Browsing by Author "Gadotti, Vinicius M"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist(BioMed Central, 2013-07-01) Gadotti, Vinicius M; You, Haitao; Petrov, Ravil R; Berger, N Daniel; Diaz, Philippe; Zamponi, Gerald WItem Open Access Analgesic effects of optogenetic inhibition of basolateral amygdala inputs into the prefrontal cortex in nerve injured female mice(2019-12-04) Gadotti, Vinicius M; Zhang, Zizhen; Huang, Junting; Zamponi, Gerald WAbstract Peripheral nerve injury can lead to remodeling of brain circuits, and this can cause chronification of pain. We have recently reported that male mice subjected to spared injury of the sciatic nerve undergo changes in the function of the medial prefrontal cortex (mPFC) that culminate in reduced output of layer 5 pyramidal cells. More recently, we have shown that this is mediated by alterations in synaptic inputs from the basolateral amygdala (BLA) into GABAergic interneurons in the mPFC. Optogenetic inhibition of these inputs reversed mechanical allodynia and thermal hyperalgesia in male mice. It is known that the processing of pain signals can exhibit marked sex differences. We therefore tested whether the dysregulation of BLA to mPFC signaling is equally altered in female mice. Injection of AAV-Arch3.0 constructs into the BLA followed by implantation of a fiberoptic cannula into the mPFC in sham and SNI operated female mice was carried out, and pain behavioral responses were measured in response to yellow light mediated activation of this inhibitory opsin. Our data reveal that Arch3.0 activation leads to a marked increase in paw withdrawal thresholds and latencies in response to mechanical and thermal stimuli, respectively. However, we did not observe nerve injury-induced changes in mPFC layer 5 pyramidal cell output in female mice. Hence, the observed light-induced analgesic effects may be due to compensation for dysregulated neuronal circuits downstream of the mPFC.Item Open Access Anxiolytic effects of the flavonoid luteolin in a mouse model of acute colitis(2019-12-26) Gadotti, Vinicius M; Zamponi, Gerald WAbstract Anxiety related disorders commonly occur in association with major depressive disorder (MDD) in individuals suffering from peripheral inflammation, with a higher prevalence among IBS patients. We have previously shown that the bioflavonoid luteolin has pronounced analgesic and antidepressant-like effects in mice with dextran sodium sulfate (DSS)-induced colitis. Here, we further evaluate the biological effect of luteolin as a possible anxiolytic agent in DSS treated mice. Anxiolytic action was evaluated using the open field test (OF), the novelty suppressed feeding test (NSFT) and the elevated plus maze test (EPM). Luteolin increased the number of crossings in the center of the OF apparatus, reduced the latency to interact with the food pellet in the NSFT, and increased the time spent in the open arms in the EPM. These results suggest luteolin as a possible natural anxiolytic molecule without sedative effects, thus reinforcing its therapeutic potential for the comorbidities involving peripheral inflammation, pain, mood and anxiety-related disorders.Item Open Access Cav3.2 T-type calcium channels control acute itch in mice(2020-09-01) Gadotti, Vinicius M; Kreitinger, Joanna M; Wageling, Nicholas B; Budke, Dylan; Diaz, Philippe; Zamponi, Gerald WAbstract Cav3.2 T-type calcium channels are important mediators of nociceptive signaling, but their roles in the transmission of itch remains poorly understood. Here we report a key involvement of these channels as key modulators of itch/pruritus-related behavior. We compared scratching behavior responses between wild type and Cav3.2 null mice in models of histamine- or chloroquine-induced itch. We also evaluated the effect of the T-type calcium channel blocker DX332 in male and female wild-type mice injected with either histamine or chloroquine. Cav3.2 null mice exhibited decreased scratching responses during both histamine- and chloroquine-induced acute itch. DX332 co-injected with the pruritogens inhibited scratching responses of male and female mice treated with either histamine or chloroquine. Altogether, our data provide strong evidence that Cav3.2 T-type channels exert an important role in modulating histamine-dependent and -independent itch transmission in the primary sensory afferent pathway, and highlight these channels as potential pharmacological targets to treat pruritus.Item Open Access Disrupting USP5/Cav3.2 interactions protects female mice from mechanical hypersensitivity during peripheral inflammation(2018-10-19) Gadotti, Vinicius M; Zamponi, Gerald WAbstract Cav3.2 T-type calcium channels are important for the signaling of nociceptive information in the primary afferent pain pathway. During neuropathy and peripheral inflammation, Cav3.2 channels are upregulated due to an increased association with the deubiquitinase USP5. Disrupting these interactions in male mice by the use of cell permeant peptides reverses mechanical and thermal hypersensitivity. Here we explore the effects of interfering with USP5 binding to the channel in female mice with synchronized estrous cycle. We show that intrathecal delivery of a cell-penetrating TAT peptide corresponding to the UBPc domain of USP5 fully reverses mechanical hypersensitivity in mice intraplantarly injected with Complete Freund’s Adjuvant. Hence, the USP5 mediated dysregulation of Cav3.2 channel activity does not exhibit sex differences, and potential therapeutics targeting this interaction should be effective in both male and female subjects.Item Open Access The IL33 receptor ST2 contributes to mechanical hypersensitivity in mice with neuropathic pain(2021-02-17) Huang, Junting; Gadotti, Vinicius M; Zhang, Zizhen; Zamponi, Gerald WAbstract Pathogen infection triggers pain via activation of the innate immune system. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are the main components of innate immunity and have been implicated in pain signaling. We previously revealed that the TLR2-NLRP3-IL33 pathway mediates inflammatory pain responses during hyperactivity of innate immunity. However, their roles in neuropathic pain had remained unclear. Here we report that although knockout of TLR2 or NLRP3 does not affect spared nerve injury (SNI)-induced neuropathic pain, intrathecal inhibition of IL33/ST2 signaling with ST2 neutralizing antibodies reverses mechanical thresholds in SNI mice compared to PBS vehicle treated animals. This effect indicates a universal role of IL33 in both inflammatory and neuropathic pain states, and that targeting the IL33/ST2 axis could be a potential therapeutic approach for pain treatment.