Browsing by Author "Kuczynski, Andrea M"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Assessment of bilateral motor skills and visuospatial attention in children with perinatal stroke using a robotic object hitting task(2020-02-13) Hawe, Rachel L; Kuczynski, Andrea M; Kirton, Adam; Dukelow, Sean PAbstract Background While motor deficits are the hallmark of hemiparetic cerebral palsy, children may also experience impairments in visuospatial attention that interfere with participation in complex activities, including sports or driving. In this study, we used a robotic object hitting task to assess bilateral sensorimotor control and visuospatial skills in children with hemiparesis due to perinatal arterial ischemic stroke (AIS) or periventricular venous infarct (PVI). We hypothesized that performance would be impaired bilaterally and be related to motor behavior and clinical assessment of visuospatial attention. Methods Forty-nine children with perinatal stroke and hemiparetic cerebral palsy and 155 typically developing (TD) children participated in the study. Participants performed a bilateral object hitting task using the KINARM Exoskeleton Robot, in which they used virtual paddles at their fingertips to hit balls that fell from the top of the screen with increasing speed and frequency over 2.3 min. We quantified performance across 13 parameters including number of balls hit with each hand, movement speed and area, biases between hands, and spatial biases. We determined normative ranges of performance accounting for age by fitting 95% prediction bands to the TD children. We compared parameters between TD, AIS, and PVI groups using ANCOVAs accounting for age effects. Lastly, we performed regression analysis between robotic and clinical measures. Results The majority of children with perinatal stroke hit fewer balls with their affected arm compared to their typically developing peers. We also found deficits with the ipsilesional (“unaffected”) arm. Children with AIS had greater impairments than PVI. Despite hitting fewer balls, we only identified 18% of children as impaired in hand speed or movement area. Performance on the Behavioral Inattention Test accounted for 21–32% of the variance in number of balls hit with the unaffected hand. Conclusions Children with perinatal stroke-induced hemiparetic cerebral palsy may have complex bilateral deficits reflecting a combination of impairments in motor skill and visuospatial attention. Clinical assessments and interventions should address the interplay between motor and visuospatial skills.Item Open Access Bilateral reaching deficits after unilateral perinatal ischemic stroke: a population-based case-control study(2018-08-17) Kuczynski, Andrea M; Kirton, Adam; Semrau, Jennifer A; Dukelow, Sean PAbstract Background Detailed kinematics of motor impairment of the contralesional (“affected”) and ipsilesional (“unaffected”) limbs in children with hemiparetic cerebral palsy are not well understood. We aimed to 1) quantify the kinematics of reaching in both arms of hemiparetic children with perinatal stroke using a robotic exoskeleton, and 2) assess the correlation of kinematic reaching parameters with clinical motor assessments. Methods This prospective, case-control study involved the Alberta Perinatal Stroke Project, a population-based research cohort, and the Foothills Medical Center Stroke Robotics Laboratory in Calgary, Alberta over a four year period. Prospective cases were collected through the Calgary Stroke Program and included term-born children with magnetic resonance imaging confirmed perinatal ischemic stroke and upper extremity deficits. Control participants were recruited from the community. Participants completed a visually guided reaching task in the KINARM robot with each arm separately, with 10 parameters quantifying motor function. Kinematic measures were compared to clinical assessments and stroke type. Results Fifty children with perinatal ischemic stroke (28 arterial, mean age: 12.5 ± 3.9 years; 22 venous, mean age: 11.5 ± 3.8 years) and upper extremity deficits were compared to healthy controls (n = 147, mean age: 12.7 ± 3.9 years). Perinatal stroke groups demonstrated contralesional motor impairments compared to controls when reaching out (arterial = 10/10, venous = 8/10), and back (arterial = 10/10, venous = 6/10) with largest errors in reaction time, initial direction error, movement length and time. Ipsilesional impairments were also found when reaching out (arterial = 7/10, venous = 1/10) and back (arterial = 6/10). The arterial group performed worse than venous on both contralesional and ipsilesional parameters. Contralesional reaching parameters showed modest correlations with clinical measures in the arterial group. Conclusions Robotic assessment of reaching behavior can quantify complex, upper limb dysfunction in children with perinatal ischemic stroke. The ipsilesional, “unaffected” limb is often abnormal and may be a target for therapeutic interventions in stroke-induced hemiparetic cerebral palsy.Item Open Access Kinesthetic deficits after perinatal stroke: robotic measurement in hemiparetic children(2017-02-15) Kuczynski, Andrea M; Semrau, Jennifer A; Kirton, Adam; Dukelow, Sean PAbstract Background While sensory dysfunction is common in children with hemiparetic cerebral palsy (CP) secondary to perinatal stroke, it is an understudied contributor to disability with limited objective measurement tools. Robotic technology offers the potential to objectively measure complex sensorimotor function but has been understudied in perinatal stroke. The present study aimed to quantify kinesthetic deficits in hemiparetic children with perinatal stroke and determine their association with clinical function. Methods Case–control