Browsing by Author "Ding, Wei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Accuracy Evaluation and Parameter Analysis of Land Surface Temperature Inversion Algorithm for Landsat-8 Data(2021-09-24) Wan, Jikang; Zhu, Min; Ding, WeiMany researchers have developed a variety of land surface temperature (LST) inversion algorithms based on satellite data. The main LST inversion algorithms include Radiative Transfer Equation (RTE), Single Channel (SC) algorithm, Mono Window (MW) algorithm, and Split Window (SW) algorithm. In this study, nine LST inversion algorithms were designed using Landsat-8 data and meteorological station data to test the inversion efficiency of different algorithms in different seasons and different locations. The results show that the error of various LST inversion algorithms will increase with the rise of LST. R2 of the inversion results of each LST algorithm and the measured data are all greater than 0.73°C in winter and about 0.5°C in the other seasons. By analyzing the stability of various algorithms inside and outside the city, it is found that the stability of each LST inversion algorithm inside the city is better than that outside the city. For the same surface features, the inversion temperature inside the city is 3–5°C higher than that outside the city. In addition, the sensitivity of various inversion algorithms to parameters was also analyzed. The influence of atmospheric transmittance on RTE, SC, and MW inversion algorithms is in logarithmic form. The effect of emissivity on each algorithm is linear. The influence of NDVI on the algorithms is mainly through the estimation of surface emissivity parameters to affect the inversion results. The effect of ascending radiation on SC (LST4 and LST5) is linear and on RTE (LST1 and LST2) is logarithmic. The effect of downslope radiation on SC and RTE is linear. The influence of atmospheric water vapor content on SW (LST7) is nonlinear.Item Open Access Attitude Estimation Methods Using Low-cost GNSS and MEMS MARG Sensors and Their Integration(2022-09) Ding, Wei; Gao, Yang; El-Sheimy, Naser; Noureldin, AboelmagdFor low-cost magnetic, angular rate, and gravity (MARG) sensors based on the microelectromechanical system (MEMS) technology, the sensor errors and measurement noises are significantly large. Attitude errors by integrating gyro data accumulate rapidly. When the vehicle is quasi-static, the roll and pitch angles can be determined by accelerometer measurements which use the local gravity as the reference. The magnetometer is resorted to generate heading information by measuring the geomagnetic field. However, the accelerometer and magnetometer measurements can be deteriorated by the vehicle maneuver and ambient artificial magnetic disturbances, respectively. Thereby a quaternion-based error state Kalman filter (ESKF) is developed to fuse the MEMS MARG sensor measurements for accuracy improved attitude estimation. The error state vector constitutes attitude error and gyro bias variation. the gyro-measured angular rates are used to continuously propagate the vehicle’s three-dimensional attitude quaternion in its sampling rate, whilst accelerometer and magnetometer measurements are employed for the state correction. Disturbances such as external accelerations and magnetic anomalies are excluded, and the measurement noise covariance matrix is adaptively adjusted according to the innovations. Global navigation satellite system (GNSS) based attitude estimation shows time-independent error characteristics. The pitch and heading angles can be determined using a single GNSS antenna based on the time differenced carrier phase (TDCP) observations or derived from a moving baseline formed between two firmly mounted GNSS antennas. The major challenges of the former include cycle slips, carrier phase discontinuity, and slow vehicular velocity which should be excluded from attitude estimation. Whereas the integer ambiguity resolution is indispensable for the latter, the baseline length constrained least-squares ambiguity decorrelation adjustment (C-LAMBDA) method can be applied. The GNSS/MARG sensors integrated attitude estimation methods are investigated to exploit the complementary merits of the high precision of MARG sensor during the short period and the performance stability of GNSS over the long term. The ESKF developed for the MARG sensor is extended to utilize the GNSS-derived heading and pitch angles for additional measurement updates. The solution continuity is guaranteed by the MARG sensor alone during the periods when the GNSS-derived attitude angles are unavailable.