Browsing by Author "dos Santos, Claudia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access National Preclinical Sepsis Platform: developing a framework for accelerating innovation in Canadian sepsis research(2021-03-19) Mendelson, Asher A; Lansdell, Casey; Fox-Robichaud, Alison E; Liaw, Patricia; Arora, Jaskirat; Cailhier, Jean-François; Cepinskas, Gediminas; Charbonney, Emmanuel; dos Santos, Claudia; Dwivedi, Dhruva; Ellis, Christopher G; Fergusson, Dean; Fiest, Kirsten; Gill, Sean E; Hendrick, Kathryn; Hunniford, Victoria T; Kowalewska, Paulina M; Krewulak, Karla; Lehmann, Christian; Macala, Kimberly; Marshall, John C; Mawdsley, Laura; McDonald, Braedon; McDonald, Ellen; Medeiros, Sarah K; Muniz, Valdirene S; Osuchowski, Marcin; Presseau, Justin; Sharma, Neha; Sohrabipour, Sahar; Sunohara-Neilson, Janet; Vázquez-Grande, Gloria; Veldhuizen, Ruud A W; Welsh, Donald; Winston, Brent W; Zarychanski, Ryan; Zhang, Haibo; Zhou, Juan; Lalu, Manoj MAbstract Despite decades of preclinical research, no experimentally derived therapies for sepsis have been successfully adopted into routine clinical practice. Factors that contribute to this crisis of translation include poor representation by preclinical models of the complex human condition of sepsis, bias in preclinical studies, as well as limitations of single-laboratory methodology. To overcome some of these shortcomings, multicentre preclinical studies—defined as a research experiment conducted in two or more research laboratories with a common protocol and analysis—are expected to maximize transparency, improve reproducibility, and enhance generalizability. The ultimate objective is to increase the efficiency and efficacy of bench-to-bedside translation for preclinical sepsis research and improve outcomes for patients with life-threatening infection. To this end, we organized the first meeting of the National Preclinical Sepsis Platform (NPSP). This multicentre preclinical research collaboration of Canadian sepsis researchers and stakeholders was established to study the pathophysiology of sepsis and accelerate movement of promising therapeutics into early phase clinical trials. Integrated knowledge translation and shared decision-making were emphasized to ensure the goals of the platform align with clinical researchers and patient partners. 29 participants from 10 independent labs attended and discussed four main topics: (1) objectives of the platform; (2) animal models of sepsis; (3) multicentre methodology and (4) outcomes for evaluation. A PIRO model (predisposition, insult, response, organ dysfunction) for experimental design was proposed to strengthen linkages with interdisciplinary researchers and key stakeholders. This platform represents an important resource for maximizing translational impact of preclinical sepsis research.Item Open Access Using a targeted metabolomics approach to explore differences in ARDS associated with COVID-19 compared to ARDS caused by H1N1 influenza and bacterial pneumonia(2024-02-27) Lee, Chel H.; Banoei, Mohammad M.; Ansari, Mariam; Cheng, Matthew P.; Lamontagne, Francois; Griesdale, Donald; Lasry, David E.; Demir, Koray; Dhingra, Vinay; Tran, Karen C.; Lee, Terry; Burns, Kevin; Sweet, David; Marshall, John; Slutsky, Arthur; Murthy, Srinivas; Singer, Joel; Patrick, David M.; Lee, Todd C.; Boyd, John H.; Walley, Keith R.; Fowler, Robert; Haljan, Greg; Vinh, Donald C.; Mcgeer, Alison; Maslove, David; Mann, Puneet; Donohoe, Kathryn; Hernandez, Geraldine; Rocheleau, Genevieve; Trahtemberg, Uriel; Kumar, Anand; Lou, Ma; dos Santos, Claudia; Baker, Andrew; Russell, James A.; Winston, Brent W.Abstract Rationale Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome commonly associated with infections such as COVID-19, influenza, and bacterial pneumonia. Ongoing research aims to improve our understanding of ARDS, including its molecular mechanisms, individualized treatment options, and potential interventions to reduce inflammation and promote lung repair. Objective To map and compare metabolic phenotypes of different infectious causes of