The Role of RVLM and PACAP in Sympathetic Long-Term Facilitation after Exposure to Acute Intermittent Hypoxia Hypercapnia

Date
2018-02-21
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Intermittent hypoxia (IHx) and hypercapnia (Hc) episodes are typically a consequence of obstructive sleep apnea (OSA) in adults and immature respiratory control in pre-term infants. IHxHc contributes to immediate and long-term co-morbidities including increased sympathetic output, hypertension, long-term cardiorespiratory instability and stroke. Exposure to an acute phase of IHxHc results in sympathetic long-term facilitation (LTF). Despite intensive investigation, the mechanisms linking IHxHc to increased sympathetic activity and cardiorespiratory instability remain poorly understood. In my thesis project, I explored the role of rostral ventrolateral medulla (RVLM) neurons in development of sympathetic LTF after exposure to IHxHc. I report that PACAP, a highly conserved excitatory neuropeptide, which can function as an "emergency response" co-transmitter in the sympathoadrenal axis, plays a significant role in activating the sympathetic responses to IHxHc, with a prominent role in the RVLM. First, I showed that PACAP plays a critical role during IHx and can save the life of PACAP-KO mice exposed to acute IHx. To the best of our knowledge, PACAP is the first neuropeptide, which is required to survive acute IHx. Second, intermittent stimulation of RVLM area, mirrors the effect of IHxHc with inducing LTF and is sufficient for development of sympathetic LTF, emphasizing on an important role of RVLM neurons in the induction and maintenance of a sympathetic surge after IHxHc. Third, I showed that PACAP action at the RVLM level is necessary for the maintenance of induced sympathetic LTF after exposure to IHxHc. Fourth, I demonstrated that carotid sinus denervation decreases the baseline sympathetic nerve activity but does not suppress the sympathetic nerve response to hypoxia. This finding was explained with the consecutive discovery of spinal cord oxygen sensors. The spinal cord oxygen sensors (SOS) are active over the physiological range and have several qualities of primary oxygen sensors, including a highly-sensitive and rapid physiologic response to changes in oxygen levels. The discovery of PACAP’s role in the maintenance of sympathetic LTF and the existence of SOS introduces a new chapter in current cardiorespiratory research. This new realm has implications for translational studies, such as those investigating sustained sympathetic nerve activity in heart failure,aiming to help patients with chronic obstructive pulmonary disease (COPD), OSA, paroxysmal sympathetic hyperactivity (PSH), and neonates at risks for sudden infant death syndrome (SIDS).
Description
Keywords
PACAP, Intermittent Hypoxia, Hypertension, Rostral ventrolateral medulla
Citation
Derakhshan, F. (2018). The Role of RVLM and PACAP in Sympathetic Long-Term Facilitation after Exposure to Acute Intermittent Hypoxia Hypercapnia (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/13057