, 2020-08-28) Bruce, Olivia L; Ramsay, Mollee; Kennedy, Geneva; Edwards, W BrentThe purpose of this study was to characterise lower-limb joint kinetics during consecutive double unders and speed step sprints performed by competitive jump rope athletes, and to compare these measurements to running. Sixteen adolescent competitive jump rope athletes performed consecutive double under, speed step, and running trials while motion capture and ground reaction force data were collected. Lower-limb joint moments, power, and work were calculated using an inverse dynamics approach and discrete measurements were compared between skills. Peak ground reaction forces were similar between movements; however, knee and hip joint kinetics were distributed differently between double unders and speed step. In general, double unders were characterised by an increased reliance on knee joint kinetics, while speed step was characterised by an increased reliance on hip joint kinetics. Peak ankle moments were 9-20% greater in speed step when compared to double unders and running (p ≤ 0.050), and peak negative ankle power was 39-114% greater in double unders and speed step when compared to running (p ≤ 0.002). These findings may have important implications for injury risk and load management in jump rope athletes or other individuals that incorporate jump rope into their training programs.Item Open Access A statistical shape model of the tibia-fibula complex: sexual dimorphism and effects of age on reconstruction accuracy from anatomical landmarks(2021-11-03) Bruce, Olivia L; Baggaley, Michael; Welte, Lauren; Rainbow, Michael J; Edwards, W BrentA statistical shape model was created for a young adult population and used to predict tibia and fibula geometries from bony landmarks. Reconstruction errors with respect to CT data were quantified and compared to isometric scaling. Shape differences existed between sexes. The statistical shape model estimated tibia-fibula geometries from landmarks with high accuracy (RMSE = 1.51-1.62 mm), improving upon isometric scaling (RMSE = 1.78 mm). Reconstruction errors increased when the model was applied to older adults (RMSE = 2.11-2.17 mm). Improvements in geometric accuracy with shape model reconstruction changed hamstring moment arms 25-35% (1.0-1.3 mm) in young adults.Item Open Access Tibial-fibular geometry and density variations associated with elevated bone strain and sex disparities in young active adults(Elsevier, 2022-05-20) Bruce, Olivia L; Baggaley, Michael; Khassetarash, Arash; Haider, Ifaz T; Edwards, W BrentTibial stress fracture is a common injury in runners and military personnel. Elevated bone strain is believed to be associated with the development of stress fractures and is influenced by bone geometry and density. The purpose of this study was to characterize tibial-fibular geometry and density variations in young active adults, and to quantify the influence of these variations on finite element-predicted bone strain. A statistical appearance model characterising tibial-fibular geometry and density was developed from computed tomography scans of 48 young physically active adults. The model was perturbed ±1 and 2 standard deviations along each of the first five principal components to create finite element models. Average male and female finite element models, controlled for scale, were also generated. Muscle and joint forces in running, calculated using inverse dynamics-based static optimization, were applied to the finite element models. The resulting 95th percentile pressure-modified von Mises strain (peak strain) and strained volume (volume of elements above 4000 με) were quantified. Geometry and density variations described by principal components resulted in up to 12.0% differences in peak strain and 95.4% differences in strained volume when compared to the average tibia-fibula model. The average female illustrated 5.5% and 41.3% larger peak strain and strained volume, respectively, when compared to the average male, suggesting that sexual dimorphism in bone geometry may indeed contribute to greater stress fracture risk in females. Our findings identified important features in subject-specific geometry and density associated with elevated bone strain that may have implications for stress fracture risk.