Browsing by Author "Mohammadmoradi, Seyed Peyman"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Pore Morphological Multi-Phase Digital Rock Physics Models(2016) Mohammadmoradi, Seyed Peyman; Kantzas, Apostolos; Sahimi, Muhammad; Clarkson, Christopher; Maini, Brij; Dong, Mingzhe; Bentley, LaurenceTo reduce expenses, failures, ecological footprints, and uncertainty of reservoir appraisal operations, digital rock physics workflows need to be evolved constantly. The traditional characterization procedures are being replaced by technology-rich environmentally sustainable virtual packages. The advancing high-resolution imaging technology offers the opportunity to directly capture exhaustive pore-level images and highlights the need for fast, reliable and multi-phase simulation techniques. Performing direct multi-phase simulations and tracking fluid-fluid and fluid-solid interfaces are the most essential and challenging parts of pore-level studies. There is a technical dilemma in the direct simulation of immiscible displacements between dynamic, e.g. CFD and Lattice-Boltzmann, and quasi-static, e.g. pore morphological, approaches. Once the partially saturated micro-scale realizations are generated, the effective mechanical, petrophysical and thermo-physical properties can be predicted applying steady-state simulations through solid fabrics and fluids spatial arrangements. In this thesis, direct voxel-based pore-level fluid flow models are proposed, validated and applied to real and synthetic porous media images. Two- and three-phase quasi-static pore morphological algorithms are first presented to simulate immiscible displacement processes and post-processing results are compared with experimental data available in the literature. The workflows are applied to predict thermo-physical and petrophysical characteristics of porous media from the pore-scale point of view. The filling process is adapted applying an object-based technique and the marching cubes algorithm is utilized to extract spreading and wetting films. To deal with the multi-scale nature of porous media and extent the capability and universality of the approach, a hybrid approach called DyMAS (Dynamic Morphology Assisted Simulation) is then proposed coupling pore morphological and CFD-based dynamic workflows.