ARDS to better understand the metabolic pathways involved in the underlying pathogenesis. Methods We analyzed metabolic phenotypes of 3 ARDS cohorts caused by COVID-19, H1N1 influenza, and bacterial pneumonia compared to non-ARDS COVID-19-infected patients and ICU-ventilated controls. Targeted metabolomics was performed on plasma samples from a total of 150 patients using quantitative LC–MS/MS and DI-MS/MS analytical platforms. Results Distinct metabolic phenotypes were detected between different infectious causes of ARDS. There were metabolomics differences between ARDSs associated with COVID-19 and H1N1, which include metabolic pathways involving taurine and hypotaurine, pyruvate, TCA cycle metabolites, lysine, and glycerophospholipids. ARDSs associated with bacterial pneumonia and COVID-19 differed in the metabolism of D-glutamine and D-glutamate, arginine, proline, histidine, and pyruvate. The metabolic profile of COVID-19 ARDS (C19/A) patients admitted to the ICU differed from COVID-19 pneumonia (C19/P) patients who were not admitted to the ICU in metabolisms of phenylalanine, tryptophan, lysine, and tyrosine. Metabolomics analysis revealed significant differences between C19/A, H1N1/A, and PNA/A vs ICU-ventilated controls, reflecting potentially different disease mechanisms. Conclusion Different metabolic phenotypes characterize ARDS associated with different viral and bacterial infections.Item Open Access Using a targeted metabolomics approach to explore differences in ARDS associated with COVID-19 compared to ARDS caused by H1N1 influenza and bacterial pneumonia(2024-02-27) Lee, Chel H.; Banoei, Mohammad M.; Ansari, Mariam; Cheng, Matthew P.; Lamontagne, Francois; Griesdale, Donald; Lasry, David E.; Demir, Koray; Dhingra, Vinay; Tran, Karen C.; Lee, Terry; Burns, Kevin; Sweet, David; Marshall, John; Slutsky, Arthur; Murthy, Srinivas; Singer, Joel; Patrick, David M.; Lee, Todd C.; Boyd, John H.; Walley, Keith R.; Fowler, Robert; Haljan, Greg; Vinh, Donald C.; Mcgeer, Alison; Maslove, David; Mann, Puneet; Donohoe, Kathryn; Hernandez, Geraldine; Rocheleau, Genevieve; Trahtemberg, Uriel; Kumar, Anand; Lou, Ma; dos Santos, Claudia; Baker, Andrew; Russell, James A.; Winston, Brent W.Abstract Rationale Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome commonly associated with infections such as COVID-19, influenza, and bacterial pneumonia. Ongoing research aims to improve our understanding of ARDS, including its molecular mechanisms, individualized treatment options, and potential interventions to reduce inflammation and promote lung repair. Objective To map and compare metabolic phenotypes of different infectious causes of ARDS to better understand the metabolic pathways involved in the underlying pathogenesis. Methods We analyzed metabolic phenotypes of 3 ARDS cohorts caused by COVID-19, H1N1 influenza, and bacterial pneumonia compared to non-ARDS COVID-19-infected patients and ICU-ventilated controls. Targeted metabolomics was performed on plasma samples from a total of 150 patients using quantitative LC–MS/MS and DI-MS/MS analytical platforms. Results Distinct metabolic phenotypes were detected between different infectious causes of ARDS. There were metabolomics differences between ARDSs associated with COVID-19 and H1N1, which include metabolic pathways involving taurine and hypotaurine, pyruvate, TCA cycle metabolites, lysine, and glycerophospholipids. ARDSs associated with bacterial pneumonia and COVID-19 differed in the metabolism of D-glutamine and D-glutamate, arginine, proline, histidine, and pyruvate. The metabolic profile of COVID-19 ARDS (C19/A) patients admitted to the ICU differed from COVID-19 pneumonia (C19/P) patients who were not admitted to the ICU in metabolisms of phenylalanine, tryptophan, lysine, and tyrosine. Metabolomics analysis revealed significant differences between C19/A, H1N1/A, and PNA/A vs ICU-ventilated controls, reflecting potentially different disease mechanisms. Conclusion Different metabolic phenotypes characterize ARDS associated with different viral and bacterial infections.