An Investigation of the Geochemistry and Hydrogeology of the Queen Charlotte Fault

dc.contributor.advisorLauer, Rachel
dc.contributor.authorLaw, Michael
dc.contributor.committeememberTutolo, Ben
dc.contributor.committeememberSolomon, Evan
dc.date2021-06
dc.date.accessioned2021-03-29T21:23:35Z
dc.date.available2021-03-29T21:23:35Z
dc.date.issued2021-03-23
dc.description.abstractConsiderable attention has been given to characterizing the relationship between fluids and plate boundary fault systems at convergent margins, yet comparatively little is known about the hydrogeology of submerged transform boundaries. Following the 2012 M7.8 earthquake off western Haida Gwaii, an international scientific partnership was established between US and Canadian scientists to study the Queen Charlotte Fault – a ~1200 km transform fault between the Pacific and North American plates, where ~ 900 km lies offshore. Scientific expeditions onboard the R/V John P. Tully in 2015 and 2017 identified numerous water column anomalies (i.e seeps), mud volcanoes, microbial mats, and indicators of seabed fluid flow along the QCF. Analyses of pore fluids recovered from the 2017 cruise revealed abundant overprinting signatures of carbonate precipitation, anaerobic oxidation of methane, and particulate organic carbon sulfate reduction processes that dictate the chemistry of the observed pore waters. These chemical processes promote the formation of carbonates and iron sulfides that fuel microbial mats and diverse chemosynthetic communities at the seafloor. Analyses of water isotopes and chloride concentrations suggest that certain locations in proximity to the QCF may be influenced by meteoric water, or some currently unknown isotopic depletion process. Strontium isotopes reveal a non-radiogenic strontium signature at depth, suggesting basalt-fluid interaction and/or a diagenetic overprinting of sedimentary ash alteration. Fluids collected from CTD casts in the southern portion of the QCF suggest that actively seeping fluids have been influenced by the formation of gas hydrates. Taken together, the results presented in this investigation imply a significant flux of hydrocarbons (primarily methane) is occurring from buried sediments, in combination with high productivity in the water column contributing organic material during sedimentation. A general overall signature of authigenic carbonate precipitation is found at most sites along the entire length of the QCF, acting as a major sink for calcium, magnesium, and strontium between the ocean and seafloor sediments. Migration of fluids within the QCF is complex and varied from the northern region to the south – this study provides an overall preliminary insight to the inner workings of the QCF that merit ongoing investigation.en_US
dc.identifier.citationLaw, M. D. (2021). An Investigation of the Geochemistry and Hydrogeology of the Queen Charlotte Fault (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/38698
dc.identifier.urihttp://hdl.handle.net/1880/113189
dc.language.isoengen_US
dc.publisher.facultyScienceen_US
dc.publisher.institutionUniversity of Calgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.subjectqueen charlotte faulten_US
dc.subjectpore fluidsen_US
dc.subjecthydrogeologyen_US
dc.subjectanaerobic oxidation of methane, AOMen_US
dc.subjectparticulate organic carbon sulfate reduction, POCSRen_US
dc.subject.classificationGeochemistryen_US
dc.subject.classificationGeologyen_US
dc.subject.classificationGeophysicsen_US
dc.titleAn Investigation of the Geochemistry and Hydrogeology of the Queen Charlotte Faulten_US
dc.typemaster thesisen_US
thesis.degree.disciplineGeoscienceen_US
thesis.degree.grantorUniversity of Calgaryen_US
thesis.degree.nameMaster of Science (MSc)en_US
ucalgary.item.requestcopytrueen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ucalgary_2021_law_michael_supplementary_tables.pdf
Size:
89.9 KB
Format:
Adobe Portable Document Format
Description:
Supplementary Tables
Loading...
Thumbnail Image
Name:
ucalgary_2021_law_michael.pdf
Size:
6.16 MB
Format:
Adobe Portable Document Format
Description:
Main Thesis
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.62 KB
Format:
Item-specific license agreed upon to submission
Description: