• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heightened Resolution in Wildlife Health Monitoring and Outbreak Investigations through the Use of Molecular and Genomic Tools

Thumbnail
View
ucalgary_2015_forde_taya.pdf
Download
ucalgary_2015_forde_taya.pdf (4.399Mb)
Advisor
Orsel, Karin
Author
Forde, Taya Linden
Accessioned
2015-09-02T14:10:14Z
Issued
2015-09-02
Submitted
2015
Other
wildlife
health
monitoring
ungulate
Mycobacterium
Erysipelothrix
genomics
molecular
Subject
Biology--Molecular
Veterinary Science
Type
Thesis
Metadata
Show full item record

Abstract
Wildlife health monitoring and outbreak investigations are essential for understanding effects of disease on population dynamics. Furthermore, they are important for determining the distribution and diversity of pathogens that could influence conservation efforts or livestock or human health, and they provide baseline information for evaluating the impacts of anthropogenic changes on ecosystem health. Molecular and genomic tools can greatly enhance detection and genetic characterization of pathogens in wildlife populations. This thesis comprises three parts that explore the use of molecular tools of varying complexity for addressing particular monitoring objectives, using bacterial pathogens of wild ungulates as examples. In Part 1, polymerase chain reaction was used to determine the herd-level infection status of Mycobacterium avium subspecies paratuberculosis (MAP) in Canadian wood bison (Bison bison athabascae) in the absence of successful bacterial culture, thereby providing important data for translocation decisions. In Part 2, pathogen transmission at the wildlife-livestock interface was examined using genotyping. The detection of multiple MAP genotypes in a Rocky Mountain bighorn sheep (Ovis canadensis canadensis) population in an area of southwestern Alberta where beef cattle are grazed was an impetus to investigate whether strain sharing of MAP was occurring between these sympatric species. Finally, in Part 3, whole-genome sequencing was used to examine the diversity of the poorly characterized multi-host pathogen Erysipelothrix rhusiopathiae. Initially prompted by an investigation into large-scale muskox (Ovibos moschatus wardi) mortalities in the Canadian Arctic Archipelago associated with E. rhusiopathiae, the population structure and genomic variability of this bacterium were determined, while accounting for homologous recombination. This provided a framework within which to investigate the diversity of E. rhusiopathiae in muskoxen, caribou (Rangifer tarandus caribou) and moose (Alces alces), yielding important insights for delineating outbreaks and inferring transmission. In conclusion, this thesis clearly demonstrated the value of integrating molecular and genomic tools into wildlife health monitoring, including heightened pathogen detection, understanding multi-host diseases, and determining microbial diversity for interpreting outbreaks. Ultimately, as part of a multidisciplinary approach to studying wildlife health, these tools will greatly enhance our understanding of microbial diversity and epidemiology, and provide critical new knowledge to promote evidence-based wildlife conservation and management.
Corporate
University of Calgary
Faculty
Graduate Studies
Doi
http://dx.doi.org/10.5072/PRISM/26349
Uri
http://hdl.handle.net/11023/2420
Collections
  • The Vault: Electronic Theses and Dissertations

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017