Browsing by Author "Tailor, Pankaj"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis(2017-05-10) Allan, Euan R O; Campden, Rhiannon I; Ewanchuk, Benjamin W; Tailor, Pankaj; Balce, Dale R; McKenna, Neil T; Greene, Catherine J; Warren, Amy L; Reinheckel, Thomas; Yates, Robin MAbstract Background Hypomethylation of the cathepsin Z locus has been proposed as an epigenetic risk factor for multiple sclerosis (MS). Cathepsin Z is a unique lysosomal cysteine cathepsin expressed primarily by antigen presenting cells. While cathepsin Z expression has been associated with neuroinflammatory disorders, a role for cathepsin Z in mediating neuroinflammation has not been previously established. Methods Experimental autoimmune encephalomyelitis (EAE) was induced in both wildtype mice and mice deficient in cathepsin Z. The effects of cathepsin Z-deficiency on the processing and presentation of the autoantigen myelin oligodendrocyte glycoprotein, and on the production of IL-1β and IL-18 were determined in vitro from cells derived from wildtype and cathepsin Z-deficient mice. The effects of cathepsin Z-deficiency on CD4+ T cell activation, migration, and infiltration to the CNS were determined in vivo. Statistical analyses of parametric data were performed by one-way ANOVA followed by Tukey post-hoc tests, or by an unpaired Student’s t test. EAE clinical scoring was analyzed using the Mann–Whitney U test. Results We showed that mice deficient in cathepsin Z have reduced neuroinflammation and dramatically lowered circulating levels of IL-1β during EAE. Deficiency in cathepsin Z did not impact either the processing or the presentation of MOG, or MOG- specific CD4+ T cell activation and trafficking. Consistently, we found that cathepsin Z-deficiency reduced the efficiency of antigen presenting cells to secrete IL-1β, which in turn reduced the ability of mice to generate Th17 responses—critical steps in the pathogenesis of EAE and MS. Conclusion Together, these data support a novel role for cathepsin Z in the propagation of IL-1β-driven neuroinflammation.Item Open Access p21−/− mice exhibit enhanced bone regeneration after injury(2017-11-09) Premnath, Priyatha; Jorgenson, Britta; Hess, Ricarda; Tailor, Pankaj; Louie, Dante; Taiani, Jaymi; Boyd, Steven; Krawetz, RomanAbstract Background p21(WAF1/CIP1/SDI1), a cyclin dependent kinase inhibitor has been shown to influence cell proliferation, differentiation and apoptosis; but more recently, p21 has been implicated in tissue repair. Studies on p21(−/−) knockout mice have demonstrated results that vary from complete regeneration and healing of tissue to attenuated healing. There have however been no studies that have evaluated the role of p21 inhibition in bone healing and remodeling. Methods The current study employs a burr-hole fracture model to investigate bone regeneration subsequent to an injury in a p21−/− mouse model. p21−/− and C57BL/6 mice were subjected to a burr-hole fracture on their proximal tibia, and their bony parameters were measured over 4 weeks via in vivo μCT scanning. Results p21−/− mice present with enhanced healing from week 1 through week 4. Differences in bone formation and resorption potential between the two mouse models are assessed via quantitative and functional assays. While the μCT analysis indicates that p21−/− mice have enhanced bone healing capabilities, it appears that the differences observed may not be due to the function of osteoblasts or osteoclasts. Furthermore, no differences were observed in the differentiation of progenitor cells (mesenchymal or monocytic) into osteoblasts or osteoclasts respectively. Conclusions Therefore, it remains unknown how p21 is regulating enhanced fracture repair and further studies are required to determine which cell type(s) are responsible for this regenerative phenotype.