• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heterogenous Change in Neuronal Bursts Following Recovery from Activity Silencing

Download
Thesis File (3.323Mb) Embargoed until: 9999-09-09
Advisor
Colicos, Michael A.
Author
Kipp, Alexander Joseph
Committee Member
Turner, Ray W.
Davidsen, Jörn
Accessioned
2018-08-07T18:12:44Z
Available
2018-08-07T18:12:44Z
Issued
2018-08-02
Date
2018-11
Classification
Biology--Cell
Neuroscience
Toxicology
Engineering--System Science
Subject
neuronal network
tetrodotoxin
avalanche
complexity
excitatory balance
inhibitory balance
activity silencing
calcium imaging
netcal
OASIS
fluo-4
synaptic change
heterosynaptic
silent synapse
homeostatic scaling
hub neuron
bursting
hippocampal culture
rat
Type
doctoral thesis
Metadata
Show full item record

Abstract
Silencing of activity in hippocampal neuronal cultures was used to study how dynamic neuronal activity achieves a state of homeostasis, using calcium imaging to detect neuronal firing patterns. Recovering cultures were found to display abnormal activity patterns after 48hrs of exposure to tetrodotoxin, as indicated by paradoxical spike and correlation statistics. It was found that the cultures recovering from activity silencing did not resemble a neuronal system with enhanced excitation, but differed significantly from control experiments. Using a newly developed measure of homogeneity it was found that activity patterns in cultures recovering from silencing were more heterogeneous during bursts, which is in contrast to the current perception that bursting activity is a homogeneous event. It was also observed that there were more active neurons during the recovery period. It is hypothesized that these changes in neuronal system dynamics are brought about due to the insertion and heterogenous manipulation of silent synapses. Results suggest a mechanism through which the interplay between homeostatic scaling, silent synapses and bursting behavior could mediate neuronal network homeostasis.
Faculty
Cumming School of Medicine
Institution
University of Calgary
Doi
http://dx.doi.org/10.11575/PRISM/32789
Uri
http://hdl.handle.net/1880/107607
Collections
  • The Vault: Electronic Theses and Dissertations

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017