Browsing by Author "Zelyas, Nathan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A pragmatic randomized controlled trial of rapid on-site influenza and respiratory syncytial virus PCR testing in paediatric and adult populations(2022-11-16) Bibby, Helen L.; de Koning, Lawrence; Seiden-Long, Isolde; Zelyas, Nathan; Church, Deirdre L.; Berenger, Byron M.Abstract Background Rapid/point-of-care respiratory virus nucleic acid tests (NAT) may improve oseltamivir, antibiotic, diagnostic test, and hospital bed utilization. Previous randomized controlled trials (RCT) on this topic have not used standard procedures of an accredited healthcare and laboratory system. Methods We conducted a parallel RCT at two hospitals [paediatric = Alberta Children’s Hospital (ACH); primarily adult = Peter Lougheed Centre (PLC)]. Patients with a respiratory viral testing order were randomized to testing at either a central accredited laboratory (standard arm) or with a rapid polymerase chain reaction test at an on-site accredited laboratory followed by standard testing [rapid on-site test (ROST) arm] based on day of specimen receipt at the laboratory. Patients and clinicians were blinded to assignment. The primary outcome for ACH was inpatient length of stay (LOS) and for PLC was the proportion of inpatients prescribed oseltamivir. Results 706 patient encounters were included at ACH; 322 assigned to ROST (181 inpatients) and 384 to the standard arm (194 inpatients). 422 patient encounters were included at PLC; 200 assigned to ROST (157 inpatients) and 222 to the standard arm (175 inpatients). The rate of oseltamivir prescription and number of doses given was reduced in PLC inpatients negative for influenza in the ROST arm compared to standard arm [mean 14.9% (95% CI 9.87–21.9) vs. 27.5% (21.0–35.2), p = 0.0135; mean 2.85 doses (SEM 2.39–3.32) vs. 4.17 doses (3.85–4.49) p = 0.022, respectively]. ROST also significantly reduced oseltamivir use at ACH, reduced chest radiographs (ACH), and laboratory test ordering (PLC), but not antibiotic prescriptions. ROST also reduced the median turnaround time by > 24 h (ACH and PLC). The LOS at ACH was not significantly different between the ROST and standard arms [median 4.05 days (SEM 1.79–18.2) vs 4.89 days (2.07–22.9), p = 0.062, respectively]. No adverse events were reported. Conclusions In a RCT representing implementation of ROST in an accredited laboratory system, we found that a ROST improved oseltamivir utilization and is the first RCT to show reduced ancillary testing in both paediatric and adult populations. A larger study is required to assess reduction in paediatric LOS as ACH was underpowered. These findings help justify the implementation of rapid on-site respiratory virus testing for inpatients. Trial registration ISRCTN, number 10110119, Retrospectively Registered, 01/12/2021.Item Open Access False negative rate of COVID-19 PCR testing: a discordant testing analysis(2021-01-09) Kanji, Jamil N; Zelyas, Nathan; MacDonald, Clayton; Pabbaraju, Kanti; Khan, Muhammad N; Prasad, Abhaya; Hu, Jia; Diggle, Mathew; Berenger, Byron M; Tipples, GrahamAbstract Background COVID-19 is diagnosed via detection of SARS-CoV-2 RNA using real time reverse-transcriptase polymerase chain reaction (rtRT-PCR). Performance of many SARS-CoV-2 rtRT-PCR assays is not entirely known due to the lack of a gold standard. We sought to evaluate the false negative rate (FNR) and sensitivity of our laboratory-developed SARS-CoV-2 rtRT-PCR targeting the envelope (E) and RNA-dependent RNA-polymerase (RdRp) genes. Methods SARS-CoV-2 rtRT-PCR results at the Public Health Laboratory (Alberta, Canada) from January 21 to April 18, 2020 were reviewed to identify patients with an initial negative rtRT-PCR followed by a positive result on repeat testing within 14 days (defined as discordant results). Negative samples from these discordant specimens were re-tested using three alternate rtRT-PCR assays (targeting the E gene and N1/N2 regions of the nucleocapsid genes) to assess for false negative (FN) results. Results During the time period specified, 95,919 patients (100,001 samples) were tested for SARS-CoV-2. Of these, 49 patients were found to have discordant results including 49 positive and 52 negative swabs. Repeat testing of 52 negative swabs found five FNs (from five separate patients). Assuming 100% specificity of the diagnostic assay, the FNR and sensitivity in this group of patients with discordant testing was 9.3% (95% CI 1.5–17.0%) and 90.7% (95% CI 82.6–98.9%) respectively. Conclusions Studies to understand the FNR of routinely used assays are important to confirm adequate clinical performance. In this study, most FN results were due to low amounts of SARS-CoV-2 virus concentrations in patients with multiple specimens collected during different stages of infection. Post-test clinical evaluation of each patient is advised to ensure that rtRT-PCR results are not the only factor in excluding COVID-19.