• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seamless Time Migration between Risk Measures used in the General Risk Equation

Thumbnail
Download
2003-733-36.pdf (1.228Mb)
2003-733-36.ps (10.73Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Bradley, James
Accessioned
2008-02-27T22:57:13Z
Available
2008-02-27T22:57:13Z
Computerscience
2003-12-19
Issued
2003-12-19
Subject
Computer Science
Type
unknown
Metadata
Show full item record

Abstract
As shown elsewhere, the general risk equation relates expected throughput capacity of any system to both system resources and positive risk of loss of throughput capacity. Two risk measures are required, a natural MEL-risk measure, and an artificial MEL-risk measure, equivalent to Markowitz's standard deviation measure. We show that the two apparently distinct risk measures are intimately related, and that which one is appropriate depends merely on the time period over which the risk is calculated. We show, ultimately by application of the Central Limit Theorem, that if we merely sufficiently alter the time period, at some point the need for one measure will abruptly transition into the need for the other, without any change in the underlying physical system. This allows a comprehensive MEL-risk measure for use with the general risk equation. This comprehensive measure defaults to either the natural MEL-risk measure, or the artificial MEL-risk measure, depending not on the physical system, but merely on the time period over which the risk is calculated.
Notes
We are currently acquiring citations for the work deposited into this collection. We recognize the distribution rights of this item may have been assigned to another entity, other than the author(s) of the work.If you can provide the citation for this work or you think you own the distribution rights to this work please contact the Institutional Repository Administrator at digitize@ucalgary.ca
Corporate
University of Calgary
Faculty
Science
Doi
http://dx.doi.org/10.11575/PRISM/30463
Uri
http://hdl.handle.net/1880/46269
Collections
  • Science Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017