Show simple item record

dc.contributor.advisorInnanen, Kristopher A.
dc.contributor.advisorTrad, Daniel O.
dc.contributor.authorFathalian, Ali
dc.date2019-11
dc.date.accessioned2019-10-01T17:54:27Z
dc.date.available2019-10-01T17:54:27Z
dc.date.issued2019-09-30
dc.identifier.citationFathalian, A. (2019). Anelastic attenuation and anisotropy in seismic data: modeling and imaging (Unpublished doctoral thesis). University of Calgary, Calgary, AB.en_US
dc.identifier.urihttp://hdl.handle.net/1880/111122
dc.description.abstractAnisotropy and attenuation are critical to the modeling and analysis of seismic amplitude, phase, and traveltime data. Neglect of either of these phenomena, which are often both operating simultaneously, diminishes the resolution and interpretability of migrated images. In order to obtain an accurate image of subsurface earth, it is necessary to include both anisotropy and attenuation in inversion procedures as subsurface materials are far from being isotropic or elastic. In this thesis, I address attenuation and anisotropy problems such as modeling of wave propagation and compensating for attenuation effects in seismic images. To develop such analysis, I derive a time domain viscoacoustic constant-Q wave equation in isotropic and anisotropic media using an un-split field PML's scheme that is practically efficient and accurately simulates the constant-Q attenuation behavior and developing an Q-compensated reverse-time migration approach to compensate for attenuation effects in seismic images during migration. First, I investigate the accuracy of the new approach of viscoacoustic wave equation based on constant-Q theory. Most importantly, this approach separates attenuation and dispersion operators that allow us to mitigate both amplitude attenuation and phase dispersion effects in seismic imaging. This equation is the key modeling engine for seismic migration. Second, I present a method to improve image resolution by mitigating attenuation effects. I develop a Q-compensated reverse-time migration imaging approach (Q-RTM) and demonstrate this approach using different synthetic models. In Q-RTM, amplitude compensation happens within the migration process through manipulation of attenuation and phase dispersion terms in the time domain differential equations. Particularly, the back-propagation operator is constructed by reversing the sign only of the amplitude loss operators, but not the dispersion-related operators, a step made possible by reformulating the absorptive equations such that the two appear separately. Numerical results further verify that this Q-RTM approach can effectively improve the resolution of seismic images, particularly beneath high-attenuation zones. Finally, I extend the viscoacoustic wave equations from isotropic media to transversely isotropic (TI) media. For imaging application, I discuss the stability condition and the artifacts of shear wave triplications. The results indicate that the stable anisotropic reverse time migration is accessible by taking off anisotropy around the selected high gradient points of tilt angle in areas of rapid changes in the symmetry axes.en_US
dc.language.isoengen_US
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.subjectSeismology, anisotropy, attenuation, reverse-time migrationen_US
dc.subject.classificationGeophysicsen_US
dc.titleAnelastic attenuation and anisotropy in seismic data: modeling and imagingen_US
dc.typedoctoral thesisen_US
dc.publisher.facultyScienceen_US
dc.publisher.institutionUniversity of Calgaryen
thesis.degree.nameDoctor of Philosophy (PhD)en_US
thesis.degree.disciplineGeoscienceen_US
thesis.degree.grantorUniversity of Calgaryen_US
dc.contributor.committeememberLines, Larry R.
dc.contributor.committeememberLawton, Don C.
ucalgary.item.requestcopytrueen_US


Files in this item

Thumbnail
Embargoed until: 2020-02-21

This item appears in the following Collection(s)

Show simple item record

University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.