Browsing by Author "Hodgins, Kathryn A"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex(2017-12-15) Conte, Gina L; Hodgins, Kathryn A; Yeaman, Sam; Degner, Jon C; Aitken, Sally N; Rieseberg, Loren H; Whitlock, Michael CAbstract Background Mutation load is expected to be reduced in hybrids via complementation of deleterious alleles. While local adaptation of hybrids confounds phenotypic tests for reduced mutation load, it may be possible to assess variation in load by analyzing the distribution of putatively deleterious alleles. Here, we use this approach in the interior spruce (Picea glauca x P. engelmannii) hybrid complex, a group likely to suffer from high mutation load and in which hybrids exhibit local adaptation to intermediate conditions. We used PROVEAN to bioinformatically predict whether non-synonymous alleles are deleterious, based on conservation of the position and abnormality of the amino acid change. Results As expected, we found that predicted deleterious alleles were at lower average allele frequencies than alleles not predicted to be deleterious. We were unable to detect a phenotypic effect on juvenile growth rate of the many rare alleles predicted to be deleterious. Both the proportion of alleles predicted to be deleterious and the proportion of loci homozygous for predicted deleterious alleles were higher in P. engelmannii (Engelmann spruce) than in P. glauca (white spruce), due to higher diversity and frequencies of rare alleles in Engelmann. Relative to parental species, the proportion of alleles predicted to be deleterious was intermediate in hybrids, and the proportion of loci homozygous for predicted deleterious alleles was lowest. Conclusion Given that most deleterious alleles are recessive, this suggests that mutation load is reduced in hybrids due to complementation of deleterious alleles. This effect may enhance the fitness of hybrids.Item Open Access Modularity of genes involved in local adaptation to climate despite physical linkage(2018-10-05) Lotterhos, Katie E; Yeaman, Sam; Degner, Jon; Aitken, Sally; Hodgins, Kathryn AAbstract Background Linkage among genes experiencing different selection pressures can make natural selection less efficient. Theory predicts that when local adaptation is driven by complex and non-covarying stresses, increased linkage is favored for alleles with similar pleiotropic effects, with increased recombination favored among alleles with contrasting pleiotropic effects. Here, we introduce a framework to test these predictions with a co-association network analysis, which clusters loci based on differing associations. We use this framework to study the genetic architecture of local adaptation to climate in lodgepole pine, Pinus contorta, based on associations with environments. Results We identify many clusters of candidate genes and SNPs associated with distinct environments, including aspects of aridity and freezing, and discover low recombination rates among some candidate genes in different clusters. Only a few genes contain SNPs with effects on more than one distinct aspect of climate. There is limited correspondence between co-association networks and gene regulatory networks. We further show how associations with environmental principal components can lead to misinterpretation. Finally, simulations illustrate both benefits and caveats of co-association networks. Conclusions Our results support the prediction that different selection pressures favor the evolution of distinct groups of genes, each associating with a different aspect of climate. But our results went against the prediction that loci experiencing different sources of selection would have high recombination among them. These results give new insight into evolutionary debates about the extent of modularity, pleiotropy, and linkage in the evolution of genetic architectures.Item Open Access Purifying selection does not drive signatures of convergent local adaptation of lodgepole pine and interior spruce(2019-05-28) Lu, Mengmeng; Hodgins, Kathryn A; Degner, Jon C; Yeaman, SamAbstract Background Lodgepole pine (Pinus contorta) and interior spruce (Picea glauca, Picea engelmannii, and their hybrids) are distantly related conifer species. Previous studies identified 47 genes containing variants associated with environmental variables in both species, providing evidence of convergent local adaptation. However, if the intensity of purifying selection varies with the environment, clines in nucleotide diversity could evolve through linked (background) selection that would yield allele frequency-environment signatures resembling local adaptation. If similar geographic patterns in the strength of purifying selection occur in these species, this could result in the convergent signatures of local adaptation, especially if the landscape of recombination is conserved. In the present study, we investigated whether spatially/environmentally varying purifying selection could give rise to the convergent signatures of local adaptation that had previously reported. Results We analyzed 86 lodgepole pine and 50 interior spruce natural populations spanning heterogeneous environments in western Canada where previous analyses had found signatures of convergent local adaptation. We estimated nucleotide diversity and Tajima’s D for each gene within each population and calculated the strength of correlations between nucleotide diversity and environmental variables. Overall, these estimates in the genes with previously identified convergent local adaptation signatures had no similar pattern between pine and spruce. Clines in nucleotide diversity along environmental variables were found for interior spruce, but not for lodgepole pine. In spruce, genes with convergent adaption signatures showed a higher strength of correlations than genes without convergent adaption signatures, but there was no such disparity in pine, which suggests the pattern in spruce may have arisen due to a combination of selection and hybridization. Conclusions The results rule out purifying/background selection as a driver of convergent local adaption signatures in lodgepole pine and interior spruce.