study. Participants were 6–19 years of age. Stroke participants had MRI confirmed unilateral perinatal arterial ischemic stroke or periventricular venous infarction, and symptomatic hemiparetic cerebral palsy. Participants completed a robotic assessment of upper extremity kinesthesia using a robotic exoskeleton (KINARM). Four kinesthetic parameters (response latency, initial direction error, peak speed ratio, and path length ratio) and their variabilities were measured with and without vision. Robotic outcomes were compared across stroke groups and controls and to clinical measures of sensorimotor function. Results Forty-three stroke participants (23 arterial, 20 venous, median age 12 years, 42% female) were compared to 106 healthy controls. Stroke cases displayed significantly impaired kinesthesia that remained when vision was restored. Kinesthesia was more impaired in arterial versus venous lesions and correlated with clinical measures. Conclusions Robotic assessment of kinesthesia is feasible in children with perinatal stroke. Kinesthetic impairment is common and associated with stroke type. Failure to correct with vision suggests sensory network dysfunction.Item Open Access Relative independence of upper limb position sense and reaching in children with hemiparetic perinatal stroke(2021-05-12) Kuczynski, Andrea M; Kirton, Adam; Semrau, Jennifer A; Dukelow, Sean PAbstract Background Studies using clinical measures have suggested that proprioceptive dysfunction is related to motor impairment of the upper extremity following adult stroke. We used robotic technology and clinical measures to assess the relationship between position sense and reaching with the hemiparetic upper limb in children with perinatal stroke. Methods Prospective term-born children with magnetic resonance imaging-confirmed perinatal ischemic stroke and upper extremity deficits were recruited from a population-based cohort. Neurotypical controls were recruited from the community. Participants completed two tasks in the Kinarm robot: arm position-matching (three parameters: variability [Varxy], contraction/expansion [Areaxy], systematic spatial shift [Shiftxy]) and visually guided reaching (five parameters: posture speed [PS], reaction time [RT], initial direction error [IDE], speed maxima count [SMC], movement time [MT]). Additional clinical assessments of sensory (thumb localization test) and motor impairment (Assisting Hand Assessment, Chedoke-McMaster Stroke Assessment) were completed and compared to robotic measures. Results Forty-eight children with stroke (26 arterial, 22 venous, mean age: 12.0 ± 4.0 years) and 145 controls (mean age: 12.8 ± 3.9 years) completed both tasks. Position-matching performance in children with stroke did not correlate with performance on the visually guided reaching task. Robotic sensory and motor measures correlated with only some clinical tests. For example, AHA scores correlated with reaction time (R = − 0.61, p < 0.001), initial direction error (R = − 0.64, p < 0.001), and movement time (R = − 0.62, p < 0.001). Conclusions Robotic technology can quantify complex, discrete aspects of upper limb sensory and motor function in hemiparetic children. Robot-measured deficits in position sense and reaching with the contralesional limb appear to be relatively independent of each other and correlations for both with clinical measures are modest. Knowledge of the relationship between sensory and motor impairment may inform future rehabilitation strategies and improve outcomes for children with hemiparetic cerebral palsy.Item Open Access Robotic assessment of rapid motor decision making in children with perinatal stroke(2020-07-14) Hawe, Rachel L; Kuczynski, Andrea M; Kirton, Adam; Dukelow, Sean PAbstract Background Activities of daily living frequently require children to make rapid decisions and execute desired motor actions while inhibiting unwanted actions. Children with hemiparetic cerebral palsy due to perinatal stroke may have deficits in executive functioning in addition to motor impairments. The objective of this study was to use a robotic object hit and avoid task to assess the ability of children with hemiparetic cerebral palsy to make rapid motor decisions. Methods Forty-five children with hemiparetic cerebral palsy due to perinatal stroke and 146 typically developing children (both groups ages 6–19 years) completed a robotic object hit and avoid task using the Kinarm Exoskeleton. Objects of different shapes fell from the top of the screen with increasing speed and frequency. Children were instructed to hit two specific target shapes with either hand, while avoiding six distractor shapes. The number of targets and distractors hit were compared between children with hemiparetic cerebral palsy and typically developing children, accounting for age effects. We also compared performance to a simpler object hit task where there were no distractors. Results We found that children with hemiparetic cerebral palsy hit a greater proportion of total distractors compared to typically developing children, demonstrating impairments in inhibitory control. Performance for all children improved with age. Children with hemiparetic cerebral palsy hit a greater percentage of targets with each arm on the more complex object hit and avoid task compared to the simpler object hit task, which was not found in typically developing children. Conclusions Children with hemiparetic cerebral palsy due to perinatal stroke demonstrated impairments in rapid motor decision making including inhibitory control, which can impede their ability to perform real-world tasks. Therapies that address both motor performance and executive functions are necessary to maximize function in children with hemiparetic cerebral palsy.