• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Schulich School of Engineering
  • Schulich School of Engineering Research & Publications
  • View Item
  •   PRISM Home
  • Schulich School of Engineering
  • Schulich School of Engineering Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combustion in a horizontal channel partially filled with porous media

Thumbnail
Download
Main Article (860.2Kb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Johansen, Craig
Ciccarelli, Gaby
Accessioned
2016-04-01T21:40:48Z
Available
2016-04-01T21:40:48Z
Issued
2008
Subject
Flames
Porous media
Explosion
Type
journal article
Metadata
Show full item record

Abstract
Experiments were carried out to investigate the combustion propagation phenomenon in a horizontal channel partially filled with ceramic-oxide spherical beads. A 1.22 m long, 43 mm nominally thick layer of spherical beads is located at the ignition end of a 2.44 m long, 76 mm square channel. Tests were performed with 6.4 and 12.7 mm diameter beads. A flame is ignited at the bead end wall by an automotive spark ignition system. Flame propagation and pressure measurements are obtained via ionization probes and piezoelectric pressure transducers mounted on the top and bottom surfaces of the channel. High-speed schlieren video was used to visualize the structure of the explosion front. Experiments were performed with a 31% nitrogen diluted stoichiometric methane–oxygen mixture at room temperature and at an initial pressure in the range of 15–50 kPa. For initial pressures of 15 and 20 kPa the flame accelerates to a velocity close to the speed of sound in the combustion products. For initial pressure of 30 kPa and higher DDT occurs in the gap above the bead layer. An explosion front propagating at a velocity just under the CJ detonation velocity is detected in the bead layer even though the bead layer pore size is much smaller than the detonation cell size. It is demonstrated that flame propagation within the bead layer is the driving force behind the very rapid flame acceleration observed, however the DDT event occurring in the gap above the bead layer is not affected by the bead layer porosity. Schlieren video indicates that the structure of the explosion front varies across the channel height and with propagation distance down the channel.
Refereed
Yes
Department
Mechanical and Manufacturing Engineering
Faculty
Schulich School of Engineering
Institution
University of Calgary
Publisher
Shock Waves
Doi
http://dx.doi.org/10.1007/s00193-008-0151-0
http://dx.doi.org/10.11575/PRISM/35003
Uri
http://hdl.handle.net/1880/51135
Collections
  • Schulich School of Engineering Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017