Please note PRISM will be upgraded March 27-28 to make the submission process better for you! No new content can be added during this time. We apologize for the inconvenience.
Fouling biofilm development in a tubular flow system
Download
thesis_McCoy_1982.pdf (98.67Mb)
Embargoed until: 2200-01-01
Accessioned
2005-07-21T20:13:41ZAvailable
2005-07-21T20:13:41ZIssued
1982Metadata
Show full item record
Abstract
Fouling biofilm development in a completely mixed tubular recycle reactor was studied. The geometry, materials and operation of the recycle circuit were designed to simulate conditions in industrial heat exchangers. The sampling system allowed direct (brightfield, epifluorescence, scanning electron and transmission electron photomicroscopy) and indirect (increased fluid frictional resistance, organic carbon, polysaccharide, adenosine triphosphate and deoxyribonucleic acid) observations of biofilms. Mixed culture biofilms were developed at two different fluid velocities. Biofilm accumulation on corrosion- resistant materials progressed in a sigmoidal fashion; biofilm accumulation on a corrosion susceptible metal was linear with time. Biofilms initially consisted of a monolayer of bacillary bacteria. Filamentous bacterial cells were invariably present in more fully developed biofilms. Fouling (increased fluid frictional resistance) always began after filamentous bacteria became a permanent part of the biofilm. Biofilms developed during low velocity runs were less dense (and had filamentous cells sooner) than biofilms developed during high velocity runs. Fouling biofilms were dynamic filamentous matrixes. Changes in the fluid frictional resistance were explained in terms of the appearance of the filamentous biofilm matrix. A technique is described that was effective in biofilm removal. The process is a practical approach to the problem of biofilm control in tubular heat exchanger systems. Rapid external cool-down of the metal tubular flow biofilm sampler (Robbins device) resulted in significant reductions in biofouling. Pure culture Pseudomonas sp. biofilm development was studied. Filamentous growth of sessile Pseudomonas sp. occurred. In liquid culture media, however, the organism grows as short bacillary rods. Accumulation of biomass by filamentous (but not bacillary) Pseudomonas sp. biofilms resulted in increased fluid frictional resistance. The biomass accumulation rate of filamentous biofilms was almost three times greater than the biomass accumulation rate of bacillary biofilms. The growth of Pseudomonas aeruginosa was characterized in nutrient broth batch cultures. Filamentous growth of P. aeruginosa strain MUCOID occurred because of a rapid shift-down in the log exponential growth rate. Pure culture Sphaerotilus natans biofilm development was studied. The filamentous growth of the organism caused fouling. The increase in fluid frictional resistance was directly proportional to the increase in adherent biomass. The growth of the biofilm was a linear function with time.Bibliography: p. 97-107.
Citation
McCoy, W. F. (1982). Fouling biofilm development in a tubular flow system (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/14407Collections
University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.