Browsing by Author "Shrive, N. G"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access Analysis of change in gait in the ovine stifle: normal, injured, and anterior cruciate ligament reconstructed(2017-05-23) Heard, B. J; Beveridge, J. E; Atarod, M.; O’Brien, E. J; Rolian, C.; Frank, C. B; Hart, D. A; Shrive, N. GAbstract Background Many patients who undergo anterior cruciate ligament (ACL) reconstructive surgery develop post-traumatic osteoarthritis (PTOA). ACL reconstructive surgery may not fully restore pre-injury joint biomechanics, thereby resulting in further joint damage and contributing to the development of PTOA. In an ovine model of idealized ACL reconstruction (ACL-R), it has been shown that signs of PTOA develop within surgical joints by 20 weeks post-surgery. The aim of the present study was to investigate whether altered kinematics contribute to early PTOA development within ACL-R joints of the ovine injury model by comparing the gait of these surgical animals to the gait of a stable normal control group, and an unstable injury group in which the ACL and medial collateral ligament (MCL) had been transected. Methods Fifteen skeletally mature female sheep were allocated evenly into 3 treatment groups: normal control, ACL-R, and ACL/MCL Tx (each group n = 5). Each animal’s gait was recorded at baseline, 4 weeks post injury, and 20 weeks post injury. Principal component analysis (PCA) was used to identify the kinematic patterns that may be discriminant between treatment groups. Results from previous studies were referenced to present the amount of gross PTOA-like changes that occurred in the joints. Results ACL-R and ACL/MCL transected (Tx) animals developed a similar amount of early PTOA-like changes within the surgical joints, but differed significantly in the amount of kinematic change present at 20 weeks post-surgery. We showed that the stifle joint kinematics of ACL/MCL Tx differed significantly from those of CTRL and the majority of ACL-R animals, while no significant differences in joint kinematic changes were found between ACL-R and CTRL animals. Conclusions These results suggest that the early PTOA-like changes reported in the ACL-R model cannot be attributed exclusively to post-surgical kinematic changes, and therefore biologic components in the post-injury environment must be contributing significantly to PTOA development.