Abstract
Self-stabilization is a unified model of fault tolerance. A
self-stabilizing system can recover from an arbitrary transient fault without
re-initialization. Self-stabilization is a particularly valuable attribute of
distributed systems since they are tipically prone to various faults and
dynamic changes. In several distributed applications, pairing of processors
connected in a network can be viewed as a matching of the underlying graph of
the network. A self-stabilizing matching algorithm can be used to build fault
tolerant pairing of clients and servers connected in a network. First
contribution of this report is an efficient, dynamic and self-stabilizing
mazimal matching algorithm for arbitrary anonymous networks. The algorithm
implements a locally distinct label generation technique that can be used by
other applications. The second contribution of this report is a dynamic and
self-stabilizing maximum matching alrogithm for arbitrary biparite networks.
This is the first distributed amximum matching algorithm for networks
containing cycles.
Notes
We are currently acquiring citations for the work deposited into this collection. We recognize the distribution rights of this item may have been assigned to another entity, other than the author(s) of the work.If you can provide the citation for this work or you think you own the distribution rights to this work please contact the Institutional Repository Administrator at digitize@ucalgary.ca