• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing the Relationship Between Energy Metabolism and Mesenchymal Stem Cell Therapy in the Infarcted Heart

Thumbnail
View
ucalgary_2013_hughey_curtis.pdf
Download
ucalgary_2013_hughey_curtis.pdf (2.633Mb)
Advisor
Shearer, Jane
Author
Hughey, Curtis
Accessioned
2013-12-13T22:33:25Z
Available
2014-03-15T07:00:16Z
Issued
2013-12-13
Submitted
2013
Other
myocardial infarction
mesenchymal stem cell
substrate uptake
mitochondrial oxidative phosphorylation
insulin clamp
isotopic tracers
Subject
Physiology
Type
Thesis
Metadata
Show full item record

Abstract
Objective: A constant provision of adenosine triphosphate (ATP) is of necessity for cardiac contraction. If the heart progresses towards failure following a myocardial infarction (MI) it may undergo metabolic alterations that have the potential to compromise its ability to meet energetic demands. The main focus of this dissertation was to evaluate the efficacy of mesenchymal stem cell (MSC) transplantation to mitigate abnormalities in energy metabolism that contribute to ATP synthesis post-MI in the presence and absence of diet-induced insulin resistance. Methods: C57BL/6 mice were chow or high-fat fed prior to induction of a MI via chronic ligation of the left anterior descending coronary artery. Post-ligation, MSCs were transplanted via intramyocardial injection. Serial echocardiography was performed prior to and up to 28 days post-MI to evaluate cardiac systolic function. Hyperinsulinemic-euglycemic clamps coupled with the administration of isotopic tracers were employed post-MI to assess systemic insulin sensitivity and insulin-mediated, tissue-specific substrate uptake in the conscious, unrestrained mouse. High-resolution respirometry was utilized to evaluate cardiac mitochondrial function in saponinpermeabilized cardiac fibers. Western blotting was completed to assist in identifying molecular mechanisms through which the MSC therapy may modulate cardiac and systemic metabolic phenotypes. Results: The improved systolic performance in MSC-treated mice was associated with a lessening of non-pathological in vivo insulin-stimulated cardiac glucose uptake. The changes in glucose uptake may have been via the MSC-mediated alterations in fatty acid availability/utilization. MSC therapy preserved fatty acid uptake in the absence of diet-induced insulin resistance. Conversely, the cell-based treatment reduced circulating nonesterified fatty acid concentration in high-fat fed mice. Additionally, potential impairments in insulin signalling may have been minimized as indicated by conservation of the p-Akt/Akt ratio. Down-stream of glucose uptake, the administration of MSCs conferred protective effects to mitochondrial oxidative phosphorylation efficiency, maximal function and mitochondrial content. Conclusions: The experiments conducted in this dissertation provide insight into the utility of MSC transplantation as a metabolic therapy for the metabolic perturbations that characterize insulin resistance in the infarcted heart. Also, these studies propose potential mechanisms of action that lead to an enhanced energetic and functional state in the infarcted heart following MSC transplantation.
Corporate
University of Calgary
Faculty
Graduate Studies
Doi
http://dx.doi.org/10.5072/PRISM/25306
Uri
http://hdl.handle.net/11023/1202
Collections
  • The Vault: Electronic Theses and Dissertations

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017