Browsing by Author "Forkert, Nils D"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A longitudinal magnetic resonance imaging study of neurodegenerative and small vessel disease, and clinical cognitive trajectories in non demented patients with transient ischemic attack: the PREVENT study(2018-07-16) Tariq, Sana; d’Esterre, Christopher D; Sajobi, Tolulope T; Smith, Eric E; Longman, Richard S; Frayne, Richard; Coutts, Shelagh B; Forkert, Nils D; Barber, Philip AAbstract Background Late-life cognitive decline, caused by progressive neuronal loss leading to brain atrophy years before symptoms are detected, is expected to double in Canada over the next two decades. Cognitive impairment in late life is attributed to vascular and lifestyle related risk factors in mid-life in a substantial proportion of cases (50%), thereby providing an opportunity for effective prevention of cognitive decline if incipient disease is detected earlier. Patients presenting with transient ischemic attack (TIA) commonly display some degree of cognitive impairment and are at a 4-fold increased risk of dementia. In the Predementia Neuroimaging of Transient Ischemic Attack (PREVENT) study, we will address what disease processes (i.e., Alzheimer’s vs. vascular disease) lead to neurodegeneration, brain atrophy, and cognitive decline, and whether imaging measurements of brain iron accumulation using quantitative susceptibility mapping predicts subsequent brain atrophy and cognitive decline. Methods A total of 440 subjects will be recruited for this study with 220 healthy subjects and 220 TIA patients. Early Alzheimer’s pathology will be determined by cerebrospinal fluid samples (including tau, a marker of neuronal injury, and amyloid β1–42) and by MR measurements of iron accumulation, a marker for Alzheimer’s-related neurodegeneration. Small vessel disease will be identified by changes in white matter lesion volume. Predictors of advanced rates of cerebral and hippocampal atrophy at 1 and 3 years will include in vivo Alzheimer’s disease pathology markers, and MRI measurements of brain iron accumulation and small vessel disease. Clinical and cognitive function will be assessed annually post-baseline for a period of 5-years using a clinical questionnaire and a battery of neuropsychological tests, respectively. Discussion The PREVENT study expects to demonstrate that TIA patients have increased early progressive rates of cerebral brain atrophy after TIA, before cognitive decline can be clinically detected. By developing and optimizing high-level machine learning models based on clinical data, image-based (quantitative susceptibility mapping, regional brain, and white matter lesion volumes) features, and cerebrospinal fluid biomarkers, PREVENT will provide a timely opportunity to identify individuals at greatest risk of late-life cognitive decline early in the course of disease, supporting future therapeutic strategies for the promotion of healthy aging.Item Open Access Building an Otoscopic screening prototype tool using deep learning(2019-11-26) Livingstone, Devon; Talai, Aron S; Chau, Justin; Forkert, Nils DAbstract Background Otologic diseases are often difficult to diagnose accurately for primary care providers. Deep learning methods have been applied with great success in many areas of medicine, often outperforming well trained human observers. The aim of this work was to develop and evaluate an automatic software prototype to identify otologic abnormalities using a deep convolutional neural network. Material and methods A database of 734 unique otoscopic images of various ear pathologies, including 63 cerumen impactions, 120 tympanostomy tubes, and 346 normal tympanic membranes were acquired. 80% of the images were used for the training of a convolutional neural network and the remaining 20% were used for algorithm validation. Image augmentation was employed on the training dataset to increase the number of training images. The general network architecture consisted of three convolutional layers plus batch normalization and dropout layers to avoid over fitting. Results The validation based on 45 datasets not used for model training revealed that the proposed deep convolutional neural network is capable of identifying and differentiating between normal tympanic membranes, tympanostomy tubes, and cerumen impactions with an overall accuracy of 84.4%. Conclusion Our study shows that deep convolutional neural networks hold immense potential as a diagnostic adjunct for otologic disease management.