• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assembly Pathway of a Bacterial Complex Iron Sulfur Molybdoenzyme

Thumbnail
Download
Assembly Pathway of a Bacterial Complex Iron Sulphur Molybdoenzyme_revised unmarked.docx (2.463Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Cherak, Stephana J
Turner, Raymond J
Accessioned
2017-09-01T22:13:38Z
Available
2017-09-01T22:13:38Z
Issued
2017-08-08
Subject
protein folding
protein biogenesis
system specific chaperone
iron sulfur molybdoenzymes
dimethyl sulfoxide reductase
twin-arginine translocate
Type
journal article
Metadata
Show full item record

Abstract
Protein folding and assembly into macromolecule complexes within the living cell is a complex process requiring intimate coordination. The biogenesis of complex iron sulphur molybdoenzymes (CISM) requires use of a system specific chaperone – a redox enzyme maturation protein (REMP) – to help mediate final folding and assembly. The CISM Dimethyl sulfoxide (DMSO) reductase is a bacterial anaerobic respiratory oxidoreductase that utilizes DMSO as a final electron acceptor to survive within anoxic conditions. The REMP DmsD strongly interacts with DMSO reductase to facilitate folding, cofactor-insertion, subunit assembly and targeting of the multi-subunit enzyme prior to membrane translocation and final assembly and maturation into a bioenergetic catalytic unit. In this article, we discuss the biogenesis of DMSO reductase as an example of the participant network for bacterial CISM maturation pathways.
Grantingagency
CIHR
Refereed
Yes
Citation
BioMol Concepts DOI 10.1515/bmc-2017-0011
Department
Biological Sciences
Faculty
Science
Institution
University of Calgary
Publisher
De Gruyter
Doi
http://dx.doi.org/10.11575/PRISM/30231
Uri
http://hdl.handle.net/1880/52204
Collections
  • Science Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017