Browsing by Author "Shakeel, Mohammed K."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Brain connectomes in youth at risk for serious mental illness: an exploratory analysis(2022-09-15) Metzak, Paul D.; Shakeel, Mohammed K.; Long, Xiangyu; Lasby, Mike; Souza, Roberto; Bray, Signe; Goldstein, Benjamin I.; MacQueen, Glenda; Wang, JianLi; Kennedy, Sidney H.; Addington, Jean; Lebel, CatherineAbstract Background Identifying early biomarkers of serious mental illness (SMI)—such as changes in brain structure and function—can aid in early diagnosis and treatment. Whole brain structural and functional connectomes were investigated in youth at risk for SMI. Methods Participants were classified as healthy controls (HC; n = 33), familial risk for serious mental illness (stage 0; n = 31), mild symptoms (stage 1a; n = 37), attenuated syndromes (stage 1b; n = 61), or discrete disorder (transition; n = 9) based on clinical assessments. Imaging data was collected from two sites. Graph-theory based analysis was performed on the connectivity matrix constructed from whole-brain white matter fibers derived from constrained spherical deconvolution of the diffusion tensor imaging (DTI) scans, and from the correlations between brain regions measured with resting state functional magnetic resonance imaging (fMRI) data. Results Linear mixed effects analysis and analysis of covariance revealed no significant differences between groups in global or nodal metrics after correction for multiple comparisons. A follow up machine learning analysis broadly supported the findings. Several non-overlapping frontal and temporal network differences were identified in the structural and functional connectomes before corrections. Conclusions Results suggest significant brain connectome changes in youth at transdiagnostic risk may not be evident before illness onset.Item Open Access Measuring Fluid Intelligence in Healthy Older Adults(2017-01) Shakeel, Mohammed K.; Goghari, Vina M.Item Open Access Measuring Fluid Intelligence in Healthy Older Adults(2017-01-30) Shakeel, Mohammed K.; Goghari, Vina M.The present study evaluated subjective and objective cognitive measures as predictors of fluid intelligence in healthy older adults. We hypothesized that objective cognitive measures would predict fluid intelligence to a greater degree than self-reported cognitive functioning. Ninety-three healthy older (>65 years old) community-dwelling adults participated. Raven’s Advanced Progressive Matrices (RAPM) were used to measure fluid intelligence, Digit Span Sequencing (DSS) was used to measure working memory, Trail Making Test (TMT) was used to measure cognitive flexibility, Design Fluency Test (DFT) was used to measure creativity, and Tower Test (TT) was used to measure planning. The Cognitive Failures Questionnaire (CFQ) was used to measure subjective perceptions of cognitive functioning. RAPM was correlated with DSS, TT, and DFT. When CFQ was the only predictor, the regression model predicting fluid intelligence was not significant. When DSS, TMT, DFT, and TT were included in the model, there was a significant change in the model and the final model was also significant, with DFT as the only significant predictor. The model accounted for approximately 20% of the variability in fluid intelligence. Our findings suggest that the most reliable means of assessing fluid intelligence is to assess it directly.