Neuro-Electronic Interface: Interrogating Neuronal Function and Circuitry with Innovative Approaches
dc.contributor.advisor | Syed, Naweed | |
dc.contributor.author | Wijdenes, Pierre | |
dc.contributor.committeemember | Teskey, Cam | |
dc.contributor.committeemember | Dalton, Colin | |
dc.contributor.committeemember | Rho, Jong | |
dc.date | 2018-06 | |
dc.date.accessioned | 2018-01-25T18:54:07Z | |
dc.date.available | 2018-01-25T18:54:07Z | |
dc.date.issued | 2018-01-22 | |
dc.description.abstract | All nervous system functions, ranging from simple reflexes to complex behaviors and learning and memory, rely on networks of interconnected brain cells called neurons. Loss of various neuronal circuit functions, due either to stroke, epilepsy, trauma, Parkinson's, Alzheimer's or neurodegenerative diseases, renders the nervous system dysfunctional. Epilepsy alone is one of the most common and debilitating neurological disorder, which affects about 65 million people worldwide – representing 1% of the global population. Because natural replacement of injured or diseased nervous system tissue seldom, if ever, occurs, this loss of function is often irreversible and leaves patients incapacitated for life. The lack of fundamental knowledge in the field of neurological disorders, such as epilepsy, owes its existence to the intricacies of neuronal networks, and our inability to monitor their activities at the resolution of individual neurons. Thus, several laboratories in the world have developed brain-chip interface technologies that allow the interrogation of neuronal function non-invasively and over an extended time period. A variety of neuro-electronic interfaces now allow fundamental understanding of brain function, ranging from monitoring ion channel activities, to synaptic plasticity 4, and brain-controlled prosthetic devices. However, there are several limitations to the existing micro-electrode designs, their biocompatibility and resolution, when monitoring both normal and perturbed activity patterns, for example during epilepsy. Thus, the main objective of my thesis was to develop a set of novel micro-electrode arrays (MEAs) that could fill this technological gap, allowing for the detection, characterization, and modulation of neural activity from individual cells to neuronal networks. | en_US |
dc.identifier.citation | Wijdenes P. (2018). Neuro-Electronic Interface: Interrogating Neuronal Function and Circuitry with Innovative Approaches (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. | en_US |
dc.identifier.doi | http://dx.doi.org/10.11575/PRISM/5407 | |
dc.identifier.uri | http://hdl.handle.net/1880/106326 | |
dc.language.iso | en | en_US |
dc.publisher.faculty | Schulich School of Engineering | en_US |
dc.publisher.institution | University of Calgary | en |
dc.rights | University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. | en_US |
dc.subject.classification | Education--Sciences | en_US |
dc.subject.classification | Education--Technology | en_US |
dc.subject.classification | Biology--Cell | en_US |
dc.subject.classification | Neuroscience | en_US |
dc.subject.classification | Biophysics--Medical | en_US |
dc.subject.classification | Rehabilitation and Therapy | en_US |
dc.subject.classification | Engineering--Biomedical | en_US |
dc.title | Neuro-Electronic Interface: Interrogating Neuronal Function and Circuitry with Innovative Approaches | en_US |
dc.type | doctoral thesis | en_US |
thesis.degree.discipline | Engineering – Biomedical | en_US |
thesis.degree.grantor | University of Calgary | en_US |
thesis.degree.name | Doctor of Philosophy (PhD) | en_US |
ucalgary.item.requestcopy | true | |
ucalgary.thesis.checklist | I confirm that I have submitted all of the required forms to Faculty of Graduate Studies. | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ucalgary_2018_wijdenes_pierre.pdf
- Size:
- 5.51 MB
- Format:
- Adobe Portable Document Format
- Description:
- PhD Thesis
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.74 KB
- Format:
- Item-specific license agreed upon to submission
- Description: