Browsing by Author "Goodman, Laura B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Effect of antimicrobial administration on fecal microbiota of critically ill dogs: dynamics of antimicrobial resistance over time(2022-06-04) Menard, Julie; Goggs, Robert; Mitchell, Patrick; Yang, Yufan; Robbins, Sarah; Franklin-Guild, Rebecca J.; Thachil, Anil J.; Altier, Craig; Anderson, Renee; Putzel, Gregory G.; McQueary, Holly; Goodman, Laura B.Abstract Background Multidrug resistance in companion animals poses significant risks to animal and human health. Prolonged antimicrobial drug (AMD) treatment in animals is a potential source of selection pressure for antimicrobial resistance (AMR) including in the gastrointestinal microbiota. We performed a prospective study of dogs treated for septic peritonitis, pyometra, or bacterial pneumonia and collected repeated fecal samples over 60 days. Bacterial cultures and direct molecular analyses of fecal samples were performed including targeted resistance gene profiling. Results Resistant Escherichia coli increased after 1 week of treatment (D1:21.4% vs. D7:67.9% P < 0.001) and returned to baseline proportions by D60 (D7:67.9% vs D60:42.9%, P = 0.04). Dogs with septic peritonitis were hospitalized significantly longer than those with pneumonia or pyometra. Based on genetic analysis, Simpson’s diversity index significantly decreased after 1 week of treatment (D1 to D7, P = 0.008), followed by a gradual increase to day 60 (D1 and D60, P = 0.4). Detection of CTX-M was associated with phenotypic resistance to third-generation cephalosporins in E. coli (OR 12.1, 3.3–68.0, P < 0.001). Lincosamide and macrolide-resistance genes were more frequently recovered on days 14 and 28 compared to day 1 (P = 0.002 and P = 0.004 respectively). Conclusion AMR was associated with prescribed drugs but also developed against AMDs not administered during the study. Companion animals may be reservoirs of zoonotic multidrug resistant pathogens, suggesting that veterinary AMD stewardship and surveillance efforts should be prioritized. Graphical abstractItem Open Access Noninvasive sampling of the small intestinal chyme for microbiome, metabolome and antimicrobial resistance genes in dogs, a proof of concept(2023-12-16) Menard, Julie; Bagheri, Sahar; Menon, Sharanya; Yu, Y. T.; Goodman, Laura B.Abstract Background The gastrointestinal microbiome and metabolome vary greatly throughout the different segments of the gastrointestinal tract, however current knowledge of gastrointestinal microbiome and metabolome in health and disease is limited to fecal samples due to ease of sampling. The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule allows specific sampling of the small intestine in humans. We aimed to determine whether administration of SIMBA™ capsules to healthy beagle dogs could reliably and safely sample the small intestinal microbiome and metabolome when compared to their fecal microbiome and metabolome. Results Eleven beagle dogs were used for the study. Median transit time of capsules was 29.93 h (range: 23.83–77.88). Alpha diversity, as measured by the Simpson diversity, was significantly different (P = 0.048). Shannon diversity was not different (P = 0.114). Beta diversity results showed a significant difference between capsule and fecal samples regarding Bray–Curtis, weighted and unweighted unifrac (P = 0.002) and ANOSIM distance metric s (R = 0.59, P = 0.002). In addition to observing a statistically significant difference in the microbial composition of capsules and feces, distinct variation in the metabolite profiles was seen between the sample types. Heat map analysis showed 16 compounds that were significantly different between the 2 sampling modes (adj-P value ranged between 0.004 and 0.036) with 10 metabolites more abundant in the capsule than in the feces and 6 metabolites more abundant in the feces compared to the capsules. Conclusions The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule was easy and safe to administer to dogs. Microbiome and metabolome analysis from the capsule samples were significantly different than that of the fecal samples and were like previously published small intestinal microbiome and metabolome composition. Graphical abstract