Browsing by Author "Tokarek, Travis W."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Emissions of C9 – C16 hydrocarbons from kelp species on Vancouver Island: Alaria marginata (winged kelp) and Nereocystis luetkeana (bull kelp) as an atmospheric source of limonene(Elsevier, 2019-01-24) Tokarek, Travis W.; Brownsey, Duncan K.; Jordan, Nick; Garner, Natasha M.; Ye, Connie Z.; Osthoff, Hans D.In this paper, measurements of C9 – C16 biogenic volatile organic compounds (BVOCs) in the headspaces above near-shore marine vegetation samples of Fucus gardneri (rock weed), Ulva spp. (sea lettuce), Callophyllis spp. (red sea fans), Alaria marginata (winged kelp), and Nereocystis luetkeana (bull kelp) collected on the west coast of Vancouver Island, British Columbia, Canada, are presented. Numerous BVOCs were observed in the headspace samples, including n-alkanes (e.g., n-dodecane, n-tridecane, n-tetradecane and n-pentadecane) and oxygenated hydrocarbons (e.g., octanal, nonanal, geranyl acetone, and 6-methyl-hepten-2-one), though the majority of VOCs emitted was not identified. The emissions from Ulva spp., Callophyllis spp. and F. gardneri samples contained a similar assortment of n-alkanes and oxygenated BVOCs (e.g., n-aldehydes) as observed at Mace Head, Ireland, whereas the headspaces above N. luetkeana and A. marginata contained monoterpenes, foremost limonene, and toluene. Further studies are needed to constrain emissions of BVOCs from near-coastal vegetation as they have the potential to substantially impact coastal O3 budgets and the organic content of marine derived aerosol.Item Open Access Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia(Copernicus Publications, 2018-05-04) Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, RoxanneThe nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx (= NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low (< 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.Item Open Access Low levels of nitryl chloride at ground level: Nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia(Copernicus, 2018-05-04) Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith H.; Vingarzan, RoxanneThe nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx (Combining double low line NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low (< 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1-2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.Item Open Access Principal component analysis of summertime ground site measurements in the Athabasca oil sands with a focus on analytically unresolved intermediate-volatility organic compounds(European Geosciences Union, 2018-12-14) Tokarek, Travis W.; Odame-Ankrah, Charles A.; Huo, Jennifer A.; McLaren, Robert; Lee, Alex K. Y.; Adam, Max G.; Willis, Megan D.; Abbatt, Jonathan P. D.; Mihele, Cristian; Darlington, Andrea; Mittermeier, Richard L.; Strawbridge, Kevin; Hayden, Katherine L.; Olfert, Jason S.; Schnitzler, Elijah G.; Brownsey, Duncan K.; Assad, Faisal V.; Wentworth, Gregory R.; Tevlin, Alex G.; Worthy, Douglas E. J.; Li, Shao-Meng; Liggio, John; Brook, Jeffrey R.; Osthoff, Hans D.In this paper, measurements of air pollutants made at a ground site near Fort McKay in the Athabasca oil sands region as part of a multi-platform campaign in the summer of 2013 are presented. The observations included measurements of selected volatile organic compounds (VOCs) by a gas chromatograph–ion trap mass spectrometer (GC-ITMS). This instrument observed a large, analytically unresolved hydrocarbon peak (with a retention index between 1100 and 1700) associated with intermediate-volatility organic compounds (IVOCs). However, the activities or processes that contribute to the release of these IVOCs in the oil sands region remain unclear. Principal component analysis (PCA) with varimax rotation was applied to elucidate major source types impacting the sampling site in the summer of 2013. The analysis included 28 variables, including concentrations of total odd nitrogen (NOy), carbon dioxide (CO2), methane (CH4), ammonia (NH3), carbon monoxide (CO), sulfur dioxide (SO2), total reduced-sulfur compounds (TRSs), speciated monoterpenes (including α- and β-pinene and limonene), particle volume calculated from measured size distributions of particles less than 10 and 1 µm in diameter (PM10−1 and PM1), particle-surface-bound polycyclic aromatic hydrocarbons (pPAHs), and aerosol mass spectrometer composition measurements, including refractory black carbon (rBC) and organic aerosol components. The PCA was complemented by bivariate polar plots showing the joint wind speed and direction dependence of air pollutant concentrations to illustrate the spatial distribution of sources in the area. Using the 95 % cumulative percentage of variance criterion, 10 components were identified and categorized by source type. These included emissions by wet tailing ponds, vegetation, open pit mining operations, upgrader facilities, and surface dust. Three components correlated with IVOCs, with the largest associated with surface mining and likely caused by the unearthing and processing of raw bitumen.